
Getting the Most Out of Pattern Databases
for Classical Planning
Florian Pommerening, Gabriele Röger, Malte Helmert
University of Basel

Motivation and Abstract

State of the art for computing additive abstraction heuristics:
iPDB procedure [Haslum et al., 2007]
I Combines multiple patterns in the canonical heuristic
Can we obtain stronger heuristic estimates?

Running Example

I Three variables {A,B,C}
I Each operator affects only one variable
I Pattern databases

h{A}(s) = h{B}(s) = h{C}(s) = 1
h{A,B}(s) = h{A,C}(s) = h{B,C}(s) = 6

I What is the best heuristic value we can get from this
information?

Canonical Heuristic

Sums where possible, maximizes where necessary:

h C(s) = max
A∈MAS(C)

∑
P∈A

hP(s)

Example

For C = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}:
h C(s) = max{h{A}(s) + h{B}(s) + h{C}(s),

h{A}(s) + h{B,C}(s),
h{B}(s) + h{A,C}(s),
h{C}(s) + h{A,B}(s)} = 7

Post-hoc Optimization Heuristic: Idea

Linear program for pattern collection C:
I Variable Xo for cost incurred by operator o
I Xo ≥ 0 for all variables
I PDB heuristics admissible

hP(s) ≤
∑

o∈O
Xo for each pattern P ∈ C

I Can tighten to
hP(s) ≤

∑
o∈O:o affects P

Xo

I Total cost of the plan is
∑

o∈O Xo

I Minimizing total cost leads to admissible estimate
I Optimization: merge variables in equivalence classes

Example

6 = h{A,B}(s) ≤ costA + costB
6 = h{A,C}(s) ≤ costA + costC
6 = h{B,C}(s) ≤ costB + costC
18 ≤ 2 costA + 2 costB + 2 costC
9 ≤ costA + costB + costC

Post-hoc Optimization Heuristic: General

Minimize
∑

o∈O Xo subject to∑
o∈O:o affects P

Xo ≥ hP(s) for each pattern P

Xo ≥ 0 for each operator o ∈ O.

Insights from Dual Program

Maximize
∑

P∈C YPhP(s) subject to∑
P∈C:o affects P

YP ≤ 1 for each operator o

YP ≥ 0 for each pattern P ∈ C.
I State-specific cost partitioning: can only scale operator costs

within each heuristic by a factor YP.
I Restriction to integer variables: canonical heuristic

Theorem

The post-hoc optimization heuristic is admissible and dominates
the canonical heuristic for the same pattern collection.

Experimental Results

HCC Sys1 Sys2 Sys∗

h C h PhO h OCP h C h PhO h C h PhO h OCP h PhO h LM-Cut

barman (20) 4 4 0 4 4 4 4 0 4 (1–2) 4
elevators (20) 16 16 0 9 9 16 15 0 15 (2) 18
floortile (20) 2 2 0 2 2 2 2 0 2 (1–3) 7
nomystery (20) 16 16 3 12 12 18 18 6 19 (3–4) 14
openstacks (20) 14 14 5 14 14 5 14 0 14 (1–2) 14
parcprinter (20) 8 8 8 11 11 7 13 15 20 (4) 13
parking (20) 5 5 1 5 5 0 1 0 5 (1) 3
pegsol (20) 0 0 0 17 17 5 17 1 17 (1–2) 17
scanalyzer (20) 10 10 1 10 10 10 8 1 10 (1) 12
sokoban (20) 20 20 18 19 19 20 20 2 20 (2) 20
tidybot (20) 14 14 6 13 13 14 14 6 14 (2–3) 14
transport (20) 6 6 2 6 6 6 6 0 8 (3) 6
visitall (20) 16 16 10 16 16 16 16 10 16 (1–3) 11
woodworking (20) 2 2 2 5 5 3 10 2 10 (2) 12
Sum IPC 2011 (280) 133 133 56 143 143 126 158 43 174 165
IPC 1998–2008 (1116) 456 459 241 449 449 446 475 231 501 598
Sum (1396) 589 592 297 592 592 572 633 274 675 763

Additional evaluation on Sys2 pattern collections:
I Theoretical dominance of the post-hoc optimization heuristic

translates into better guidance on only a few domains.
I On tasks solved by both approaches, the canonical heuristic

computations tend to be faster.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

Expansion rate of h PhO/Sys2

E
xp

an
si

on
ra

te
of

h
C /

Sy
s2

|MAS(C)|
100–101

101–102

102–103

103–104

104–105

105–106

106–107

107–108

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

Expansion rate of h PhO/Sys2

E
xp

an
si

on
ra

te
of

h
C /

Sy
s2

|C|
100–101

101–102

102–103

103–104

I Tasks solved by h PhO but not by h C ran out of memory during
generation of maximal additive pattern sets.

Conclusion

Post-hoc optimization heuristic explores middle ground between
“trivial cost partitioning” of canonical heuristic and optimal cost
partitioning.

