UNIFIED PLANNING: A PYTHON LIBRARY

AIPLAN
4EU

MAKING PLANNING TECHNOLOGY ACCESSIBLE

USE CASES

Logistics Automation

e ANOLOGY - SPECIFIC BRipg -

PLANNING ENGINES

Agriculture

~”~

Flexible Manufactoring

Planning

Fleet Planning

Engine 1

Planning

Human Robot Interaction

Engine 2

Subsea Robotics
Lab Planning

Your Use Case

programmatical modelling,
transformation and solving of
planning tasks in one framework

multi-paradigm: classical, temporal,
numeric, multi-agent, hierarchical ...

multi-engine: e.g. Fast Downward,
ENHSP, TAMER, skdecide,
Tarski transformations, ...

Planning
Engine 3

UNIFIED PLANNING FRAMEWORK —

from unified_planning.shortcuts import =

Suppose we have a graph of locations and we want to plan how to move from INIT to DEST...

This is application-specific data
location_map, INIT, DEST = generate_networkx_topolgy (), ’start_node’, ’goal_node’
locations = {str(l) : Object(str(l), Location) for 1 in location_map.nodes}

Planning problems can be created entirely from code!

Python code and libraries can be used to build problems and plans are data structures
Location = UserType(’Location’)

problem = Problem(’robot’)

robot_at = Fluent(’robot_at’, BoolType(), position=Location)

connected = Fluent(’connected’, BoolType(), l_from=Location, l_to=Location)
problem.add_fluent (robot_at, default_initial_value=False)
problem.add_fluent(connected, default_initial_value=False)

move = InstantaneousAction(’move’, 1_from=Location, 1l_to=Location)
1_from, 1l_to = move.parameters ()

move .add_precondition(And (robot_at(l_from), connected(l_from, 1l_to)))
move.add_effect (robot_at(l_from), False)

move.add_effect (robot_at(l_to), True)

problem.add_action(move)

problem.add_objects(locations.values())

problem.set_initial_value(robot_at(locations[INIT]), True)

for (f, t) in location_map.edges:
problem.set_initial_value(connected(locations[str(f)], locatiomns[str(t)]), True)

problem.add_goal (robot_at (locations [DEST]))

We can now solve the problem with any planner installed supporting this problem kind!
The library can detect the used syntactical features and can filter suitable planners
‘OneshotPlanner ¢ is just one of the "Operation Modes" supported by the library!

with OneshotPlanner (problem_kind=problem.kind) as planner:

result = planner.solve(problem)

if result.status == PlanGenerationResultStatus.SOLVED_SATISFICING:
print (f’{planner.name} found a plan.\n The plan is: {result.plan}’)

else:

print (’No plan found.’)

Try it yourself
on Google Colab!

We will be here:

Tuesday, 11 UTC
Tuesday, 18 UTC
Thursday, 11 UTC

https://bit.ly/UPDemo

Cascade funding
for contribution
of your planning
technology.
Next call Sep/Oct
(Europe only)

