
Optimal Solutions to Large Logistics Planning

Domain Problems � Detailed Proofs

Gerald Paul

Boston University
Boston, Massachusetts, USA

gerryp@bu.edu

Gabriele Röger and Thomas Keller and Malte Helmert

University of Basel
Basel, Switzerland

{gabriele.roeger,tho.keller,malte.helmert}@unibas.ch

Technical Report CS-2017-001

University of Basel, Department of Mathematics and Computer Science

Abstract

This report contains the proof of correctness for the multi-vehicle sim-

pli�cation presented in the paper Optimal Solutions to Large Logistics

Planning Domain Problems.

1 Basic De�nitions

For an introduction of the problem, we refer the reader to the main publication
[Paul et al., 2017]. Here, we only brie�y repeat the de�nitions that are necessary
for specifying the theorem we want to proof.

1.1 Logistics tasks

De�nition 1 (Logistics Task) A Logistics task is given as a tuple 〈L,C,
P, T,A, city, airport, origin, dest〉, where

� L is a �nite set of locations,

� C is a �nite set of cities,

� P is a �nite set of packages,

� T is a �nite set of trucks,

� A is a �nite set of airplanes,

1

� city : L→ C assigns each location a city,

� airport : C → L assigns each city an airport location in this city, i. e.
city(airport(c)) = c for all c ∈ C,

� origin : P ∪ T ∪A→ L speci�es the origin location of each package, truck
and airplane, where the origin of an airplane is always an airport location,
and

� dest : P → L de�nes a destination for each package.

A vehicle is a truck or an airplane. A state s of a Logistics task maps each
vehicle v to a location s(v) and each package p to a location, truck or airplane
s(p). The initial state is given by origin. There are four types of operators:

� Vehicles v can load packages p at the same location: load(v, p, l) is appli-
cable in state s if s(v) = s(p) = l and leads to state s′ that only di�ers
from s in s′(p) = v.

� Vehicles v can unload loaded packages p: unload(v, p, l) is applicable in
state s if s(p) = v and s(v) = l, and leads to state s′ that only di�ers from
s in s′(p) = l.

� Trucks t can drive to locations l in the same city: drive(t, l) is applicable
in state s if city(s(t)) = city(l) and leads to state s′ that only di�ers from
s in s′(t) = l.

� Airplanes a can �y to all airport locations l: �y(a, l) is applicable in state
s if l = airport(c) for some city c. The resulting state s′ only di�ers from
s in s′(a) = l.

A plan is a sequence of operators that are successively applicable to the
initial state and lead to a state sG with sG(p) = dest(p) for all packages p ∈ P .
The cost of a plan is the length of the operator sequence. A plan is optimal if
it has minimum cost among all plans.

We call packages that have the origin and the destination in the same city
intracity packages and all other packages intercity packages. If a package p is in
a vehicle at location l or it is directly at l, we refer to l as the position poss(p)
of p in state s; formally, poss(p) = s(p) if s(p) ∈ L and poss(p) = s(s(p)) if
s(p) ∈ T ∪ A. We use the term region to denote all locations of a city (a truck
region) or all airports (a plane region). The vehicles for a given region are the
corresponding trucks for a truck region, or the airplanes for the plane region.

1.2 Delivery Graphs

An edge l → l′ in a delivery graph for a region represents the information that
a package needs to be transported from location l to location l′ in this region.
We distinguish airplane and truck delivery graphs.

2

De�nition 2 (Airplane Delivery Graph) For state s of logistics task 〈L,C,
P, T,A, city, airport, origin, dest〉, the airplane delivery graph is the directed
graph DA

s = (C,E), where E = {(c, c′) | there is a p ∈ P s.t. c = city(poss(p)) 6=
city(dest(p)) = c′}.

De�nition 3 (Truck Delivery Graph) For state s of logistics task 〈L,C, P,
T,A, city, airport, origin, dest〉 and city c ∈ C, the truck delivery graph for c is
the directed graph Dc

s = (V,E), where

� V = {l ∈ L | city(l) = c} are the locations in city c, and

� E contains the following edges for each package p with poss(p) 6= dest(p):

� If city(poss(p)) = city(dest(p)) = c then there is an edge poss(p) →
dest(p).

� If city(poss(p)) = c, city(dest(p)) 6= c and poss(p) 6= airport(c) there
is an edge poss(p)→ airport(c).

� If city(poss(p)) 6= c, city(dest(p)) = c and dest(p) 6= airport(c) there
is an edge airport(c)→ dest(p).

2 Multi-vehicle simpli�cation: Proof idea

We want to proof the following theorem from the paper [Paul et al., 2017]:

Theorem 2 Consider a solvable Logistics task where each delivery graph has
exactly one non-trivial weakly connected component, i.e., one weakly connected
component plus zero or more isolated locations.1 Then there is an optimal plan
using one truck from each city and one airplane.

Proof strategy: take a given plan (for example an optimal one) that uses
multiple vehicles in one region and rewrite it to use fewer vehicles without
increasing its cost. If this is always possible, we never need multiple vehicles
per region.

We try to study this in a �factored� way, by focusing on one region at a time.
We look for the following, more restricted class of transformations: given a plan
and a region where multiple vehicles are used, modify the plan so that

1. its cost does not increase,

2. it uses fewer vehicles for the selected region, and

3. the subsequence of actions using vehicles that do not belong to the selected
region remains the same.

1Isolated locations are ones where no package must be unloaded or loaded. They may serve

as starting locations of vehicles, but are otherwise of no use.

3

In other words, we are only allowed to remove/insert/reorder actions in-
volving the vehicles of the selected region. Let's consider the search for such a
modi�cation the "replanning problem" for the selected region.

We can think of a replanning problem as a classical planning problem which
is a logistics problem with a single region with additional actions that encode
the �outside in�uence� in the given plan. There are two kinds of such additional
actions: arrive(p, l) means that package p arrives at the region at location l
(i. e., it is dropped there by a vehicle that does not belong to the region in the
given plan), and leave(p, l) means that package p leaves the region at location
l. Constraint 3 above implies that in the replanning problem, the sequence of
arrive/leave actions is �xed, so we have to �nd a plan that is compatible with
the given arrive/leave sequence.

Rather than insisting on exactly the given order of arrive/leave actions we
can be a bit more �exible: by making a package arrive later than it actually
arrives in the given plan or by making a package leave earlier than it actually
leaves in the given plan, we never lose compatibility with the given plan. This
means that alternatively we can represent the outside plan with the information
which packages arrive and leave at which locations, plus constraints of the form
leave(p1, l1) must occur before arrive(p2, l2) that specify that we must �nish de-
livering a certain package before we can begin delivering a certain other package.
Other constraints are not necessary. We could also phrase this as �p1 must be
delivered before p2� with the meaning that the delivery of p1 must �nish before
the delivery of p2 may begin. The replanning problem can thus be viewed as a
single-vehicle logistics problem with delivery order constraints of this form.

3 Truck problems

Consider a replanning problem involving a truck region. We call this a �truck
problem�. These are simpler than replanning problems involving a plane region
(�plane problem�) because all arrivals/leaves happen at the same location (the
airport).

Consider a plan for a truck problem (with weakly connected delivery graph)
using two trucks. We associate each action with a truck, including arrive and
leave actions, which we associate with the truck that delivers the package within
the city. (We can ignore the case where the package never needs to be moved
after arriving/before leaving because then there is nothing to do, and of course
we also know that in an optimal plan we can assume that only one vehicle picks
up and drops a package that needs to be moved, and it is picked up and dropped
only once.)

Each action then belongs to exactly one truck. We call load/unload/move
actions private because no other truck depends on them nor do they depend
on other trucks and arrive/leave actions public because such dependencies exist
(because we must satisfy the given arrive/leave constraints).

Two private actions of di�erent trucks always commute: if two private actions
for di�erent trucks are adjacent in a plan, then we can swap their order. A public

4

action of one truck and a private action of another truck also commute.
Consider a plan including two trucks T1 and T2 that visit at least one com-

mon location L. (We say a truck visits a location if it is ever locate there,
including in the initial state.) Such trucks and such a location must exist if the
delivery graph is weakly connected and two trucks are used. (It is OK if the
plan uses further trucks besides T1 and T2.)

First, consider the case where at least one of them (w.l.o.g. T1) never visits
the airport. Then T1 never applies a public action. We can thus move all its
actions to the end of the plan, as they do not interact with other trucks. If the
common location L is not the initial location of T2, it is easy to see that the role
of T1 can be taken over by T2: let the sequence of visited locations of T1 be Z,
and let the sequence of visited locations of T2 be X2 + [L] + Y2. Then replace
the visit to [L] by the movement sequence Z, i.e., make T2 visit X2 + Z + Y2,
doing T1's job on the way.

If L is the initial location of T2 but not of T1, then make T1 take over the
job of T2 instead: move all actions of T1 up to visiting L (and loads/unloads
done there) to the front of the plan and move all actions of T1 after visiting L
to the end of the plan. Then replace T2 with T1 everywhere.

If L is the initial location of both, directly replace T2 with T1 everywhere.
This leaves the case where there are two trucks visiting the airport. This

means that there exist two trucks performing public actions. Let T1 and T2 be
the �rst trucks that apply a public action. Reorder all private actions so that
at the beginning of the plan are all movements of T1 until just before its �rst
public action, followed by all movements of T 2 just before its �rst public action,
followed by public actions of T1 and T2 at the airport, followed by the rest of
the plan. Then either T1 or T2 (depending on who, if anyone, visits each other's
location at this pre�x of the plan) can take over the others job at the pre�x of
the plan as in the previous case, and after visiting the airport, this truck can
continue the remaining job of the other truck. We can then get rid of the other
truck.

4 Plane problems

Because package interchanges with the �outside� can happen in every location
in plane problems (rather than just at the single airport of a truck problem),
plane problems are involved. The remaining sections of this proof show how
to address the replanning problem for planes so that every weakly connected
component of the plane region only uses one plane.

4.1 Problem considered

We consider the airplane problem, which is de�ned by

� a �nite set of locations L

� a �nite set of vehicles (airplanes) V

5

� a �nite set of packages P

� an initial location init(p) for each package

� a goal location goal(p) for each package

� an initial location init(v) for each vehicle

� a precedence relation ≺⊆ P × P ,
where p ≺ q implies goal(p) = init(q) and ≺ is acyclic.

The semantics is de�ned as usually for Logistics tasks, with the additional
restriction that whenever p ≺ q, q may only be picked up at its initial location
after p has been dropped at its goal location.

4.2 Restrictions on instances

We can make a number of further restrictions on these instances without loss
of generality:

� L, V and P are all non-empty.

� init(p) 6= goal(p) for all packages

� The delivery graph (the digraph over L with arc set {〈init(p), goal(p)〉 |
p ∈ P}) has exactly one non-trivial weakly connected component (i.e.,
one weakly connected component with 2 or more vertices, plus possible
isolated vertices).

� The delivery graph has at most one isolated vertex, and if it does, then it
must be the initial location of some vehicle.

Note: the delivery graph contains an arc for p whether or not there is a
vehicle initially located at init(p) (or goal(p)). So the delivery graph should not
be confused with the landmark ordering digraph used to compute the feedback
vertex set heuristic.

4.3 Restrictions on plans

When considering optimal plans, we can assume that every package is loaded
exactly once and unloaded exactly once.

Because each package must be moved, this means it is transported by exactly
one vehicle. For a given plan, we write vehicle(p) for the vehicle that transports
package p.

We write the actions of the plan as:

� move(v, l, l′): move vehicle v from location l to location l′; we may omit v
and/or l where clear from context

6

� pickup(v, p, l): use vehicle v to load package p at location l; we may omit
v and/or l where clear from context (must have v = vehicle(p) and l =
init(p))

� drop(v, p, l): use vehicle v to unload package p at location l; we may
omit v and/or l where clear from context (must have v = vehicle(p) and
l = goal(p))

Many pairs of actions a and a′ are commutative, i.e., when they appear
next to each other in a plan, their order can be swapped without a�ecting the
correctness of the plan. Sometimes, they are only semi-commutative in the
sense that plans of the form πaa′σ (where π is an arbitrary pre�x and σ is an
arbitrary su�x) can be transformed to πa′aσ, but the opposite transformation
is not always correct.

(In general, a su�cient condition for this transformation to be allowed is
that a never enables a′, a′ never disables a, and the combined e�ect of aa′,
ignoring preconditions, is the same as the combined e�ect of a′a).

In particular, the following semi-commutativity transformations are valid:

� πpickup(v, p, l)a′σ can be transformed to πa′pickup(v, p, l)σ for all actions
a that are not of the form move(v, l, l′).

In other words, a pickup action of vehicle v can always be demoted by one
step unless it is followed by a movement of v.

Note that the opposite transformation is not always correct because it
may introduce the violation of a precedence constraint.

� πadrop(v, p, l)σ can be transformed to πdrop(v, p, l)aσ for all actions a
that are not of the form move(v, l′, l).

In other words, a drop action of vehicle v can always be promoted by one
step unless it is preceded by a movement of v.

Note that the opposite transformation is not always correct because it
may introduce the violation of a precedence constraint.

It is also easy to see that one or more steps after a pick-up action of vehicle v
there must be a movement of vehicle v (because the picked-up package must be
dropped somewhere else), and one or more steps before a drop action of vehicle
v there must be a movement of vehicle v (because the dropped package must
have been picked up somewhere else).

4.4 Extended moves

The discussion in the previous section implies that we can permute the actions
in every plan so that it is a sequence of �extended moves�, where each extended
move involves a vehicle v and locations l and l′ and is of the following form:

� zero or more actions pickup(v, p1, l), . . . , pickup(v, pm, l)

7

� the action move(v, l, l′)

� zero or more actions drop(v, q1, l
′), . . . , drop(v, qn, l

′)

To do this, just keep demoting every pickup action of vehicle v not followed
by another pickup action of v or movement of v until no more such transfor-
mations are possible. Similarly, keep promoting every drop action of a vehicle
v not preceded by another drop action of v or a movement of v until no more
such transformations are possible. At the end of this process, the plan will have
the required form. Call plans of this form in normal form.

In plans in normal form, packages are always picked up �as late as possible�,
i.e., just before leaving a location, and dropped "as early as possible�, i.e., just
after entering a location. (Here, �as late/early as possible� should not be taken
too literally. It is only meant relative to the next/preceding movement of the
vehicle. In some plans, certain packages could be handled earlier or later by
handling them during an earlier/later visit of the same location.)

We can then su�ciently describe a plan by a sequence of extended move
actions, and we do not need to mention which packages are picked up and
dropped by the extended move: always picking up/dropping all permitted pack-
ages works. (Note that this is not as easy as picking up all undelivered packages
assigned to v with init(p) = l because picking up a package may be forbidden
by a precedence constraint. Determining which packages and actually picked up
and dropped at which point in the plan requires more global reasoning, which
is why we introduce additional notation for this in the following section.)

We write an extended move involving the movement move(v, l, l′) as
Move(v, l, l′) and may omit v and l where clear from context. If the k-th step of
a sequence of extended moves representing a plan is Move(v, l, l′), we say that
v leaves l at time step k and enters l′ at time step k. Of course vehicles may
leave or enter locations multiple times.

4.5 Delivery times and collection times

We assume a plan is given as a sequence of extended moves. To see whether
such a plan works, it is useful to also specify information about the collection
times collect(p) and delivery times deliver(p) of the packages.

For a given plan, we de�ne collect(p) = k if p is picked up as part of the k-th
extended move in the sequence, and deliver(p) = k if p is dropped as part of the
k-th extended move in the sequence.

Assume we are given a plan in the following representation:

� the sequence moves = 〈M1, . . . ,Mn〉 of extended moves, each move repre-
sented in the form Move(v, l, l′).

� the assignment of packages to vehicles, vehicle(p) for each package

� the collection time collect(p) and delivery time deliver(p) for each package

Such a plan is correct i� the following conditions hold:

8

C1. The movement sequence for every vehicle is consistent, i.e., if v moves at
all in the plan, then its �rst move must begin at init(v) and all subsequent
moves of v must begin at the location the previous move of v ended.

C2. Packages are collected before they are delivered: collect(p) < deliver(p)
for all packages p.

C3. The precedence constraints are met: deliver(p) < collect(q) whenever
p ≺ q.

C4. The collection times are consistent with the vehicle movements: given
package p, let v = vehicle(p), t = collect(p) and l = init(p). Then Mt =
Move(v, l, l′) for some location l′, i.e., in the t-th step, vehicle v leaves the
initial location of p.

C5. The delivery times are consistent with the vehicle movements: given
package p, let v = vehicle(p), t = deliver(p) and l = goal(p). Then
Mt = Move(v, l′, l) for some location l′, i.e., in the t-th step, vehicle v
enters the goal location of p.

It is important to realize that this is an �if and only if� relationship: we
can represent every plan in normal form in terms of moves, vehicle, collect and
deliver such that C1-C5 are satis�ed, but also conversely, if we are given moves,
vehicle, collect and deliver satisfying C1-C5, then they induce a valid plan. The
cost of the plan is of course the length of the movement sequence plus two
times the number of packages, so we need to minimize the length of moves.
Hence all transformations that do not increase the length of moves do not a�ect
optimality.

Idea: given an optimal plan that might use multiple vehicles, �rst compute
moves, vehicle, collect and deliver for the given plan, then compute a new plan
represented by moves′, vehicle′, collect′ and deliver′ using only one vehicle, and
then convert this to a sequence of move/pickup/drop actions.

4.6 Limited case

We begin with the limited case where all airplanes are initially located at an
isolated location. This implies that there is nothing useful that can be done at
the initial location of the airplanes and that in an optimal plan no airplane will
ever �y to this location.

Assume we are given an optimal plan in the form of moves, vehicle, collect
and deliver. A �rst attempt at transforming this plan into a plan represented by
moves′, vehicle′, collect′ and deliver′ using only one vehicle might be as follows:

� Select a single vehicle v.

� Set vehicle′(p) = v for all packages p.

9

� Set moves′ to be the movement sequence where in the k-th step, v moves
to the same location that is the target location in the k-th step of moves.
In other words, moves′ moves to the same sequence of locations as moves,
in the same order, but all movements are made by v. (This sequence may
include movements from a location to itself, but that is not a problem
although if this happens, the original plan was not optimal.)

� Set collect′(p) = collect(p) for all packages p.

� Set deliver′(p) = deliver(p) for all packages p.

If we did not have precedence constraints, this strategy of just keeping the
plan �as-is� and letting a single vehicle carry out all movements in the same
sequence as in the given plan would work. However, with precedence constraints
it does not work in general.

The reason why it doesn't work is that this assignment may violate condition
C4 above. The other conditions C1, C2, C3, C5 are satis�ed. The reason why
C4 is violated is that vehicle v does not necessarily leave the same location in
the k-th step of moves′ that the vehicle that moves in the k-th step of moves
leaves.

To repair this, we set collect′(p) to a time point which is (potentially) dif-
ferent from collect(p). We must do this in such a way that C2, C3 and C4 are
satis�ed for the new solution. (C1 and C5 do not depend on collect′.)

Let l = init(p) and let t = collect(p). Set collect′(p) to the largest (latest)
time point t′ ≤ t at which vehicle v leaves l in moves′. Such a time point must
exist: in moves, some vehicle v′ leaves l for some location l′ 6= l at t, which
implies that v′ must have entered l at some previous time point t′′ < t. This
means that in moves′, v enters l at time step t′′ (possibly from l itself, which is
no problem), so is located at l after step t′′. Moreover, v enters l′ 6= l in moves′

at time t, so is located at a di�erent location from l after step t. This implies
that v must leave l in moves′ at some time t′ ≤ t.

With this de�nition of collect′, C4 is satis�ed. C2 remains satis�ed because
collect′(p) ≤ collect(p) for all packages p (due to the restriction t′ ≤ t in the
previous paragraph).

The question is whether C3 is still satis�ed, as reducing the values of collect
makes these constraints tighter. So we must verify deliver′(p) < collect′(q) for
all precedence constraints p ≺ q.

Let p ≺ q be such a constraint, and let l = goal(p) = init(q) be the location
involved. In the original plan, say we have vehicle(p) = vp and vehicle(q) = vq.

Let's say deliver(p) = t1 and collect(q) = t2. We have t1 < t2 because the
original plan is correct. We have deliver′(p) = t1.

So in the original plan, vp moves from another location to l at time t1, which
implies that in the new plan v moves to l at time t1 (possibly not from another
location but from l itself, but this does not matter).

Furthermore, in the original plan vq moves from l to some other location l′

at time t2, which implies that in the new plan v moves to l′ at time t2 (possibly
from l′ itself, but again this does not matter). This means that in the new

10

plan v is at l at time t1 and at l′ at time t2, so must leave l at one or more
time steps in the range {t1 + 1, . . . , t2}. We have de�ned collect′(q) as the latest
time point t′ ≤ collect(q) = t2 at which v leaves init(q) = l, so we must have
t1 + 1 ≤ collect′(q) ≤ t2.

Putting this together with deliver′(p) = t1, this proves deliver′(p) = t1 <
t1 + 1 ≤ collect′(q), i.e., deliver′(p) < collect′(q), concluding the proof.

4.7 Reducing the general case to the restricted case

We now consider the general case where airplanes can start at arbitrary loca-
tions.

Consider an optimal solution π using k ≥ 2 airplanes for the given problem
instance Π. We want to construct a plan for Π that only uses one of the k
airplanes and has the same cost as π.

Consider a modi�ed problem Π′ where the k airplanes begin at a new isolated
location. The modi�ed problem then satis�es the requirements of the restricted
case. We obtain a plan π′ for the modi�ed problem by inserting, at the start
of π, one action for each of the k airplanes to �y it to its initial location in Π.
Clearly, π′ consists of k more actions than π.

We can apply the transformation for the restricted case to Π′ and π′ to
obtain a new solution π′′ for Π′ that only uses one airplane v. Moreover, all
moves in π′′ will only �y to locations that also exist in Π, so if we change the �rst
action of π′′ to originate from the original init(v) rather than the new isolated
location, π′′ is also a plan for the original problem Π.

When generated in this way, π′′ will be k actions too long. However, π′′

may contain actions of the form move(v, l, l), which are redundant and can be
omitted. The key to the generalization will be permuting π′ before we perform
the transformation from π′ to π′′, in such a way that π′′ will contain at least k
redundant actions.

4.7.1 Permuting the plan to obtain redundant actions

Recall that the movement path of v in π′′ is simply the sequence of locations
visited by any of the airplanes in π′, in the same order as the actions are executed
in π′. So we want to permute π′ in such a way that there are two consecutive
movements (by di�erent vehicles) to the same location as often as possible.

We will create k− 1 such situations, saving us k− 1 actions. The remaining
action will be saved by observing that the �rst move in π′ will move (from the
arti�cial initial location) to the initial location of some vehicle. By making this
vehicle our vehicle of choice in the one-vehicle plan for the original problem, we
can save another action. The observation that the �rst action is of this form
holds because in all our permutations below, we never permute the relative order
of locations visited by a given vehicle, only the order in which di�erent vehicles
act, and hence the �rst overall movement must be the �rst movement of one
of the vehicles (which moves it from the arti�cial initial location to its original
initial location).

11

We construct a permuted plan from π′ (viewed as a plan consisting of ex-
tended actions of the form Move(v, l, l')) as follows:

� We process the actions in the original plan step by step.

� Initially, partition the vehicles into k groups, where each group consists
of exactly one vehicle. As we process actions, groups can be merged with
others to re�ect the fact as the subplans for the vehicles in the groups
begin to interact.

� The invariant of the algorithm is that while two vehicles are in di�erent
groups G and G′, the sets of locations that have been moved to so far
by vehicles in G and G′ are disjoint. In particular, this means that at
every stage of the algorithm each location is either "owned" by exactly
one group (meaning a vehicle from this group, and no other group, has
visited it) or "unowned" (meaning that no vehicle has visited it yet).

� This disjointness of vehicles and locations implies that the subplans con-
sidered so far for di�erent groups don't interact and can be interleaved
arbitrarily. We exploit this by keeping track of the new plan generated
by the algorithm as a collection of subplans, one for each group, without
committing early how to interleave these subplans.

� Every time the next step in the input plan involves a vehicle moving to a
location owned by a di�erent group, the groups must be merged. At this
point we combine their subplans and arrange for a suitable interleaving
that allows us to save an action.

� At the end of the execution we must have a single group. Otherwise
we would still have multiple location-disjoint subplans for di�erent vehicle
groups at the end, which would imply that the delivery graph is not weakly
connected.

� Because we go from k groups to 1 group and save an action every time we
combine two groups into one, we save k − 1 actions altogether.

Input:

� pi' = the input plan

� V = the vehicles used in the input plan pi'

� L = the set of locations

Algorithm:

def main():

groups = {{v} | v in V}

for each group in groups:

group_plans[group] = empty plan

12

for each location l in L:

owner[l] = undefined

for each extended action Move(v, l, l') in pi', in order:

Assertion: if l is not the artificial start location,

then the owner of l is the group of v.

group_of_v = groups[v]

if owner[l'] = undefined:

owner[l'] = group_of_v

group_plans[group_of_v].append(Move(v, l, l'))

else if owner[l'] = group_of_v:

group_plans[group_of_v].append(Move(v, l, l'))

else:

l' is already owned by someone else, i.e., some vehicle

from a different group has previously visited l'. We

must marry the group of v to the group owning l'.

current_owner_group = owner[l']

Marry current_owner_group and group_of_v:

1. Create combined group and update set of groups.

combined_group = current_owner_group \cup group_of_v

groups.remove(current_owner_group)

groups.remove(group_of_v)

groups.add(combined_group)

2. Combine subplans for the two groups.

subplan1 = group_plans.pop(current_owner_group)

subplan2 = group_plans.pop(group_of_v)

group_plans[combined_group] = combine_plans(

subplan1, subplan2, v, l, l')

3. Update owner information to reflect new group

for all l'':

if owner[l''] = current_owner_group:

owner[l''] = combined_group

if owner[l''] = group_of_v:

owner[l''] = combined_group

def combine_plans(plan_of_prev_owner_of_l', plan_of_v, v, l, l'):

Invariants:

- plan_of_prev_owner_of_l' and plan_of_v refer to disjoint

sets of vehicles and locations.

- plan_of_prev_owner_of_l' contains at least one action

of the form move(*, *, l').

- plan_of_prev_owner_of_l' contains no actions involving v

or l; plan_of_v may contain actions involving v and l, but

does not have to (if this is the first movement of v).

#

Consequences:

1) All actions of prev_owner_of_l' and plan_of_v

13

commute, so we can interleave them arbitrarily.

2) Move(v, l, l') commutes with all actions of prev_owner_of_l'

that do not involve l'.

Split plan_of_prev_owner_of_l' into prefix + suffix such that

the last action in prefix is of the form move(*, *, l')

and no action in suffix is of this form.

return plan_of_v + prefix + [move(v, l, l')] + suffix

Note that this contains two adjacent movements to l', as

the last action of prefix moves to l' and so does move(v, l,

l').

#

Note also that if one of the input plans already contained such

adjacent movements, the rescheduling that happens in this

function does not break them apart (which might lose an

opportunity to save an action): plan_of_v remains contiguous, so

any subsequent moves to the same location are preserved, and

plan_of_prev_owner_of_l' is broken apart into prefix + suffix in

such a way that the last action of prefix moves to l' and no

action of suffix moves to l', so subsequent moves to the same

location within plan_of_prev_owner_of_l' must either be fully

within prefix or fully within suffix.

References

[Paul et al., 2017] Paul, G., Röger, G., Keller, T., and Helmert, M. (2017).
Optimal solutions to large logistics planning domain problems. In Fukunaga,
A. and Kishimoto, A., editors, Proceedings of the 10th Annual Symposium on
Combinatorial Search (SoCS 2017). AAAI Press.

14

	Basic Definitions
	Logistics tasks
	Delivery Graphs

	Multi-vehicle simplification: Proof idea
	Truck problems
	Plane problems
	Problem considered
	Restrictions on instances
	Restrictions on plans
	Extended moves
	Delivery times and collection times
	Limited case
	Reducing the general case to the restricted case
	Permuting the plan to obtain redundant actions

