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Structure

In this presentation

context: cost partitioning in classical planning

Lagrangian decomposition

simplified, specialized, ignoring assumptions
see paper for details

relation to cost partitioning

subgradient optimization

algorithm to compute optimal cost partitioning
without an LP solver
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Lagrangian Decomposition
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Starting with a Linear Program

Problem P

Min c x s.t.

A1 x ≥ b1

. . .

Ak x ≥ bk

x ≥ 0

rewrite−−−−→

Problem P

Min c x s.t.

Ai xi ≥ bi ∀i

x = xi ∀i

x , xi ≥ 0 ∀i
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Lagrangian Relaxation

Problem P

Min c x s.t.

Ai xi ≥ bi ∀i

x = xi ∀i

x , xi ≥ 0 ∀i

relax−−−→

Problem P (λ)

Min c x +
∑

i λi ( xi − x ) s.t.

Ai xi ≥ bi ∀i

x , xi ≥ 0 ∀i

Penalty term λi for violating x = xi

called Lagrangian multiplier

for every choice of λ: value(P (λ)) ≤ value(P )

Lagrangian dual problem: find λ that gives best lower bound

best lower bound is perfect here: MaxλP (λ) = value(P )
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Lagrangian Decomposition

Problem P (λ)

Min c x +
∑

i λi ( xi − x ) s.t.

Ai xi ≥ bi ∀i

x , xi ≥ 0 ∀i

P (λ) decomposes into independent subproblems P (λ) =
∑

i Pi(λ)

Problem P0(λ)

Min
(

c −
∑

i λi

)
x s.t.

x ≥ 0

Problem Pi(λ)

Min λi xi s.t.

Ai xi ≥ bi

xi ≥ 0
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A closer look at P0(λ)

Problem P0(λ)

Min
(

c −
∑

i λi

)
x s.t.

x ≥ 0

if all objective coefficients non-negative: value(P0(λ)) = 0

otherwise P0(λ) is unbounded

Constraint encoded by P0(λ)∑
i

λi ≤ c
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Relation to Cost Partitioning
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Summarizing Lagrangian Decomposition

Original Problem P

Min c x s.t.

Ai x ≥ bi ∀i

x ≥ 0

Lagrangian Dual Problem

Max
∑

i Pi(λ) s.t.∑
i

λi ≤ c

Subproblem Pi(λ)

Min λi xi s.t.

Ai xi ≥ bi

xi ≥ 0
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Cost Partitioning of Operator-Counting Heuristics

Heuristic h

Min cost x s.t.

Ai x ≥ bi ∀i

x ≥ 0

Optimal Cost Partitioning

Max
∑

i hi(costi) s.t.∑
i

costi ≤ cost

Heuristic hi(costi)

Min costi xi s.t.

Ai xi ≥ bi

xi ≥ 0
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How to Solve the Lagrangian Dual Problem

Computing an optimal cost partitioning corresponds to
solving the Lagrangian dual

. . . but how can we solve it?

P (λ) is concave and we want to maximize it
 can use subgradient optimization
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Subgradient Optimization
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Subgradient Optimization

0 2 4
0

1

2

3

4

λ(1)

choose point λ(1)

repeat for t = 1, 2 . . .

find subgradient g(t) at λ(t)

compute step length η(t)
set λ(t+1) = λ(t) + η(t)g(t)
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Subgradient Optimization
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Subgradient Optimization
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Projected Subgradient Optimization
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Application to Cost Partitioning
over Abstractions
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Subgradient Optimization for Cost Partitioning

Analogies in cost partitioning

current point λ(t)

current cost functions cost1, . . . , costk

subgradient g(t)

optimal solutions of subproblems Pi(λ
(t))

if subproblems are abstraction heuristics:
shortest paths in abstractions

projection

project arbitrary set of cost functions to cost partitioning

16 / 23



Lagrangian Decomposition Relation to Cost Partitioning Subgradient Optimization Application to Cost Partitioning Experiments

Subgradient Optimization for Cost Partitioning

Analogies in cost partitioning

current point λ(t)

current cost functions cost1, . . . , costk

subgradient g(t)

optimal solutions of subproblems Pi(λ
(t))

if subproblems are abstraction heuristics:
shortest paths in abstractions

projection

project arbitrary set of cost functions to cost partitioning

16 / 23



Lagrangian Decomposition Relation to Cost Partitioning Subgradient Optimization Application to Cost Partitioning Experiments

Subgradient Optimization for Cost Partitioning

Analogies in cost partitioning

current point λ(t)

current cost functions cost1, . . . , costk

subgradient g(t)

optimal solutions of subproblems Pi(λ
(t))

if subproblems are abstraction heuristics:
shortest paths in abstractions

projection

project arbitrary set of cost functions to cost partitioning

16 / 23



Lagrangian Decomposition Relation to Cost Partitioning Subgradient Optimization Application to Cost Partitioning Experiments

Subgradient Optimization for Cost Partitioning

Analogies in cost partitioning

current point λ(t)

current cost functions cost1, . . . , costk

subgradient g(t)

optimal solutions of subproblems Pi(λ
(t))

if subproblems are abstraction heuristics:
shortest paths in abstractions

projection

project arbitrary set of cost functions to cost partitioning

16 / 23



Lagrangian Decomposition Relation to Cost Partitioning Subgradient Optimization Application to Cost Partitioning Experiments

Subgradient Optimization for Cost Partitioning

Anytime algorithm

choose any cost partitioning cost(1)

repeat for t = 1, 2 . . .
for each abstraction i

find optimal solution π∗ under cost
(t)
i

set cost
(t+1)
i (o) = cost

(t)
i (o) + η(t)occurrences(o, π∗)

project cost(t+1) to a cost partitioning
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Experiments
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Experiment Setup

Experiment setup

IPC instances from optimal tracks (1998–2018)

projections to all interesting patterns up to size 2 (and 3)

non-negative cost partitioning

no good way to project to general cost partitioning

300 s time limit, 2 GB memory limit

heuristic values of initial states

seeded with different cost partitioning methods

uniform
opportunistic uniform (random/improved order)
greedy zero-one (random/improved order)
saturated (random/improved order)
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Heuristic Quality
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Runtime

10−1 s 100 s 101 s 102 s
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100 s

101 s

102 s
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Computing the optimal cost partitioning
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Conclusion
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Conclusion

Contributions to Cost Partitioning

new interpretation as Lagrangian decomposition

interesting relation to subgradient optimization

anytime algorithm for suboptimal cost partitioning

Future Work

techniques from subgradient optimization

better stopping conditions
dynamic step length functions
improved updates

open questions

projection for general cost partitioning
consider highly different operator costs
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