
A Planning Based Framework for Controlling Hybrid Systems

Johannes Löhr, Patrick Eyerich, Thomas Keller and Bernhard Nebel
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{loehr, eyerich, tkeller, nebel}@informatik.uni-freiburg.de

Abstract

The control of dynamic systems, which aims to minimize the
deviation of state variables from reference values in a contin-
uous state space, is a central domain of cybernetics and con-
trol theory. The objective of action planning is to find feasible
state trajectories in a discrete state space from an initial state
to a state satisfying the goal conditions, which in principle ad-
dresses the same issue on a more abstract level. We combine
these approaches to switch between dynamic system charac-
teristics on the fly, and to generate control input sequences
that affect both discrete and continuous state variables. Our
approach (called Domain Predictive Control) is applicable to
hybrid systems with linear dynamics and discretizable inputs.

Introduction
Where is the need for planning in cybernetics? Modeling
the real world by the use of differential equations is the base
for controlling dynamic systems. Modern control methods
like Model Predictive Control (Rawlings and Mayne 2009)
can deal with real world restrictions like saturation of in-
put signals or constraints on state variables. However, it is
still an issue to control systems with reconfigurable dynam-
ics (e.g mode switches) or logical dependencies between in-
put signals or state transitions, aspects that are a central part
of action planning. The intersection of planning and con-
trol was part of previous research (Anthony 1981) that uti-
lizes a separate control system to reach set points, which
are commanded by a planning system. Autonomous system
reconfigurations of space engines were put into practice by
Williams and Nayak (1996). The main contribution of this
paper is to show how planning can be used to generate in-
put signals directly for systems with numerical and logical
states (known as hybrid systems) taking their dynamics and
reconfigurations into account.

This research is motivated by the need of autonomy of
spacecraft, which have to reach their goals in the absence
of permanent communication links and in the presence of
failures and uncertainties. Spacecraft can be modeled as hy-
brid dynamic systems with continuous and logical state vari-
ables. Continuous state variables (like position and velocity
or attitude and angular rate) can be affected by actuators,

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e.g., thrusters, or reaction-wheels, and measured by sensors
like star tracker or gyroscopes. Logical state variables (like
information about the currently active equipment, available
equipment or identified failures) are usually changed manu-
ally or via simple rules triggered in failure cases. The main
idea of this paper is to utilize planning algorithms that take
into account information about the system and its environ-
ment to autonomously find feasible state transitions from
the initial hybrid state to a desired goal state. Using planning
techniques to control specific dynamic systems has been of
interest recently, e.g., in rover dynamics (Della Penna et al.
2010) or in the efficient usage of battery packs (Fox, Long,
and Magazzeni 2011). Rather than focusing on a specific
application explicitly, we show how to tackle such problems
from a general point of view.

The remainder of the paper is structured as follows. First,
we briefly characterize the state space description and con-
trol problem of continuous dynamic systems and extend it
to our purpose. Then, we introduce a framework to control
hybrid systems by planning and show how to derive a suit-
able planning domain from the dynamics and input signals
via discretization. Furthermore, necessary planner require-
ments and modifications are formulated. We apply our ap-
proach on exemplary dynamic systems with additional con-
straints in the subsequent section. Finally, we discuss the
results and give an outlook on future work.

Continuous and Hybrid Systems
A dynamic system is a model of the real physical processes
(called plants) based on a set of linear differential equations

ẋn(t) = A xn(t) +B un(t), (1)

where xn ∈ Rp is the vector of state variables,1 un ∈ Rm
is the vector of input signals, A is the dynamic matrix of
dimension p × p, and B is the input matrix of dimension
p ×m. Using a vector based description rather than scalar
equations makes it very easy to consider coupled dynamics,
as the time derivative of any state variable can be influenced
by all other variables in xn.

Feedforward control of dynamic systems generates input
sequences

un(t), t ∈ [ta, tb]
1We use the subscript n to tag numerical state variable vectors

and the subscript l to tag logical state variable vectors.

guiding the system from its initial state xn(ta) to a desired
set point xn(tb), specified externally, within the time inter-
val [ta, tb].

A vector of q measurements yn ∈ Rq , provided by sensors,
is given by

yn(t) = C xn(t) +D un(t), (2)

where C is the measurement matrix and D is the direct
input-output matrix.

Methods like Optimal Control (Geering 2007) or Model
Predictive Control (Wang 2009) can be used to control
dynamic systems. Optimal Control finds time– or cost–
optimal input sequences un(t) by minimizing a cost func-
tion. In Model Predictive Control an optimal input subse-
quence un(t) with t ∈ [ta, ta+tc] is generated by evaluating
the states xn(t) ∈ [ta, ta + tp] of a prediction model within
a receding horizon tp.

We refer to dynamic systems enriched with some logical
state variables as hybrid systems. An overview on hybrid dy-
namical models is given by Heemels, Schutter, and Bempo-
rad (2001). More concretely, the state space matrices A, B,
C, and D of the hybrid system are dependent on a vector xl
of Boolean variables, allowing for system reconfigurations
(i.e., mode switches) which shall be exploited actively in the
planning process. This leads to the state space description
of the system:

ẋn(t) = A(xl) xn(t) +B(xl) un(t). (3)

Analogously, the measurement Equation 2 is extended to

yn(t) = C(xl) xn(t) +D(xl) un(t). (4)

In the following, we refer to the vector of all the logical
and numeric variables of a state as x ∶= [xn,xl]T and write
shortly si to denote the values that are taken by the state
variables x at time point ti.

Domain Predictive Control
We present an architecture for planning based control of hy-
brid systems. The name Domain Predictive Control is cho-
sen in the style of Model Predictive Control (Wang 2009),
where control signals are generated by evaluation of model
based state predictions. We use a similar approach based
on domain models which are further abstractions of the dy-
namic model.

Architecture
The first step towards autonomy is a suitable architecture
which combines planning and hybrid systems, as shown in
Figure 1. The planner uses an abstract domain model of the
plant for predicting future states.2 Based on this model and
the knowledge of the current system state and the goal speci-
fication, the planner continuously generates input signals by
replanning. This yields several advantages regarding robust-
ness. If the plant is disturbed by non-modeled dynamics or

2As the current information of the plant is required for predic-
tion of future states in the planning process, it is implicitly assumed
that the input un(t) cannot affect the measurement yn(t) at the
same time. Thus D = 0 in the system.

Plan

Plant

Planner

user Problem

Domain

∫
A(xl)

B(xl) C(xl)+

EstimatorInterpreter Plant Logic
ul(t)

xl(t)
x̃l(t)

t0

x̂(tk+c) ∉ s⋆ x̂(tk+c) ∈ s⋆

s⋆
k = 0

sk+c
k ∶= k + c

x̂(t)

xn(t)
yn(t)un(t)

ẋn(t)

stop
s⋆, sk

t ∈ [tk, tk+c]
Figure 1: Architecture of Domain Predictive Control for hy-
brid systems based on continuous (re-) planning.

exogenous effects, there are discrepancies between the pre-
diction and the real dynamics that tend to grow with the size
of the prediction horizon. Continuous replanning reduces
this effect since it is basically a control-feedback loop, tak-
ing into account new information about the system or the
environment.

The user triggers the planner at time t0 and provides a
set of goals s⋆. The current estimated system state x̂(t0)
is the initial state for the planner. The planner gener-
ates a sequence of actions ⟨a1, . . . , ai, . . . , ac⟩ having du-
rations δi that provides a numeric input signal un(t), where
t ∈ [tk, tk+c] and tk+c = tk +∑ci=1 δi and a logical input sig-
nal ul(t). The parameter c denotes the number of state tran-
sitions to perform before replanning is triggered if the goal
was not reached.3 The numeric input signal affects the nu-
meric state variables xn(t) as in Equation 3, whereas ul(t)
changes the logical state variables xl(t) of the plant logic.
As the state space matrices of the plant dynamics in Equa-
tions 3 and 4 are dependent on the logical state xl, system
changes can actively be planned.

In general, it is necessary to estimate states since only
measurements yn are known in realistic applications. While
numeric states have to be observed or estimated (Simon
2006), deviations in the logical state xl from the expected
logical state x̃l (e.g., caused by failures) can be identified via
Failure Detection and Isolation (Isermann 2006) or model-
based diagnosis (Struss 1997) methods. As we focus on the
planning aspects of the architecture in this paper, we assume
full knowledge of the hybrid state vector such that x̂ = x.

The planner solves the new planning problem that is up-
dated with the new hybrid state sk+c = x̂(tk+c). Further-
more, k is set to k+c. This process is repeated untilsk+c ∈ s⋆,
thereby generating a trajectory of z state transitions, driven
by un(tk), k ∈ [0,1, . . . , z] control signals, from the initial
state s0 = x̂(t0) to a goal state sz = x̂(tz) ∈ s⋆.

3Setting c = 1 achieves the best reactivity to exogenous events,
but is also most costly from a computational point of view.

If the domain model is complex or the minimal plan
length is high, the planner might fail to find a solution in rea-
sonable time. To capture such cases we have implemented
two termination criteria. The first is a receding planning
horizon, limiting the search depth of the planner. The second
is a limitation on the number of expanded states. If one of
these criteria triggers, the planner generates a promising tra-
jectory that either leads to a goal state or, if no such state has
been reached, to a state that is nearest to the goal according
to the heuristic information.

As mentioned, our architecture resembles the idea of
Model Predictive Control. Instead of a dynamic model, we
use a domain model for prediction and utilize a planner for
optimization. In the following, we outline the generation
process of such a domain model.

Domain Model In this section we show that the control
problem of hybrid systems can be expressed in a plan-
ning language featuring basic mathematical operations. Let
xn = [v1, v2, ..., vp] be the state variables vector consisting
of numeric variables vn and un(t), t ∈ [tk, tk + δi] be a con-
tinuous input vector signal which shall be modeled as an
action. A finite set of such actions O describes the domain
model. The effect e of action ai on the numeric state xn(tk)
can be predicted as

e(ai) ∶ xn(tk+1) = Φi xn(tk) +Ψi (5)

where Φi is the homogeneous solution, obtained by the ma-
trix exponential function4

Φi = eAδi (6)

and Ψi is the inhomogeneous solution of Equation 3, driven
by the input signal un(t)

Ψi = ∫ tk+δi
tk

eA(tk+δi−τ)B un(τ) dτ. (7)

The state space matricesA andB are assumed to be constant
within the duration of one action. Nevertheless, reconfigu-
rations of the system can be planned on the fly since state
space matrices can be changed by actions as well.

The advantage of our approach is that the quite complex
computations to solve Equations 6 and 7 can be performed
as a preprocessing step. Effects as in Equation 5 can be rep-
resented using only basic mathematical operations and com-
puted by a numeric planner during the planning process.

Domains of this kind are similar to the class of switched,
piecewise affine systems (Heemels, Schutter, and Bemporad
2001). A piecewise affine system (PWA) is given by

xn(k + 1) = Ai xn(k) +Bi un(k) + fi, xn(k) ∈ Ωi.

In a domain model Ai = Φi and Bi un(k) is restricted to
Ψi. The additional external offset fi can be either consid-
ered in Equation 5 or absorbed into the inhomogeneous so-
lution. The system dynamics depends on the state xn that
corresponds to a subset Ωi of the state space⋃∀i∈O Ωi ⊆ Rn.

4It is worth to mention that the matrix exponential can be ap-
proximated by the series eAδ = ∑∞k=0 (Aδ)k

k!
.

Note that the PWA constraint Ωi ∩Ωj = ∅, ∀i ≠ j needs not
to be satisfied in a domain model, however. Instead, we ex-
plicitly allow for overlapping subsets Ωi and use a planner
to switch to the most suitable dynamics in order to guide the
system into a state satisfying the goal conditions.

Goal Specification It is possible that the goal cannot
be reached precisely due to the use of discretized effects.
Therefore, we define the goal set as a conjunction of inter-
vals vi = gi ± εi. Such intervals can easily be specified as
two conjunctive goals: vi ≤ gi + εi and vi ≥ gi − εi, where εi
denotes the sufficient accuracy of the desired set point.

Planning Formalism
The domain model is an action based description of the plant
dynamics with all possible inputs and constraints. A gen-
eral approach to handle the continuous dynamics of a sys-
tem is to relax them to a discrete system, e.g., to a Finite
State System (Della Penna et al. 2010) or a Final State Tem-
poral System (Fox, Long, and Magazzeni 2011), and inter-
leave between discretization and validation. Our approach
also incorporates discretization techniques. However, cur-
rently we use a fixed discretization of time steps and plan to
incorporate varying durations later.

The formalism we use to generate planning tasks is PDDL
2.1 level 3 (Fox and Long 2003), which means that we re-
quire the underlying planning system to support durative ac-
tions and numeric variables. Indeed, the generated tasks
make heavy use of numeric variables and in general con-
tain variables that do not change monotonically but can both
increase and decrease, a feature early numeric planning sys-
tems are not able to cope with (Hoffmann 2002). Since, be-
side vector additions, we also need to perform matrix-vector
multiplications, the requirements for planning system that
can deal with such domains are quite high and pose some
interesting challenges for the development of more sophisti-
cated techniques to solve numeric planning tasks. Neverthe-
less, we show in the following that our approach is feasible
and that we can achieve very good results using a state-of
the art temporal numeric planner, Temporal Fast Downward
(TFD) (Eyerich, Mattmüller, and Röger 2009), out of the
box. With some minor modifications mainly regarding the
heuristic, described in the following sub section, we are able
to generate complex plans involving lots of numerical oper-
ations in nearly real time.

For the remainder of the paper we need some defini-
tions. We borrow them from Eyerich, Mattmüller, and
Röger (2009) and omit some of the details for the sake of
simplicity. First, we define a temporal numeric planning
task as a tuple Π = ⟨V, s0, s⋆,A,O⟩ with the following com-
ponents: V is a set of state variables v, partitioned into a setVl of logical variables with finite domains Dv and a set of
numeric variables Vn with domains Dn = R ∪ {�} (� for
undefined). The initial state s0 is given by a variable assign-
ment (a state) over all fluents in V and the set of goal states
is defined by a partial state s⋆ over V . A partial state s′ is
a state restricted to a subset of the fluents. A is the set of
axioms and O is a finite set of durative actions. A durative
action ⟨C ,E , δ⟩ consists of a triple C = ⟨C⊢,C↔,C⊣⟩ of

partial variable assignments over Vl (called its start, persis-
tent, and end condition, respectively), a tuple E = ⟨E⊢,E⊣⟩
of start and end effects and a duration variable δ ∈ Vn. E⊢
and E⊣ are finite sets of conditional effects ⟨c, e⟩. The ef-
fect condition c = ⟨c⊢, c↔, c⊣⟩ is defined analogously to the
operator condition C. A simple effect e is either a logical ef-
fect of form v = w or a numeric effect of form v ○ v′, where
v, v′ ∈ Vn and ○ is one of the operators +=, −=, ∗=, /=, and∶=, respectively.

A time-stamped state S = ⟨t, s,E ,C↔,C⊣⟩ consists of a
time stamp t ≥ 0, a state s, a set E of scheduled effects,
and two sets C↔ and C⊣ of persistent and end conditions.
A scheduled effect ⟨∆t, c↔, c⊣, e⟩ consists of the remaining
time ∆t ≥ 0 (until the instant when the effect triggers), per-
sistent and end effect conditions c↔ and c⊣ over V , and a
simple effect e . The conditions in C↔ and C⊣ are annotated
with time increments ∆t ≥ 0 and have to hold until instant
t + ∆t (exclusively) for persistent conditions and at instant
t +∆t for end conditions.

A trajectory S = ⟨s0, s1, . . . , sz⟩ in a temporal planning
task is a sequence of time-stamped states such that for 1 ≤
i ≤ z an intermediate state si can be generated out of its
predecessor state si−1 by either inserting an additional action
a starting at time stamp (si−1.t)+ε, thereby applying all start
effects of a and scheduling its end effects, or by progressing
time via an artificial advance time operator to the next time
point on which a scheduled action a ends (applying all end
effects of a). A trajectory is valid if all the start, overall and
end conditions of all involved actions are satisfied at their
appropriate time. A valid trajectory is called a plan if sz
complies with the goal specification s⋆.

Planning For solving the generated planning tasks we use
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009). Out of the box, TFD works quite nicely for
our purposes. In fact, it was the only planner of several can-
didates that was able to solve certain planning tasks gen-
erated by our approach. Other systems we have tried in-
clude LPG (Gerevini, Saetti, and Serina 2003), SAPA (Do
and Kambhampati 2003), Crikey3 (Coles et al. 2008), and
POPF2 (Coles et al. 2010; 2011). None of these systems
was able to produce plans for our generated problems as they
are not able to deal with numeric axioms, could not handle
numeric variables that do not change in a monotone way
but can both increase and decrease, did not support multi-
plication at all, or did just not terminate. However, despite
making heavy use of complex numeric calculations and uti-
lizing the power of numeric axioms, our produced planning
tasks are legal PDDL 2.1 level 3 tasks of relatively moderate
size, so it is very likely that other planning systems can be
tweaked relatively easily to work on them.

It turned out that the incorporated heuristic used in TFD
has two weaknesses that can lead to poor guidance in certain
domains: First, our representation often requires the same
action to be applied several times consecutively to reach
the goal, a behavior that is not covered by TFD’s standard
heuristic, where each appearance of an action instance that
changes a numeric variable is only counted once. Second,
TFD’s heuristic only checks for actions that can possibly

change a numeric value in a way that seems to be promising
to fulfill a yet unsatisfied comparison condition, thereby not
distinguishing between several different actions able to do
so. Furthermore, all our example applications share a very
interesting property that seems to be present in a lot of prac-
tical problems as well: numeric variables change usually in a
continuous way and the amount of change often corresponds
to the cost of the actions producing that change. Therefore,
when approximating the cost of satisfying a yet unsatisfied
comparison condition, it is often sufficient to compare only
the actual value of the appropriate numeric variables with
their desired ones, and not consider the actions that might
produce that change. Therefore, we implemented a new type
of heuristic that sums up the differences between the desired
values and the current values of unsatisfied comparison con-
ditions.

The last modification we made is to enable TFD to termi-
nate early based on different criteria like the elapsed time,
the number of expanded states, and the maximal number of
actions that can be applied sequentially, respectively. If one
of these termination rules triggers, TFD returns the trajec-
tory to the time-stamped state that seems to be most promis-
ing in terms of the heuristic estimation.

Exemplary Applications
In this section we put Domain Predictive Control into prac-
tice, thereby showing two important aspects of it. The first is
that we plan with and in excess of system transitions, shown
in a fictive slew maneuver of a space telescope. The second
is the incorporated replanning strategy that allows us to deal
with large state spaces, shown in an exemplary ball maze.
Both applications focus on the main advantages of planning
in hybrid systems.

Example I: Space Telescope Slew Maneuver
This example shows how to generate a planning model out
of physical equations and how we can use planning to gen-
erate an input sequence that both performs state transitions
and system transitions. The goal is to slew a space tele-
scope from a certain attitude into another attitude in order
to look at a new point in space. A common way to point to
an arbitrary direction is to slew around a rotation axis with
angle φ, also known as Euler axis and Euler angle5 (Wertz
1994). The challenge in this example is that the telescope
has to zoom on the new object during the slew, in order to
save time. Due to the movement of the heavy optical units
orthogonally to the rotation axis, the satellites moment of
inertia changes significantly.

State Space Differential System There are some basic
physical equations which are necessary to derive the differ-
ential system. We start with the angular momentum, which
is defined by

H = J ω,
5This enables a non vectorial description of the physical equa-

tions, used for simplicity. Note that the moment of inertia changes
in general, if the rotation axis changes.

where J is the moment of inertia around the rotation axis and
ω is the angular rate. Any change of the angular momentum
H needs an external torque T , given by

Jω̇ = T.
The change of the angle is given by

φ̇ = ω,
which finally leads to the state space description of the dy-
namic system (see Equation 3)

[φ̇
ω̇
] = [0 1

0 0
] [φ

ω
] + [0

1
J

] T (8)

Precondition Numerical Eff. Logical Eff.
a0 - Φ0 x -
a1 x2 < 1 deg

s ∧ ¬xl) Φ1 x +Ψ1 -
a2 x2 < 1 deg

s ∧ ¬xl) Φ2 x +Ψ2 -
a3 x2 < 1 deg

s ∧ xl) Φ3 x +Ψ3 -
a4 x2 < 1 deg

s ∧ xl) Φ4 x +Ψ4 -
a5 x2 < 1 deg

s ∧ ¬xl) Φ5 x xl ∶= true
Table 1: Actions of the domain based description of the hy-
brid system of Example I.

Domain Model The continuous state space system from
Equation 8 has to be discretized in time and for several input
sequences. The external torque T is produced by thrusters,
which act with a certain lever on the satellite’s center of
mass. They can either be switched on or switched off and
provide a torque around the rotation axis of 1 Nm. A dis-
cretization time of 5 s using Equation 6 yields the homoge-
neous solution

Φi = [1 5
0 1

] , i ∈ {0,1, ...,4}.
The moment of inertia J is 1500 kg m2 while the telescope is
zoomed and 1000 kg m2 while it is not zoomed. Therefore,
the input matrix of the hybrid system is either

Bxl=0 = [1
1

1000

] or Bxl=1 = [1
1

1500

]
depending on the Boolean state variable xl which denotes
whether the telescope is zoomed or not. Applying a torque
in positive direction (i = 1) and negative direction (i = 2)
with respect to the rotation axis, as in Equation 7 leads to
the inhomogeneous solutions

Ψ1 = [0.0125
0.005

] Ψ2 = [−0.0125−0.005
] .

The inhomogeneous solutions for applying a torque in posi-
tive direction (i = 3) and negative direction (i = 4) after the
zoom operation are

Ψ3 = [0.0083
0.0033

] Ψ4 = [−0.0083−0.0033
]

0 25 50 75 100

time [s]

a1 a1 a1 a0 a0 a5 (zoom operation) a0 a0 a4 a4 a4

Figure 2: Plan from the initial state to the goal state. The
total plan duration is 100 s.

since the moment of inertia has changed. If no thruster is
fired, the transition of the states is affected solely by the ho-
mogeneous solution and Ψ0 = 0 per definition. Finally, the
effect of an action i is given by

x(tk+1) = Φi x(tk) +Ψi, i ∈ [0,4],
where k indicates the number of previous actions. This ap-
proach leads to a set of actions, with preconditions shown
in Table 1. The domain model is directly derived from the
hybrid system.

Zoom Transition In this example, a system transition is
needed to reach the goal state. Instantaneous mode switches
are often sufficient to describe the change of the system – in
this example a more complex, time variant transition is nec-
essary, which itself interacts with the state variables. How
the effect of the zoom operation (a5) complying with Equa-
tion 5 is derived is shown in the following.

As mentioned above, the movement of the optical units
changes the moment of inertia ∆J = Jxl=1 − Jxl=0 within
the zoom time of δ5, which has a direct impact on the angu-
lar rate of the satellite. As it is prohibited to fire a thruster
during the zoom operation, the angular momentumH is con-
stant. Let us assume that the moment of inertia changes lin-
early over δ5, then the angular rate is given by

ω(tk + t) = J0(J0 + ∆J
δi
t) ωk,

where ωk is the angular rate before the zoom operation has
started. The angle during the zoom operation is given by the
integration of the angular rate

φ(t) = ∫ δ5
ω dt + φk = δ5

∆J
J0 ln(∆J

δ5
t + J0)∣δ5 ωk + φk.

With concrete values, δ5 = 50 s and ∆J = 500 kg m2, the
transition matrix of the zoom operation is given by

Φ5 = [1 40.55
0 2

3

]
with the logical effect xl ∶= true.

We chose this example to show how we can make solu-
tions from more complex system equations applicable to our
planning domain.

Planning Problem In this section, an exemplary instance
of the domain is introduced. The planning problem is given
by the initial hybrid state s0 and the goal s⋆.

s0 = ⎡⎢⎢⎢⎢⎣
0.463

0
false

⎤⎥⎥⎥⎥⎦ s⋆ = ⎡⎢⎢⎢⎢⎣
1.483 ± ε1

0 ± ε2
true

⎤⎥⎥⎥⎥⎦

0 25 50 75 100
0

0.5

1
ω

[de
g s
]

0 25 50 75 100
0

25
50
75

100

time [s]

φ
[deg

]

Figure 3: Graphs showing the angle (lower graph) and angu-
lar rate (upper graph) during the slew maneuver. The sensor
constraint is shown as dashed line in the upper subfigure.

The initial state corresponds to an initial angle of 25 deg
with an initial angular rate of 0 deg

s , where the telescope of
the satellite is not zoomed. The desired attitude is 85 deg and
the final angular rate 0 deg

s . The accuracy of the goal state
is sufficient for ε1 = 0.2 deg and ε2 = 0.02 deg

s , since the
satellite switches then into a closed loop fine pointing mode.
Additionally, the sensors of the satellite require angular rates
lower than 1 deg

s .

Results The planning problem (which is basically a con-
trol problem of hybrid systems) is difficult to model and to
solve with classical methods in cybernetics. Task planning
enables a straight forward, domain-based description of the
hybrid system by the use of actions with preconditions and
effects, as shown in Table 1. The planning problem can be
solved by any planner that can deal with numerical variables,
in our case TFD. The solution is a feasible state transition,
as shown in Figure 2. The plan is numerically simulated in
MATLAB. The resulting continuous profiles of the angle and
angular rate are shown in Figure 3. The sensor constraint on
the angular rate is marked as a dashed line. Finally, the at-
titude of the satellite during the slew maneuver is shown in
the lower graph of Figure 3.

Example II: Ball Maze
In our second example we use our approach to automatically
guide a ball through a ball maze by inclining a plate around
two axes. While this problem might look like a classical
path planning problem at first sight, it is actually quite more
complex as the trajectory of the ball cannot be influenced di-
rectly. Instead, we have to consider the differential coupling
of velocity and accelerations. So, we search for a sequence
of plate-inclinations that lets the ball roll to the goal area.
Additionally, as the ball is not allowed to fall into one of the
holes in the plate, the state space is strongly restricted, a cir-
cumstance that is challenging for classical control methods.

ÉË+αy−αy

+αx−αx

Planned States
Simulated Trajectory

Intermediate Promising Trajectory

xy

Figure 4: Ball maze with planned trajectory from the initial
point to the desired set point.

State Space Differential System We model the ball as a
frictionless mass on the plate. The plate can be inclined in
both positive and negative directions by a discrete angle α
on each axis. Depending on α, the gravitational force acts
on the ball by

Fx =m ⋅ g ⋅ sinαx; Fy =m ⋅ g ⋅ sinαy. (9)

The forces accelerate the mass by

ẍ = Fx
m

ÿ = Fy
m

(10)

where the accelerations equal the time derivatives of the ve-
locities vx and vy

ẍ = v̇x ÿ = v̇y (11)

and the velocities are the time derivatives of the (x, y) posi-
tion on the plate

ẋ = vx ẏ = vy. (12)

Equations 10 to 12 yield the state space differential system

⎡⎢⎢⎢⎢⎢⎣
ẋ

ẏ

v̇x

v̇y

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x

y

vx

vy

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0 0

0 0
1
m 0

0 1
m

⎤⎥⎥⎥⎥⎥⎦
[Fx

Fy
] .

Domain Model Assuming the mass of the ball is 2 kg,
g = 9.81 m

s2 , and the plate can be inclined by α = ±2.92 deg
around both axes for the duration δ = 0.5 s, the homoge-
neous solution is

Φi =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.5 0

0 1 0 0.5

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for i ∈ {0,1, ...,8}, and the inhomogeneous solutions for all
inclination combinations are

Ψ1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0625

0

0.25

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0625

0−0.25

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.0625

0

0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0−0.0625

0−0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

t

5 10 15 20
-2.92

0

2.92

k

time [s]

α
[deg
]

x angle

y angle

Figure 5: Planned input sequence from k = 1 to k = 38, that
solves the planning problem presented in Experiment II.

Ψ5 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0625

0.0625−0.25

0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0625

0.0625

0.25

0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0625−0.0625

0.25−0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ψ8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0625−0.0625−0.25−0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
If the plate is not inclined, the transition of the state is af-

fected solely by the homogeneous solution and Ψ0 = 0 per
definition. The state space restrictions can be considered in
the domain model using preconditions as shown in Table 2.
The holes are approximated by five rectangular areas

Rk = {(x, y) ∶ x ∈ [x−, x+] ∧ y ∈ [y−, y+]}
with an additional restriction defined by the plate edges

R6 = {(x, y) ∶ x ∈ R ∖ [0,10] ∨ y ∈ R ∖ [0,10]}.
We generate valid transitions by modeling these restrictions
as preconditions for all actions

p⊢ ∶ (x, y) ∉ (R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6)
Note that, as p⊢ is a general precondition for all actions, we
can model it as a derived predicate in PDDL.

Planning Problem We present an example instance of the
ball maze domain and show the solution generated by our
approach. Consider the following initial state s0 and goal
specification s⋆:

s0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0.5

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
s⋆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.5 ± ε1
9 ± ε2
0 ± ε3
0 ± ε4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

where ε1 = ε2 = 0.1 m and ε3 = ε4 = 0.01 m
s .

k x+ x− y+ y− p⊢ =
1 8 2 3 2 [(x > 8) ∨ (x < 2) ∨ (y > 3) ∨ (y < 2)]∧
2 6 4 6 4 [(x > 6) ∨ (x < 4) ∨ (y > 6) ∨ (y < 4)]∧
3 4 0 6 4 [(x > 4) ∨ (x < 0) ∨ (y > 6) ∨ (y < 4)]∧
4 10 6 6 4 [(x > 10) ∨ (x < 6) ∨ (y > 6) ∨ (y < 4)]∧
5 8 2 8 7 [(x > 8) ∨ (x < 2) ∨ (y > 8) ∨ (y < 7)]∧
6 10 0 10 0 [(x > 0) ∧ (x < 10) ∧ (y > 0) ∧ (y < 10)]

Table 2: Obstacles of the ball maze of Example II.

0

on

off

time [s]

u
c
(t)

p⊢ = ¬on p⊢ = on p⊢ = on

on ¬onswitchOn holdOn switchOff

δ1 δ2 δ3

Figure 6: Switching between discrete input signals often
generates continuous signals. This can be easily taken into
account by the use of logical preconditions and effects.

Results The generated input sequence that guides the ball
into the desired set point is shown in Figure 5, while the
planned trajectory is presented in Figure 4, where the black
dots mark the planned states and the black line is the result
of the numerical MATLAB simulation. The time discretiza-
tion of the system is very fine grained, making it difficult for
the planner to generate complete plans in reasonable time.
Moreover, the system is a multi input system (with inputs Fx
and Fy) which increases the branching factor of the search
space. Therefore, the continuous replanning approach pre-
sented in this paper is very useful. In Figure 4, the inter-
mediate promising trajectories are visualized as gray lines.
Since the planner has knowledge of the intermediate pre-
dicted states, arbitrary preconditions can be checked and in-
feasible branches are pruned. The solution in this example
was found by expanding 15000 states in each planning step,
taking about 2 seconds per step. If less than 5000 states are
expanded, the system typically is trapped in the labyrinth in
our experiments.

Discussion
The decomposition of continuous state variables depends di-
rectly on the action durations. There is a trade-off between
planer performance and domain model accuracy: Short du-
rations lead to finer resolutions of the mapping from the con-
tinuous to the discrete state space. On the other hand, they
increase the trajectory length, making it more difficult for
the planner to generate solutions. We use continuous replan-
ning to relax the impact of time discretization.

Moreover, the number of actions depends directly on the
number of possible input signals. SinceO is limited, the do-
main model will suite the real plant only in an appropriate
way if the input signals are limited as well. In cybernetics,
control signals are often the result of optimizations which
lead to arbitrary signal shapes. In planning, the discretiza-
tion of arbitrary amplitudes of control signals is a rough ap-
proximation. Therefore, the domain model might not repre-
sent all capabilities of the real plant. In these cases, classical
methods of cybernetics are clearly superior.

We focus on plants with discrete control signals (like the
thrusters in Example 1). The resulting signals, however, are
often continuous functions uc(t) in time, as depicted in Fig-
ure 6. Effects are generated in a way allowing time contin-
uous input signals (see Equation 7). These transient effects
can be covered by the domain model. It is easy for task plan-

ners to ensure that input sequences are feasible by checking
preconditions. Therefore, Domain Predictive Control is ca-
pable to contain a realistic representation of the system in
the domain model if the input signals of the plant are dis-
crete with possible transition effects, as shown in Figure 6.

Future Work
In future work we plan to enhance Domain Predictive Con-
trol in several ways for example by taking Gaussian un-
certainties into account or by considering non-linearity in
plants. Furthermore, we will try to find new powerful heuris-
tics for problems making heavy use of numeric variables.
We also want to compare Domain Predictive Control to re-
lated methods and investigate the effects of a planner in the
control loop. We will evaluate Domain Predictive Control
for deep space missions in order to achieve robustness to
unexpected events in the environment or the system itself.

Conclusion
We have presented Domain Predictive Control, an approach
that utilizes action planning for the control of dynamic sys-
tems. We showed how planning domains can be derived
from linear time invariant systems, which is an important
class of systems in cybernetics. Using these domains, we
presented how a planning system can be used to guide a hy-
brid system from an initial state into a state satisfying the
goal conditions. An important feature of utilizing action
planning for controlling hybrid systems is that beyond reg-
ular state transitions system transitions can be considered as
well. On the one hand, the discretization aspect of the ap-
proach delimits the application field as discussed. On the
other hand, exactly the types of systems our approach is
suited best for, which are systems with discrete inputs, sys-
tem transitions, and many logical dependencies, are difficult
to be handled by classical control methods by now.

Acknowledgments
This work was supported by the German Aerospace Center
(DLR) and EADS Astrium-Satellites as part of the Project
“Kontiplan” (50 RA 1010).

References
Anthony, R. N. 1981. Planning and Control Systems: A
Framework for Analysis. Boston and Mass: Division of Re-
search, Graduate School of Business Administration, Har-
vard University.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI 2008), 892–897. AAAI Press.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proceedings of the
Twenty International Conference on Automated Planning
and Scheduling (ICAPS 2010), 42–49.
Coles, A.; Coles, A.; Clark, A.; and Gilmore, S. 2011. Cost-
Sensitive Concurrent Planning under Duration Uncertainty
for Service Level Agreements. In Proceedings of the Twenty

First International Conference on Automated Planning and
Scheduling (ICAPS 2011), 34–41.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2010. Planning for Autonomous Planetary Vehicles. In
Proceeding of the Sixth International Conference on Auto-
nomic and Autonomous Systems, 131–136.
Do, M. B., and Kambhampati, S. 2003. Sapa: A Multi-
objective Metric Temporal Planner. Journal of Artificial In-
telligence Research 20:155–194.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2009), 130–137. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
Construction of Efficient Multiple Battery Usage Policies.
In Proceedings of the Twenty-First International Conference
on Automated Planning and Scheduling, 74–81.
Geering, H. P. 2007. Optimal Control with Engineering
Applications. Berlin [u.a.]: Springer.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning Through Stochastic Local Search and Temporal Action
Graphs in LPG. Journal of Artificial Intelligence Research
20:239–290.
Heemels, W.; Schutter, B. D.; and Bemporad, A. 2001.
Equivalence of Hybrid Dynamical Models. Automatica
37:1085–1091.
Hoffmann, J. 2002. Extending FF to Numerical State Vari-
ables. In Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI-02), 571–575.
Isermann, R. 2006. Fault-Diagnosis Systems: An Intro-
duction from Fault Detection to Fault Tolerance. Berlin:
Springer.
Rawlings, J. B., and Mayne, D. Q. 2009. Model Predictive
Control: Theory and Design. Madison and Wis: Nob Hill
Publishing.
Simon, D. 2006. Optimal State Estimation: Kalman, H∞,
and Nonlinear Approaches. New Jersey: John Wiley.
Struss, P. 1997. Fundamentals of Model-Based Diagnosis of
Dynamic Systems. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI-97), 480–
485.
Wang, L. 2009. Model Predictive Control System Design
and Implementation using MATLAB R©, volume 1 of Ad-
vances in industrial control. London: Springer.
Wertz, J. R. 1994. Spacecraft Attitude Determination and
Control. Dordrecht and and Boston: Kluwer Academic Pub-
lishers.
Williams, B. C., and Nayak, P. P. 1996. A Model-Based Ap-
proach to Reactive Self-Configuring Systems. In Proceed-
ings of the National Conference on Artificial Intelligence,
971–978.

