Optimal Solitaire Game Solutions using A* Search and Deadlock Analysis

Gerald Paul
Boston University
Boston, Massachusetts, USA
gerryp@bu.edu

Abstract

We propose and implement an efficient method for determin-
ing optimal solutions to such skill-based solitaire card games
as Freecell and King Albert solitaire. We use A* search to-
gether with an admissible heuristic function that is based on
analyzing a directed graph whose cycles represent deadlock
situations in the game state. To the best of our knowledge,
ours is the first algorithm that efficiently determines optimal
solutions for Freecell games. We believe that the underlying
ideas should be applicable not only to games but also to other
classical planning problems which manifest deadlocks.

1 Introduction

Games have always been a fertile ground for advancements
in computer science, operations research and artificial in-
telligence. Solitaire card games, and Freecell in particular,
have been the subject of study in both the academic liter-
ature (Elyasaf, Hauptman, and Sipper 2011; 2012; Sipper
and Elyasaf 2014; Long and Fox 2000; Bacchus 2001; Fox
and Long 2001; Helmert 2003; Hoffmann 2005; Hoffmann
and Nebel 2001; Hoffmann, Porteous, and Sebastia 2004;
Morris, Tarassenko, and Kenward 2005; Pecora and Cesta
2003; Russell and Norvig 2003), where they are used as
a benchmark for planning heuristics, and in popular litera-
ture (Fish 2015; Heineman 2015; FreeCell solutions 2015;
Keller 2015; PySolFC 2015; Levin 2008; Van Noorden
2006; Mlot 2015).

Our work applies to skill-based solitaire games in which
all cards are dealt face up. For these games, after the ini-
tial deal, there is no element of chance involved. Examples
of such games include Freecell, King Albert, Bakers dozen,
and Eight-off (Morehead and Mott-Smith 1983). Skill-based
solitaire games are examples of classical planning problems
(Ghallab, Nau, and Traverso 2004).

The Freecell solitaire game was introduced by Microsoft
as a free desktop game in early versions of the Windows
operating system. The rules of Freecell are described in Ap-
pendix A. While our examples and solution results are for
Freecell, they apply to a large class of skill-based solitaire
games.

We use Freecell because it is the most widely played and
analyzed skill solitaire card game with free on-line, desktop
and mobile versions of the game. Freecell games are de-
noted by the randomization seed that produces them in the

Malte Helmert

University of Basel

Basel, Switzerland
malte.helmert @unibas.ch

Windows implementation of the game. Because the random-
ization algorithm for Freecell deals is public (Horne 2015),
given a seed the random deals are reproducible, so compar-
isons can be made with other work. While Freecell differs
in detail from other skill solitaire games, such concepts as
foundation cells to which cards must ultimately be moved,
and a tableau of columns of cards is common to many skill
solitaire games. Freecell has been shown to be NP-hard
(Helmert 2003) and thus provides a demanding test of our
approach.

There are a number of Freecell computer solvers avail-
able which provide solutions to any Freecell deal (Elyasaf,
Hauptman, and Sipper 2011; Fish 2015; Heineman 2015;
Keller 2015; PySolFC 2015). However, we know of no
work which provides provably optimal solutions to solitaire
games. We consider a solution optimal if no other solution
exists which requires a smaller number of moves.

One of the defining attributes of such skill-based games
as Freecell is that deadlocks' are present and, in order to
resolve the deadlocks, actions are required that do not con-
tribute directly to reaching the goal state. Deadlock has long
been recognized as a feature that makes finding optimal so-
lutions to planning problems hard (Gupta and Nau 1992).
When the state of the game is appropriately mapped to a di-
rected graph, the deadlocks are represented by cycles of the
graph.

A key insight of this work is that very strong admissible
heuristic functions for Freecell can be constructed by ana-
lyzing these deadlock cycles. Graph analysis has been em-
ployed in analysis of problem complexity (Gupta and Nau
1992) and planning heuristics (Helmert 2004). One of the
main contributions of this work is that we show how it can
be used to optimally solve a highly popular class of puzzles
that have so far defied optimal solution.

In the following sections, we review the A* algorithm, de-
scribe our approach, and presents results of our solver imple-
mentation. We conclude by discussing connections to recent
research in classical planning, future research directions and
open questions towards the end of this paper. While our al-
gorithmic contributions and experimental evaluation are fo-

'In general, a deadlock situation exists when an action, A, can-
not be taken until another action, B, is taken but action B, cannot
be taken until action A is taken (and the generalization to circular
waiting of multiple actions.

cused on Freecell, we believe that the key insights under-
lying the deadlock heuristic have much wider applicability
within and outside of classical planning.

2 A* Search Algorithm

The A* search algorithm (Hart, Nilsson, and Raphael 1968)
uses a best-first search and finds a least-cost path from a
given initial state to the goal state. As A* traverses the state
space, it builds up a tree of partial paths. The leaves of this
tree (called the open set) are stored in a priority queue that
orders the leaf states by a cost function:

f(n) = g(n) + h(n). M

Here, g(n) is the known cost of getting from the initial state
to state n. h(n) is a heuristic estimate of the cost to get
from n to the goal state. For the algorithm to find the actual
least cost path, the heuristic function must be admissible,
meaning that it never overestimates the actual cost to get to
the goal state. Roughly speaking, the closer the heuristic
estimate is to the actual cost of reaching the goal state, the
more efficient the algorithm.?

In our case, g(n) is simply the number of moves that have
been made to reach the state n and h(n) is an estimate of
the number of moves to reach the solution of the game from
state n.

3 Freecell Heuristics for A*

The simplest non-trivial heuristic is 52 — my(n) where
my(n) is the number of cards in the foundation in state
n. This estimate, however, is extremely optimistic because
some cards are usually blocked from movement to the foun-
dation. The simplest example of this is a column where a
card of a given suit and rank is higher® in the column than
a card of the same suit and greater rank. Until the greater
rank card is moved to a temporary location in a free cell or
another tableau cell, the lower rank card cannot be moved to
the foundation. Then later, the greater rank card may be able
to be moved to the foundation. Thus, a more robust heuristic
is

h(n) =52 —mys(n) + me(n))

where m.(n) is an optimistic estimate of the number of
moves to temporary locations that must be made to remove
these blocking or deadlock situations.

There are more complicated deadlock situations than the
example above. With the mapping of the game state to a di-
rected graph described in the next section, we can associate
all deadlock situations with cycles in the graph. The dead-
lock situations are removed when all cycles are eliminated;
a cycle is eliminated when one or more edges of the cycle

2While not universally true (Holte 2010), the rule “more accu-
rate heuristic = lower search effort” is generally a good approxima-
tion of reality.

3Throughout the paper, we use “higher” and “lower” to refer to
the usual visual representation of card columns in solitaire games.
For example, the “lowest” card in the leftmost column of Fig. 1 is
6. This is the only card in the column that may be moved directly.
To move any other cards, the cards below them must first be moved
out of the way.

are removed. Now, the only way to remove an edge is to
move a card and moving a card cannot remove more than
one edge. Thus, the number of remaining moves must be
at least as great as the number of moves to eliminate these
cycles. For this reason, we take m.(n) to be an optimistic
estimate of the number of edges which must be removed to
eliminate all cycles. Note that this estimate may still not be
an exact estimate of the number of remaining moves needed
to win because the use of temporary locations is limited by
the availability of open free cells, empty cells in the tableau,
or a column to which the card can be moved to extend a cas-
cade. Also note that we can use for m.(n) an estimate of the
number of edges needed to remove a consistent subset of all
cycles. This allows for performance tuning the implementa-
tion as discussed in Section 10.

4 Solitaire State to Directed Graph Mapping

We map the solitaire game layout to a directed graph as fol-
lows:

e We treat each card as a node of the graph.

e We create a directed edge from each card to the card of
next lower rank of the same suit (e.g., from the 80 to
the 7Q). We call these edges dependency edges because
being able to move a card to the foundation depends on
the card of next lower rank of the same suit being in the
foundation. Dependency edges are permanent; they are
never removed and are not affected when a card is moved.
We define the suit of a dependency edge as the suit of the
cards to which the edge is incident.

e We create a directed edge from each card in the tableau
to the card below it in the tableau (if any). We denote
these edges blocking edges because a card in the tableau
is blocked from being moved to the foundation unless it
is the exposed card (lowest card) in the tableau column.
Blocking edges are removed and added when a move is
made to reflect the new state of the game.

An example of dependency and blocking edges that are part
of a cycle is shown in Fig. 1.

5 Cycle Determination

At first glance, the task of dealing with the cycles of the
created by the mapping is daunting. For example, there
are 26133 unique cycles in the graph created from mapping
Freecell game #1 .

However, we can reduce the number of cycles to be con-
sidered by eliminating redundant cycles. A cycle ¢, is re-
dundant if the set of blocking edges of any other cycle cs is
a subset of the set of edges of ¢y, in which case the removal
of any edge in cycle ¢, results not only in the destruction of
co but also cy.

Here we describe how to construct all non-redundant cy-
cles. The approach depends on the fact that all dependency
edges are always present. So from any card in a suit to any
card of lower rank of the same suit we can always create a
path that does not contain any blocking edges.

For conciseness, let us define a cycle that includes depen-
dency edges of q different suits as a g-suit cycle. Now, first

= o
w8

*
P

&
Fs
*v
T

&
®

OI-*_

e e [e e

Figure 1: Initial state of Microsoft Freecell game #1. A cycle consisting of blocking edges (solid arrows) 3& — 6,6 — 66
and dependency edges (dashed lines) G# — 5, 58 — 4, 46 — 3@ is shown.

consider cycles in which all dependency edges are of the
same suit (1-suit cycles), an example of which is shown in
Fig. 2. The blocking edges in the cycle in Fig. 2(a) are a
subset of the blocking edges in the cycle in Fig. 2(b). So
the cycle in Fig. 2(b) is a redundant cycle. We can infer the
rule that if all dependency edges of a cycle are of the same
suit, we need only consider cycles in which the dependency
edges of the same suit in the cycle are consecutive (i.e., not
interrupted by blocking edges). This rule implies that all
blocking edges in a single-suit cycle are in the same tableau
column.

Now consider cycles in which the dependency edges in-
clude cards of two suits (2-suit cycles), an example of which
is shown in Fig. 3. Again, the cycle in Fig. 3(b) is redundant
because blocking edges in the cycle in Fig. 3(a) are a subset
of the blocking edges of the cycle in Fig. 3(b). Generaliz-
ing to cycles containing dependency edges of any number of
suits, we can infer that

o if the dependency edges of any suit in the cycle are not
consecutive, (i.e., are interrupted by blocking edges) the
cycle is redundant, and that

e for a cycle containing dependency edges of g suits, the
blocking edges of non-redundant cycles are contained in
at most ¢ tableau columns.

Based on the above, we can construct non-redundant q-
suit cycles, (¢ = 1,2,3,4), by considering O(t?) combi-

nations of the tableau columns, where ¢ is the number of
tableau columns (8 for Freecell). Pseudo code for identifica-
tion of 1-suit and 2-suit cycles is presented in Appendix B.

6 Relevant Cycle Edges

In considering edges for removal from a cycle, not all edges
must be considered. Clearly, only blocking edges (as op-
posed to dependency edges) must be considered, since de-
pendency edges are never removed.

Also, in solitaire, cards higher in a column than a given
card cannot be moved before the given card is moved. Thus,
as seen in the example in Fig. 2(a), while the edge 2 —
A is part of the cycle shown, if the edge Ade — 9 is
removed, which must be done before the edge 2> — A
can be removed, the cycle no longer exists. Thus, there is
no reason to consider the edge 2> — A as a candidate
for removal during the calculation of edges required to be
removed. We denote edges that must be considered as can-
didates for removal as relevant cycle edges and edges that
need not be considered irrelevant cycle edges.

7 Duplicate Cycles

Since we are only concerned with the number of edges
which must be removed to eliminate cycles, we can remove
from consideration cycles which are duplicates of other cy-
cles. We consider cycles to be duplicates if the set of rel-

Single Suit Cycles

N X

SH| |74 |40 M| (76| (40

N(—
L 4
Y
kJd
»

>0
] [Qe]
~
>
e
J 9
~
>
S
*

aolll ia .

9l+' I 9le BEXS 6l9

117 T 3e = e
(@) (b)

Figure 2: Fragment of tableau illustrating (a) single suit cy-
cle in which all blocking edges are in a single column and
(b) redundant single suit cycle consisting of blocking edges
(in two columns) that are a superset of blocking edges in (a).

evant edges in the cycles are identical, independent of the
order, and eliminate them from consideration.

8 Determination of the Minimum Number of
Edges that Must be Removed to Eliminate
Cycles
By eliminating redundant cycles, duplicate cycles and irrele-
vant edges of cycles, the complexity of determining the min-
imum number of edges that must be removed to eliminate
cycles, m,, can be reduced significantly. For example, we
must actually only consider a total of 87 cycles (12 1-suit, 39
2-suit, 34 3-suit, and 2 4-suit cycles) for removal in the ini-
tial state of Freecell game #1, compared to the 26133 cycles
present if redundant and duplicate cycles are included.

We use a brute-force, depth-first exhaustive search of all
combinations of edge removals that eliminate all cycles. Be-
cause only one edge of a cycle must be removed to elim-
inate the cycle, the worst case number of combinations of
removed edges that we must consider is:

¢ =] 3)
i=1

where m, is the number of cycles and e; is the number of
relevant edges in cycle i.

In practice, the number of combinations actually consid-
ered can be reduced, in some cases by an order of magni-
tude, by removing edges in decreasing order of the number
of other cycles in which an edge is contained. With this or-
dering many cycles are eliminated early in the calculation.

9 Implementation

Our solver is implemented in C++. In addition to elimi-
nating redundant cycles, duplicate cycles and non-relevant

Two Suit Cycles

S| |74 |4v SH| 74| 4@

o [178 D] a7

([N
Sl L][34] / S~ 3l¢
(a) (b)

Figure 3: Fragment of tableau illustrating (a) 2-suit cycle
in which all blocking edges are in a two columns and (b)
redundant 2-suit cycle consisting of blocking edges (also in
two columns) that are a superset of blocking edges in (a).

edges, we improve performance with:

e A transposition table with Zobrist hashing to eliminate
duplicate states during the A* search (Akagi, Kishimoto,
and Fukunaga 2010; Zobrist 1990).

e The priority queue used by A* implemented as a series
of buckets (as opposed to a binary heap), providing O(1)
queue performance (Paul 2007; Burns et al. 2012). This
is possible because the costs (estimated solution lengths)
are integers and in a relatively small range (= 60-100).

e Use of a hash table to detect duplicate cycles.

e Incremental cycle determination. We identify all cycles
in the initial configuration. After that, we incrementally
identify cycles removed and added as a result of a move,
only considering the card(s) moved.

10 Solver Results

Our test cases were games 1-5000 of Microsoft Freecell.
We ran all tests on an Intel core i3 4160 processor running
at 3.60 GHz with 8 GB of memory. The program working
set is =~ 2 GB for most games. Results for games 1-10 are
shown in Table 1.

Before discussing the results, it is necessary to discuss
the trade-off between the accuracy of our heuristic and the
computer resources to achieve that accuracy. Our work can
be thought of as providing a family of heuristic functions,
hg(n), where ¢ = 1,2, 3,4 is the maximum number of dif-
ferent suits of the dependency edges in the cycles we con-
sider. Now, the processing time per state explored to deter-
mine cycles increases with g. The number of states which
must be explored, however, decreases with ¢ because the
heuristic becomes more accurate with increasing ¢ and the
heuristic more effectively guides the search. Reducing the

initial state solution

Freecell| [1-suit 2-suit | length | length time states
Game cycles | cycles esti- (sec) searched
mate

1 12 39 73 82 30.8 567699
2 13 5 68 73 1.9 101186
3 15 8 70 70 0.6 20499
4 37 34 72 79 31.0 1220026
5 16 46 78 85 122.0 3687136
6 12 24 73 75 1.1 31912
7 13 39 72 76 1.7 74369
8 8 58 70 74 13.2 367784
9 19 25 77 81 2.0 77990
10 16 18 73 80 7.7 315643

Table 1: Results of our program for the Freecell games 1-10.

number of states which must be explored is important be-
cause it also reduces the amount of memory A* requires and
memory is often the limiting factor in A* implementations.

Varying ¢, we find that, while using cycles containing
more than 2 suits reduces the number of states needed for
a solution, the time per state is increased so much that the
overall average time per solution is increased. For this rea-
son, we did not identify or use cycles containing greater than
2 suits in our testing.

We found that across the 5000 games used for testing

e Optimal solutions have been found for all games tested.

e As expected, the initial estimated length is never greater
than the actual optimal length — a requirement for the
search to find the optimal solution.

e The initial estimated length and the actual optimal length
are relatively close — in some cases (e.g., game 3) iden-
tical, indicating that the heuristic strongly guides the
search.

e There are typically < 20 initial 1-suit cycles and < 100
2-suit cycles.

e CPU processing time is dominated by the tasks of finding
cycles and determining which edges must be removed to
eliminate all cycles.

e The shortest, average and longest solution lengths were
64, 77 and 93 moves, respectively.

e The shortest, average and longest processing times were
0.4, 39.9 and 6579 seconds, respectively.

11 Solitaire and Blocks World

By mapping game states to directed graphs and using the
number of edges required to remove cycles in the graph as
input to the A* heuristic function, we develop, for the first
time, an effective method for finding optimal solutions to
skill-based solitaire games. These games are characterized
by the presence of deadlock situations in which the goal
state requires objects to be ordered in a specified way but
constraints exist on the order in which actions can be taken.

The presence of deadlocks in these games makes them hard
to solve, and in particular hard to solve optimally.

This is reminiscent of the classic blocks world domain,
where nonoptimal solutions can be generated easily, but
computing optimal solutions is an NP-equivalent problem
due to the existence of deadlocks (Gupta and Nau 1992;
Slaney and Thiébaux 2001). Indeed, the Freecell heuris-
tics described in this paper can be understood as a two-stage
relaxation. Firstly, relax the Freecell game into a blocks
world task. Secondly, compute an admissible heuristic for
this blocks world task.

In more detail, we first relax the Freecell game by treat-
ing it as a blocks world task where the cards forming each
tableau column or foundation pile are reinterpreted as a
tower of blocks, and cards in free cells are reinterpreted
as individual blocks lying on the table. This simplifies the
problem (and hence leads to an admissible heuristic rather
than a perfect distance estimate) because blocks world, un-
like Freecell, has unlimited table positions. Interestingly,
removing the constraint on table positions is the only rel-
evant way in which this transformation simplifies the prob-
lem: while the Freecell rules impose a number of constraints
regarding the movement of cards, none of these constraints
affect the optimal solution length in the presence of unlim-
ited table positions. In other words, Freecell with unlim-
ited table positions (or unlimited free cells) always has ex-
actly the same optimal solution length as the corresponding
blocks world task.*

The second relaxation we apply in our experiments is to
abstain from covering all deadlocks of the problem graph.
Recall that h, (1 < g < 4) is the variant of our heuristic
that only considers ¢’-suit cycles with ¢ < g. The most

“To see this, observe that with unlimited space there is never an
incentive in Freecell to move a card onto another card except for
its final move to foundations. This is equivalent to the observation
that in blocks world, there is never an incentive to move a block
onto another block except to move it into its final position. The
challenge, in both cases, is to minimize the number of moves of
cards/blocks onto the table that cannot yet be moved directly into
their final position.

powerful of these heuristics, hy4, includes all relevant cycles
and hence amounts to solving the blocks world relaxation of
the Freecell game perfectly. In our experiments, this level of
heuristic accuracy turned out not to be beneficial due to the
high computational effort for each state evaluation, with ho
providing the best balance between heuristic accuracy and
computational effort per state.

12 Implications for Domain-Independent
Planning

Looking beyond solitaire games and blocks world, are there
wider implications of our work for domain-independent
planning? We believe that this is the case: that deadlocks are
a phenomenon that occurs in a much wider range of domains
than Freecell games or blocks world tasks, and that heuris-
tic functions based on covering deadlocks are a promising
direction for a wide range of planning domains.

For example, deadlocks of essentially the same form as
in the blocks world domain are the major source of hard-
ness in the Logistics domain and the only source of hard-
ness in the Miconic-STRIPS and Miconic-SimpleADL do-
mains (Helmert 2001). Many other planning domains with
a “transportation” component share this problem aspect,
though often mixed with other aspects. Deadlock covering
problems also occur at the computational core of many opti-
mization problems outside of planning, such as many of the
implicit hitting set problems identified by Chandrasekaran et
al. (2011).

Finally, a similar form of deadlocks (a set of actions cycli-
cally supporting each other’s preconditions without being ul-
timately supported by effect/precondition links from the cur-
rent state) is the major source of inaccuracy in flow heuristics
that have recently attracted much attention in planning (van
den Briel et al. 2007; Bonet 2013; Bonet and van den Briel
2014; Pommerening et al. 2014). A better understanding of
the role of dependency deadlocks in classical planning tasks
could go a long way towards overcoming the limitations of
these heuristics.

References

Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Felner, A., and Sturtevant, N., eds., Pro-
ceedings of the Third Annual Symposium on Combinatorial

Search (SoCS 2010), 2-9. AAAI Press.

Bacchus, F. 2001. The AIPS’00 planning competition. Al
Magazine 22(3):47-56.

Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 47-55.
AAALI Press.

>See also the recent paper by Slaney (2014) for deeper connec-
tions between blocks world, implicit hitting sets, and combinatorial
optimization in general.

Bonet, B. 2013. An admissible heuristic for SAS™ planning
obtained from the state equation. In Rossi, F., ed., Proceed-

ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268-2274.

Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Borrajo, D.; Fel-
ner, A.; Korf, R.; Likhachev, M.; Linares Lépez, C.; Ruml,
W.; and Sturtevant, N., eds., Proceedings of the Fifth Annual
Symposium on Combinatorial Search (SoCS 2012), 25-32.
AAALI Press.

Chandrasekaran, K.; Karp, R.; Moreno-Centeno, E.; and
Vempala, S. 2011. Algorithms for implicit hitting set
problems. In Randall, D., ed., Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algo-
rithm (SODA 2011), 614—629. SIAM.

Elyasaf, A.; Hauptman, A.; and Sipper, M. 2011. GA-
FreeCell: evolving solvers for the game of FreeCell. In
Proceedings of the 13th annual conference on Genetic and
evolutionary computation (GECCO 2011), 1931-1938.

Elyasaf, A.; Hauptman, A.; and Sipper, M. 2012. Evolu-
tionary design of FreeCell solvers. [EEE Transactions on
Computational Intelligence and Al in Games 4(4):270-281.

Fish, S. 2015. Freecell solver. http://fc-solve.
shlomifish.org/. Retrieved 11/9/2015.

Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation subproblems in
planning. In Nebel, B., ed., Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2001), 445—-452. Morgan Kaufmann.

FreeCell solutions. 2015. FreeCell solutions to 1000000
games. http://freecellgamesolutions.com/.
Retrieved 11/9/2015.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Gupta, N., and Nau, D. S. 1992. On the complexity of
blocks-world planning. Artificial Intelligence 56(2-3):223—
254.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100-107.

Heineman, G. T. 2015. Algorithm to solve FreeCell solitaire
game. http://broadcast.oreilly.com/2009/
01/january-column-graph-algorithm.html.
Retrieved 11/9/2015.

Helmert, M. 2001. On the complexity of planning in trans-
portation domains. In Cesta, A., and Borrajo, D., eds.,
Proceedings of the Sixth European Conference on Planning
(ECP 2001), 120-126. AAAI Press.

Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219-262.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Confer-

ence on Automated Planning and Scheduling (ICAPS 2004),
161-170. AAAI Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215-278.

Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685-758.

Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In Felner, A., and Sturtevant, N., eds., Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search (SoCS 2010), 46-51. AAAI Press.

Horne, J. 2015. Description of microsoft FreeCell shuffle
algorithm. http://www.solitairelaboratory.
com/mshuffle.txt. Retrieved 11/9/2015.

Keller, M. 2015. Solitaire laboratory. http:
//solitairelaboratory.com/index.html. Re-

trieved 11/9/2015.

Levin, J. 2008. Solitaire-y confinement: Why we can’t stop
playing a computerized card game. Slate May 16, 2008.

Long, D., and Fox, M. 2000. Automatic synthesis and use of
generic types in planning. In Chien, S.; Kambhampati, S.;
and Knoblock, C. A., eds., Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning and

Scheduling (AIPS 2000), 196-205. AAAI Press.

Milot, S. 2015. Microsoft tournament celebrates 25 years
of solitaire. http://www.pcmag.com/article2/
0,2817,2484370, 00.asp. Published May 19, 2015;
retrieved 11/9/2015.

Morehead, A. H., and Mott-Smith, G. 1983. The Complete
Book of Solitaire and Patience Games. Bantam.

Morris, R.; Tarassenko, L.; and Kenward, M. 2005. Cogni-
tive Systems — Information Processing Meets Brain Science.
Elsevier.

Paul, G. 2007. A complexity o(1) priority queue for event
driven molecular dynamics simulations. Journal of Compu-
tational Physics 221(2):615-625.

Pecora, F., and Cesta, A. 2003. The role of different solvers
in planning and scheduling integration. In Proceedings of
the 8th Congress of the Italian Association for Artificial In-
telligence (AI*IA 2003), 362-374.

Pommerening, F.; Roger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 226—
234. AAAI Press.

PySolFC. 2015. PySolFC: a Python solitaire game col-
lection. http://pysolfc.sourceforge.net/. Re-
trieved 11/9/2015.

Russell, S., and Norvig, P. 2003. Artificial Intelligence — A
Modern Approach. Prentice Hall.

Sipper, M., and Elyasaf, A. 2014. Lunch isn’t free, but cells
are: Evolving FreeCell players. SIGEvolution newsletter of
the ACM Special Interest Group on Genetic and Evolution-
ary Computation 6(3—4):2-10.

Slaney, J., and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence 125(1-2):119-153.

Slaney, J. 2014. Set-theoretic duality: A fundamental fea-
ture of combinatorial optimisation. In Schaub, T.; Friedrich,
G.; and O’Sullivan, B., eds., Proceedings of the 21st Eu-
ropean Conference on Artificial Intelligence (ECAI 2014),
843-848. 10S Press.

van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651-665. Springer-Verlag.

Van Noorden, R. 2006. Computer games could save your
brain. Nature news item published 24 July 2006.

Wikipedia. 2015. FreeCell. https://en.wikipedia.
org/wiki/FreeCell. Retrieved 11/9/2015.

Zobrist, A. L. 1990. A new hashing method with application
for game playing. ICCA Journal 13(2):69-73.

A Freecell Rules

The following Freecell rules are taken from Wikipedia
(2015).

Construction and layout: One standard 52-card deck is
used. There are four open cells and four open foundations.
Cards are dealt face-up into eight cascades, four of which
comprise seven cards and four of which comprise six.

Building during play: The top card of each cascade begins
atableau. Tableaux must be built down by alternating colors.
Foundations are built up by suit.

Moves: Any cell card or top card of any cascade may
be moved to build on a tableau, or moved to an empty cell,
an empty cascade, or its foundation. Complete or partial
tableaus may be moved to build on existing tableaus, or
moved to empty cascades, by recursively placing and remov-
ing cards through intermediate locations.

Victory: The game is won after all cards are moved to
their foundation piles.

B Cycle Identification Algorithm

Figures 4 and 5 contain pseudo code for determining 1-suit
and 2-suit cycles, respectively.

Note that there is no need to explicitly follow the depen-
dency edges from a card in one column to a card of the same
suit in another column since we are assured that there is al-
ways a chain of dependency edges from a card in a given
suit to a card of lower rank in that suit.

Extension to 3-suit and 4-suit cycles is straightforward;
paths of dependency edges to one or two additional columns,
respectively, must be identified before returning to the initial
column.

/* identify 1-suit cycles*/

for (all tableau columns,c)

{

for (all cards, cardX, in column c)

{

for (all cards,cardY, below cardX)
{
if (cardY suit != cardX suit | | cardY rank > cardX rank)
continue; /* need same suit, lower rank than X*/

/* cycle found */
store cycle;
}
}
}

Figure 4: Pseudo code illustrating the algorithm to identify 1-suit cycles.

/* identify 2-suit cycles*/

for (all tableau columns, c1)

{

for (all cards, cardX1, in column c1)

{

for (all tableau columns, c2)

{

for (all cards, cardY2 in column c2)

{
if (cardY2 suit != card X1 suit | | cardY2 rank > cardX1 rank)

continue; /* need same suit, lower rank than X1*/

for (all cards, cardY1, above cardY2 in column c2)

{
if (cardY1 suit == card Y2 suit)/* need different suit */
continue;

for (all cards, cardX2, below cardX1 in column c1)

{
if (cardX2 suit != cardY1 suit | | cardX2 rank > cardY1 rank)

continue; /* need same suit, lower rank than Y1*/

/* cycle found */
store cycle;

Figure 5: Pseudo code illustrating the algorithm to identify 2-suit cycles.

