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Abstract

The iPDB procedure by Haslum et al. is the state-
of-the-art method for computing additive abstrac-
tion heuristics for domain-independent planning. It
performs a hill-climbing search in the space of pat-
tern collections, combining information from mul-
tiple patterns in the so-called canonical heuristic.

We show how stronger heuristic estimates can be
obtained through linear programming. An experi-
mental evaluation demonstrates the strength of the
new technique on the IPC benchmark suite.

1 Introduction

Heuristic search with abstraction heuristics is a standard ap-
proach for solving state-space search problems. Algorithms
in this family are among the state of the art both for domain-
specific solvers for combinatorial puzzles [e.g., Felner ef al.,
2004; Yang et al., 2008] and for domain-independent classi-
cal planning systems [e.g., Haslum et al., 2007; Nissim et al.,
2011; Sievers et al., 2012].

The most commonly used abstraction heuristics are based
on so-called pattern databases (PDBs), which provide per-
fect cost estimates for subproblems [Culberson and Schaef-
fer, 1998; Edelkamp, 2001]. The main drawback of PDBs is
that the aspects of the overall problem that they can perfectly
cover (the pattern) must usually be quite small due to mem-
ory constraints. Therefore, state-of-the-art solvers generally
use multiple patterns that cover different problem aspects.

This leaves us with two major challenges in designing effi-
cient PDB-based search algorithms:

e pattern selection: how do we choose suitable patterns?

e heuristic combination: how can we efficiently derive in-
formative admissible heuristics from multiple PDBs?

The state-of-the-art pattern selection method in classical
planning is the iPDB algorithm by Haslum er al. [2007],
which performs a hill-climbing search in the space of pattern
collections to select a suitable set of patterns. In Section 4,
we point out some problems of this approach and suggest a
different method for pattern selection, which systematically
generates all patterns up to a certain size.

Systematic pattern generation is not new: for example, it
has been successfully applied to combinatorial puzzles and

the minimum vertex cover problem by Felner et al. [2004].
We contribute a new criterion for filtering out uninterest-
ing patterns (ones that cannot influence the heuristic value),
which is the best possible such criterion among all criteria
based on the causal graph of a problem instance.

On the topic of heuristic combination, there exists a cer-
tain tension between theory and practice. On the one hand,
Katz and Domshlak [2010] introduce a very general notion of
cost partitioning for admissible heuristics and show how op-
timal cost partitionings for PDB heuristics can be computed
in polynomial time. On the other hand, practical implementa-
tions only exploit a much weaker concept of additivity, a suf-
ficient condition for sums of PDB heuristics to be admissible.
This notion of additivity gives rise to the so-called canonical
heuristic for a set of patterns [Haslum er al., 2007].

The reason why Katz and Domshlak’s elegant theory has
not yet had an influence on practical PDB-based planning sys-
tems is that it requires solving huge linear programs for every
heuristic computation — up to millions of variables and bil-
lions of constraints for realistic problem sizes. In Section 3,
we describe a novel way of combining PDB heuristics, mo-
tivated by the theory of cost partitioning, which can be com-
puted quickly and dominates the canonical heuristic.

In Section 5, we experimentally explore the interaction of
several pattern selection and heuristic combination methods
and show that our new heuristic with a systematic pattern gen-
eration significantly outperforms the previous state of the art
in PDB-based search algorithms.

2 Background

We consider planning tasks in finite-domain representation.
A planning task is a tuple IT = (V, O, sg, $x, ¢), where V is
a finite set of state variables v, each with a finite domain D,,.
A state is a complete variable assignment over V. Each oper-
ator (pre; eff) in the set of operators O consists of a precon-
dition and an effect, which are partial variable assignments
over V. An operator is applicable in a state if the precondi-
tion is consistent with the state. The successor state results
from updating the state according to the operator effect. The
function ¢ : O — R(J{ assigns a cost to each operator. The
aim is to find a sequence of operators whose sequential appli-
cation leads from the initial state s to a state consistent with
the goal description s,, which is given as a partial variable
assignment. An optimal plan is an operator sequence with



V:{A,B C}
D, ={0,1,2,3,4} forallv € ¥
so={A=0,B=0,C =0}
s, ={A=3,B=3,C=3)
= {incy |veV,x €{0,1,2}} U {jump® | v € V},

(v—x vi=x+1
Jump® = (v' =4 forall v' # v;v := 3)
c(o) =1foralloe O

Figure 1: Example planning task.

minimal cost among all solutions, where the cost is defined
as the sum of the cost of all operators in the sequence.

Figure 1 shows a planning task that we use as a running ex-
ample. There are three variables, all with domain {0, ..., 4}.
The objective is to change their values from O to 3. For each
variable v there are operators that can increment it by 1 if the
value is not already 4. In addition there are “jump” operators
which immediately set a variable to 3 but are only applica-
ble if all other variables have value 4. All operators have
unit cost. Clearly, the jump operators are useless for solving
the task, and hence all optimal solutions must increment each
variable three times for a total cost of 9.

PDB heuristics. PDB heuristics estimate the cost of reach-
ing the goal from a state s by computing the exact cost-to-
goal in a smaller planning task defined by a pattern P C V.
This smaller planning task is obtained by projecting away
all information (in s, s, and the operators) about variables
outside the pattern. For example, with the pattern {A, C'},
the operator jump® in the running example is projected to
(C = 4; A := 3). Such a projection is a special case of (ho-
momorphic) abstraction [e.g., Helmert and Domshlak, 2009],
and states obtained in this way are called abstract states.

Standard PDB heuristics (as considered in this paper) pre-
compute cost-to-goal information for all abstract states and
store them in a table, the eponymous pattern database (PDB).
This assumes that the number of abstract states is small
enough to fit into memory.

In our running example, heuristics for singleton patterns
like {A} give an estimate of 1 for the initial state because
jump® immediately solves the abstract task. (All its precon-
ditions disappear when projecting to a singleton pattern.) All
PDBs on two variables yield initial state estimates of 6, count-
ing the increment operators for these variables.

Canonical heuristic. The maximum of multiple PDB
heuristics is obviously admissible and dominates the individ-
ual heuristics. However, stronger estimates are often possi-
ble. Consider a set of patterns (a pattern collection) where
no operator affects more than one pattern. (That is, operators
have a non-empty effect in at most one of the projected tasks.)
Then the sum of heuristic estimates is also admissible. Such
patterns are called additive [e.g., Edelkamp, 2001]. Haslum
et al. [2007] generalize this notion of additivity to arbitrary
(not necessarily additive) pattern collections C. Let MAS(C)
denote all maximal (w.r.t. set inclusion) additive subsets of C.
Then the canonical heuristic value h€ (s) is defined as

max

RE(s) = RE (s
(s) = AeMAS(C)Z

iPDB pattern selection. Haslum et al. [2007] also intro-
duced a hill-climbing algorithm for pattern selection called
the iPDB procedure. It starts with an initial collection with
singleton patterns for all goal variables. Given the current col-
lection C, a new collection C’ is created by selecting a pattern
P € C, extending it with a new variable v ¢ P, and adding
the resulting pattern to the collection: ¢’ = CU{PU{v}}. All
such collections whose PDBs do not exceed a fixed memory
limit form the search neighborhood of C. The procedure then
selects the “best” neighbor by evaluating each candidate on
sample states. The process repeats until all candidates offer
no or negligible improvements over C.

For efficiency, the hill-climbing search uses two pruning
criteria to rule out candidates which cannot possibly lead to
improved heuristic estimates. First, extending a pattern P
with a non-goal variable which does not causally influence a
variable in P does not increase the estimates of the resulting
PDB. Second, a pattern should never contain causally discon-
nected variables, because these are better included as separate
patterns that can be combined additively.

3 Post-Hoc Optimization Heuristic

Consider the behavior of the canonical heuristic on the initial
state of our running example. We assume that the pattern
collection includes all patterns that are proper abstractions:
C = {{A},{B},{C},{A,B},{A,C},{B,C}}. On s, all
single-variable PDBs yield a heuristic estimate of 1 and all
two-variable PDBs yield an estimate of 6. The best additive
combinations of such patterns take a two-variable pattern like
{A, B} and combine it with a one-variable pattern like {C'}
for an overall heuristic estimate of 7.

Can we do better than this without performing explicit cost
partitioning in the abstract planning tasks, i.e., without re-
computing any of the PDBs? The answer to this is “yes!”
if we also take into account which operators are relevant for
each pattern. Each operator in the task modifies exactly one
variable, and the operators relevant for pattern P are those
which modify a variable in P. Let us call an operator modify-
ing variable v a “type-v operator”. From h{4-B} = 6, we can
conclude that any solution includes at least 6 operators that
are type A or type B; from the other two-variable patterns
we derive that there must also be at least 6 operators that are
type A or type C, and at least 6 operators that are type B or
type C. A bit of algebra shows that at least 9 operators are
necessary to simultaneously satisfy these three constraints.

We now show how this argument can be generalized to ar-
bitrary planning tasks, where operators may affect multiple
variables, and how the reasoning process can be efficiently
automated. For this purpose, we construct a linear program
(LP) with one variable X, for each operator o € O. Intu-
itively, the LP variable X, represents the costs incurred by
operator o in some (fixed, but unknown) optimal plan. For
example, if o occurs twice in the plan and has a cost of 3,
then X, = 6. Clearly we must have X, > 0 for all o € O.
Since PDB heuristics are admissible, we know that the PDB
heuristic value cannot exceed the total cost incurred by all
operators:



P
h'(s) < Zoe(’) X,

Since operators which do not affect any variable in a pat-
tern do not induce state changes in the abstract task, they can-
not contribute to the estimate of the PDB. Therefore we can
tighten the constraint for A” by omitting variables for such
“irrelevant” operators to

P
<
h (8) - ZOGOZO affects P XO

The total cost of the given plan is ) ., X,. Minimiz-
ing this value subject to the constraints for all PDB heuris-
tics yields an admissible estimate for s because all accounted
costs are justified by the admissibility of some heuristic.

We can reduce the size of the LP by aggregating variables
which always occur together in the constraints. This hap-
pens when several operators are relevant for exactly the same
PDBs. In the example, the operators inc;c4 and direct” are rel-
evant for exactly the PDBs with patterns including A, so we
can combine their LP variables to a new variable X 4. Sim-
ilarly, we can aggregate the remaining operators as X p and
X¢. The resulting LP for an arbitrary state s is:

Minimize X 4 + Xp + X¢ subject to
X4 > hiA}(s)

Xa20,Xp>0,Xc>0

To solve the LP for the initial state of the example, we re-
mind the reader that h¥(sy) = 1 for single-variable patterns
and h”(sg) = 6 for two-variable patterns. The LP then has
the unique optimal solution X4 = Xp = X¢ = 3, yielding
a heuristic value of 9, which is perfect for this example and
better than the canonical heuristic estimate of 7.

We will now formalize these considerations for general
planning tasks. We begin by observing that the approach is
not limited to PDB heuristics. The only properties of PDB
heuristics that we exploited are that they are admissible and
that certain operators do not contribute to the heuristic value
of certain PDBs. To express these requirements succinctly,
we borrow some concepts from the theory of cost partition-
ing [Katz and Domshlak, 2010]. If II is a planning task with
operators O and ¢’ : O — R{ is an arbitrary cost function
on its operators, we write 11,/ for the planning task which is
equal to IT except that its operator cost function is ¢. Then the
relevant operator partition specifies sets of operators whose
LP variables can be combined:

Definition 1 (Relevant operator partition). Let IT be a plan-
ning task with cost function c. Foralli =1,...,n,letc; < c
be a cost function and h; be an admissible heuristic for 11,
The relevant operator partition O/~ for hy, ..., h, is the
partition of O induced by the equivalence relation ~ with:

or~o iff {i|ci(o)>0}={i]ci(o) >0}

We can now define the post-hoc optimization heuristic that
generalizes the above example as follows:

Definition 2 (Post-hoc optimization heuristic). Let II be a
planning task with cost function c. Foralli = 1,...,n, let
¢; < ¢ be a cost function and h; be an admissible heuristic
for1l.,. Let s be a state of 1L

The estimate of the post-hoc optimization heuristic h*"0(s)
is the objective value of the linear program:

Minimize 3, c o/, X[o) Subject to

Z Xio] > hi(s) forallie{1,...,n}

[0]€Of~:c;(0)>0

X[o] >0 forall [0] S O/N
The admissibility of its component heuristics leads to ad-
missibility of the post-hoc optimization heuristic:

Theorem 3 (Admissibility of hP'C). The post-hoc optimiza-
tion heuristic is admissible.

Proof. Let 7 be an optimal plan for II = (V, O, s, sy, ¢). (f
the task is unsolvable in state s, every heuristic is trivially
admissible in s.) We write h}(s) for the cost of an optimal
plan for II.,. For any operator set O C O and cost function
d, let cost; (O, ') denote the cost incurred by the operators
from set O in plan 7 under some cost function ¢’. We set
each variable X(, to the cost of the operators in [o] under
the normal cost function c: X[, = costr([o],c). We will
show that this variable assignment is feasible for the linear
program. The constraints X}, > 0 are obviously satisfied.
For the other constraints we can see that

() (+%)

hi(s) < hi(s) < costz(O,ci) = Y costy([o], ;)
[o]€ O/~
(k)
= Z costr([o],¢;) < Z cost([o], )
[o]€O/~: [o]€O/~:
ci(0)>0 ci(0)>0
= > Xp
[o]€Of~:
ci(0)>0

Inequality (*) holds because h; is admissible for II.,. In-
equality (**) holds because cost, (O, ¢;) denotes the cost of
m in II., and hence cannot be lower than A (s), the cost of an
optimal plan for II.,. Inequality (***) follows from ¢;(0) <
c(0). We conclude that h;(s) < 3 (,jco/mic; (0)>0 X[o] and
hence the chosen assignment for X, is feasible.

The objective value for the chosen assignment is
>_(ojeoj~ X[o]» Which equals the cost of  with the chosen
values of X[,). This is equal to h*(s) by the optimality of 7.

Any feasible solution for a minimization LP provides an
upper bound on the optimal objective value, so the value is at
most h*(s). This shows that the heuristic is admissible. [

To gain some more insight into the post-hoc optimization
heuristic, we have a look at the corresponding dual program:



Maximize ) .-, Y;h;(s) subject to

Y, Yi<i

i€{1,...,n}:c;(0)>0
Y, >0

for all [o] € O/~

foralli € {1,...,n}.

By the duality theorem, a bounded feasible LP and its dual
have the same optimal value. However, the dual reveals a dif-
ferent perspective: the objective function shows that we com-
pute a state-specific cost partitioning which cannot change
individual operator costs but can only scale the operator costs
within each heuristic by a factor Y; that depends on the heuris-
tic, but not on the operator. The constraints ensure that the
sum of the scaled estimates stays admissible.

3.1 Relation to the Canonical Heuristic

In addition to providing an interpretation of the heuristic in
terms of cost partitioning, the dual LP also reveals an inter-
esting relation between the post-hoc optimization heuristic
for PDB heuristics and the canonical heuristic for the same
PDBs. For a pattern collection C the post-hoc optimization
heuristic is defined in the obvious way:

Definition 4. Let I1 be a planning task with cost function c,
and letC = {Py, ..., P,} be a pattern collection for I1.

The post-hoc optimization heuristic h&'® for C is hP"©
where h; = hti, c;(0) = c(o) for all operators o that af-
fect a variable contained in P;, and c¢;(0) = 0 otherwise.

We now show that, in a certain sense, the post-hoc opti-
mization heuristic computes the LP relaxation of an integer
program formulation of the canonical heuristic.

Theorem 5. Consider the dual D of the LP solved by hgho
in state s for a given pattern collection C. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value h€ (s).

Proof. Let VV* be the optimal value of the integer program
corresponding to D (i. e., where the domain of all Y; variables
is set to {0,1}). We will establish h(s) as an upper and
lower bound of V'*, thus proving equality.

For clarity, in the following we denote the variables of the
dual with Yp for the variable related to A* (in contrast to our
previous notation Y; for the variable related to heuristic h;).

Let Y* be an optimal solution of the integer program.
Then A = {P € C | Y = 1} is an additive subset of
C, which we show by contradiction: assume that there are
two different patterns P;, P; € A which are not additive,
i.e., there is an operator o which affects both patterns. Then
cp,(0) > 0 and cp,(0) > 0 and Y™ violates the constraint
1> ZPGC:CP(0)>O Yp 2 Yp +Yp =2 Thus A is additive
and we get h€(s) > 3 pe 4 B (s) = V™.

Conversely, let A* be a maximal additive subset of C that
maximizes hA” (s),i.e., establishes the estimate h¢(s). Then
Y with Yp = 1 for P € A* and Yp = 0 otherwise is a fea-
sible solution for the IP version of D: obviously, all variables
are in the range {0, 1}. Assume that the variable assignment
violates a constraint » PECicp(0)>0 Yp < 1 for an operator

block [0]. Then there must be two different variables Yp with

Yp = 1 and cp(o) > 0. From the definition of Yp, both
patterns are included in A* and hence additive. This contra-
dicts that cp(0) > 0 for both of them. We conclude that Y is
feasible and its value h¢(s) is a lower bound for V*.

Overall we get h¢(s) < V* < hC(s),so V* = hC(s). O

Since every feasible variable assignment of an integer pro-
gram (IP) is feasible for the corresponding LP, the value of
the IP is a lower bound for the LP value. We conclude:

Corollary 1. The post-hoc optimization heuristic hgho dom-

inates the canonical heuristic hC for the same pattern collec-
tion C.

Our introductory example already showed that AZ"© can

give strictly larger estimates than hC, which is also confirmed
by the experimental evaluation.

3.2 Computation Effort

We conclude our discussion of the post-hoc optimization
heuristic by considering its computational cost. We assume
that the component heuristics h; are efficiently computable,
as in the case of PDB heuristics.

To compute h*°(s), we must solve an LP with one vari-
able per block in the operator partition and one constraint per
component heuristic. The number of blocks in the partition
can never exceed the number of operators and is often much
smaller. For example, in tasks where all operators have only
one effect, the number of blocks is bounded by the number of
state variables. Similarly, due to the exponentially growing
space requirements of PDB heuristics, the number of com-
ponent heuristics is usually not too large. In particular, this
analysis shows that the post-hoc optimization heuristic can be
computed in polynomial time (in the planning task size and
the number of component heuristics), as LPs can be solved in
polynomial time in the number of variables and constraints.

We also note that only the bounds h;(s) in the LP depend
on the evaluated state s, which allows LP solvers to reuse
computations from previous states. If we use the dual LP to
compute the heuristic value, only the objective function dif-
fers from state to state while the feasible set remains constant.

In contrast, the computation of the canonical heuristic re-
quires iterating over all maximal additive subsets of the pat-
tern collection. The number of such subsets can grow expo-
nentially with the number of patterns (= component heuris-
tics), so despite being dominated by hP"C, the canonical
heuristic can be exponentially more expensive to compute.

Considering that A™"© can be understood in terms of cost
partitioning by means of linear programs, another obvious
comparison is to the LP-based optimal cost partitioning of ab-
straction heuristics by Katz and Domshlak [2010]. Their ap-
proach can partition costs much more flexibly than post-hoc
cost partitioning because the cost of each individual operator
in each abstraction can be set individually. When applied to
PDBs, their approach builds an LP with one constraint for
every state transition of every abstract planning task. For
larger PDBs, this can amount to billions or trillions of con-
straints and is hence practically infeasible to solve even once,
let alone for every evaluated state within a heuristic search
algorithm. Consequently, no implementation of the approach
has been discussed in the literature.



HC¢ HCM™O Syst Sys Sys Sys™

ne JPhO pOCP J,PhO Ke PO poCP he PO pocP he PO OCP PhO jyDlind pLM-Cut
barman (20) 4 4 0 0 4 4 0 4 4 0 0 0 0 4 (1-2) 4 4
elevators (20) 16 16 0 16 9 9 4 16 15 0 16 14 0 15 9 18
floortile (20) 2 2 0 2 2 2 2 2 2 0 2 2 0 2 (1-3) 2 7
nomystery (20) 16 16 3 16 12 12 8 18 18 6 19 19 3 19 (34) 8 14
openstacks (20) 14 14 5 14 14 14 5 5 14 0 2 9 0 14 (1-2) 8 14
parcprinter (20) 8 8 8 8 11 11 7 7 13 15 5 18 2 20 (4) 6 13
parking (20) 5 5 1 5 5 5 1 0 1 0 0 0 0 51 0 3
pegsol (20) 0 0 0 0 17 17 12 5 17 1 1 16 0 17 (1-2) 17 17
scanalyzer (20) 10 10 1 7 10 10 5 10 8 1 10 4 0 10 (1) 9 12
sokoban (20) 20 20 18 20 19 19 13 20 20 2 20 13 0 20 (2) 16 20
tidybot (20) 14 14 6 11 13 13 5 14 14 6 8 14 1 14 (2-3) 10 14
transport (20) 6 6 2 6 6 6 4 6 6 0 9 8 0 8(3) 6 6
visitall (20) 16 16 10 16 16 16 15 16 16 10 16 16 6 16 (1-3) 9 11
woodworking (20) 2 2 2 1 5 5 2 3 10 2 1 9 0 10 (2) 2 12
Sum IPC 2011 (280) 133 133 56 122 143 143 83 126 158 43 109 142 12 174 112 165
IPC 1998-2008 (1116) | 456 459 241 426 | 449 449 355 | 446 475 231 406 422 129 | 501 394 598
Sum (1396) 589 592 297 548 | 592 592 438 | 572 633 274 | 515 564 141 675 506 763
Column a b c d e f g h i ] k 1 m n o p

Table 1: Coverage on the IPC benchmark suite. Best results among PDB-based heuristics highlighted in bold.

4 Generating Pattern Collections

The iPDB procedure performs hill-climbing to find a pat-
tern collection. However, certain informative patterns are not
reachable by this search because they would require extend-
ing a pattern by several variables at once to get a heuris-
tic improvement. Consider for example a task with vari-
ables {A, By, B2, G1, G2} with initial values 0 and goals
G1 = 1 and Gy = 1. The operators are (A = 0; A := 1),
(A=4A:=0),(A=4B;,:=1)and (B; = 1;G; := 1)
fori=1,2.

Growing patterns one variable at a time, iPDB can ex-
tend the goal-variable pattern {G;} by B; and A but not
by Bs, because this would not increase the estimates of the
corresponding PDB. G5 would not be included because it is
causally disconnected. Starting from the pattern {G5} leads
to a symmetric situation where By cannot be added. How-
ever, the pattern consisting of all variables would contribute
to the heuristic estimate because it is the only one detecting
that the value of variable A needs to be changed back to 0 at
some point. Indeed, in many domains from the IPC bench-
mark suite (e. g., blocks, parking and pathways) iPDB hill-
climbing already stops at the first iteration, so that the pattern
collection only consists of the initial single-variable patterns.

To counter this problem, we propose a different approach
of generating pattern collections. It is based on the trivial
idea of systematically including all patterns up to a given size,
which has been shown to lead to informative heuristics in sev-
eral classical search domains [Felner et al., 2004]. Without
further modifications, this approach would often lead to pro-
hibitively large collections with many uninformative patterns,
so we use a finer version of the iPDB pruning criteria to ex-
clude useless patterns.

Like the original approach for pruning unnecessary pat-
terns in iPDB, our criteria are defined in terms of the causal
graph of a planning task. The causal graph of II is a directed
graph whose nodes are the variables of II. It has a precondi-
tion arc from node u to node v if there is an operator which
has a precondition on « and an effect on v # u. If an oper-
ator affects both v and v, the causal graph contains co-effect

arcs from u to v and vice versa. Our systematic method gen-
erates all patterns up to a certain size which are interesting
according to the following definition:

Definition 6. A pattern P is interesting if

1. the subgraph of the causal graph induced by P is weakly
connected, and

2. the subgraph of the causal graph induced by P contains
a directed path via precondition arcs from each node to
some goal variable node.

This definition is similar to the one used in iPDB, but finer
because it distinguishes the role of precondition arcs and co-
effect arcs. (The latter are only used for condition 1.) It is
the most restrictive possible causal-graph-based definition of
interestingness in the following sense:

(A) Every pattern that is not interesting according to Defini-
tion 6 is redundant in the sense that it could be replaced
by a smaller pattern or several (additive) smaller patterns
providing the same heuristic estimates.

(B) Every more restrictive definition of interestingness
based on the causal graph (that would consider some
pattern uninteresting which our definition considers in-
teresting) does not satisfy (A).

For space reasons, we leave out a proof of (B) and only
briefly sketch a proof of (A) here. If P fails to satisfy con-
dition 1., it consists of independent abstract subtasks and can
be replaced without loss by a set of additive patterns, one
for each weakly connected component. If P fails to satisfy
condition 2., it contains a non-goal variable v which is never
required as precondition of an operator that is necessary for
solving the abstract task. Therefore we can remove v from
the pattern without reducing any heuristic estimate.

5 Experimental Evaluation

For the experimental evaluation, we extended the iPDB im-
plementation by Sievers ef al. [2012] in the Fast Downward
planning system [Helmert, 2006] with an implementation of
the post-hoc optimization heuristic 2P"© and of the optimal



PDB cost partitioning approach h9F of Katz and Domsh-
lak [2010]. We conducted experiments on all IPC benchmark
tasks for optimal planners with a time limit of 30 minutes and
a memory limit of 2 GB. All experiments were performed
on machines with two 8-core Intel Xeon E5-2660 processors
under full load (16 concurrent runs). For iPDB we used the
default parameters, which are commonly accepted as a good
choice.

For each benchmark task and planner configuration, we
measure the following features:

e coverage: was the task solved within 30 minutes?

e setup time: time taken to select and compute the PDBs,
to compute the maximal additive pattern sets (for h¢),
and to set up the LP (for h""O and hOCP)

e initial h computation time: time to perform the heuristic
computation for the initial state (after all setup)

e initial h value: the heuristic value of the initial state

o expansions until last jump (for solved tasks): number of
expanded nodes until the last f layer is reached by A*

e node evaluation rate (for solved tasks): number of
heuristic evaluations to solve the task divided by search
time (excluding setup time)

Overall results. Table 1 shows coverage results on the
IPC benchmark suite. For space reasons, we only include
per-domain results for the IPC-2011 instances and present
aggregated numbers for older tasks. Each configuration in
columns a—m is specified by the pattern selection method and
the heuristic.

Columns a and b compare the canonical and the post-hoc
optimization heuristic on the pattern collection generated by
the iPDB hill-climbing procedure. There is little difference
between the two heuristics in coverage, and setup time (not
shown) is also comparable for both heuristics. A compari-
son of node expansions (also not shown) reveals that AP0 is
not much better informed than € in this setting. One pos-
sible explanation is that iPDB hill-climbing uses the canon-
ical heuristic to determine the “best” neighbor and therefore
prefers pattern collections which work especially well with
this heuristic.

To test this conjecture, we modified the hill-climbing
search to use the post-hoc optimization heuristic instead of
the canonical heuristic to evaluate the hill-climbing neighbor-
hood. The result is shown in column d. Instead of the ex-
pected improvement, coverage drops significantly from 592
to 548 tasks. This surprise brought up the question if there
is a conceptual problem with the hill-climbing method and
led to the considerations in Section 4, which gave rise to the
systematic pattern generation approach.

On the systematically generated patterns, 2”'© and h° per-
form equally on patterns of size 1 (columns e and f), but on
larger (and therefore more) patterns 2P© performs far better
than A€ (columns h, i and k, 1). While the behavior is not con-
sistent over all domains, the post-hoc optimization heuristic
solves significantly more instances in many domains, overall
outperforming the canonical heuristic by 61 instances on the
patterns up to size 2 and by 49 instances on the patterns up to
size 3.
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Figure 2: Comparison of hP"© and A€ with all patterns up to
size 2.
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h¢ and systematically generated size-2 patterns.
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Figure 4: Initial h values.

A deeper look. To understand the reasons for the better
performance of h""© compared to h°¢, Figure 2 compares (a)
the heuristic setup time, (b) the number of expansions, and
(c) the evaluation rate of both heuristics with the systemat-
ically generated patterns up to size 2. Panel (b) shows that
there are only a few instances where the theoretical domi-
nance of the post-hoc optimization heuristic translates into
better guidance, and panel (c) shows that on tasks solved by
both approaches, the canonical heuristic computations tend to
be faster.

However, panel (a) reveals that the canonical heuristic of-
ten requires far more setup time (almost all the exceptions
are in the pipesworld-tankage domain) and more importantly
often fails to complete heuristic setup within the available re-
sources. In all cases, the cause of the failure is running out
of memory. On 9 of the 1396 task, the memory limit is not
sufficient to build all PDBs for the pattern collection, which
affects both heuristics. However, for the canonical heuristic,
360 additional instances run out of memory during the gener-
ation of the maximal additive pattern sets. This indicates that
in the case of systematic pattern collections, the number of
maximal additive sets is often prohibitively large.

To clarify the influence of the characteristics of the pattern
collection on heuristic evaluation time, Figure 3 plots the time
required for the initial heuristic evaluation on all tasks where
this evaluation completed within the timeout for both heuris-
tics. In panel (a), the shading of the points indicates the num-
ber of maximal additive pattern sets. In panel (b), it indicates
the number of patterns. The figure confirms that the com-
putation time for the canonical heuristic is closely linked to
the number of maximal additive pattern sets, while the com-
putation time for the post-hoc optimization heuristic is more
closely linked to the number of patterns.

Optimal cost partitioning. Independently of the pattern
selection method, the optimal cost partitioning approach h°P
of Katz and Domshlak (columns ¢, g, j and m in Table 1) is not
competitive with the other heuristics because it is too costly
to compute. With singleton patterns (column g) it achieves a
total coverage of 438 tasks, which drops below 300 for any of
the other pattern selection methods. For comparison, A* with
the blind heuristic solves 506 tasks (column o).

Nevertheless, it is an interesting question how well-
informed the post-hoc optimization heuristic is compared to
this “holy grail” for the given abstractions. To answer this, we
ran experiments with a timeout of 24 hours to determine the
initial heuristic estimates of RO’ for a wide range of tasks.
Figure 4 shows the result for systematically generated pattern
collections with maximal pattern size 2. To increase readabil-
ity, the figure only includes instances with heuristic values
smaller than 50.

While optimal cost partitioning optimizes individual op-
erator costs for each abstraction, the post-hoc optimization
heuristic may only scale all operator costs for each PDB. The
results show that this restriction indeed limits the quality of
the heuristic estimates. However, the experiment also con-
firms how expensive optimal cost partitioning is: for 206 of
the 1396 tasks it runs out of memory while setting up the LP,
and for 43 of the remaining 1190 tasks, computation of the
initial state heuristic value fails to finish within 24 hours.



Pattern selection methods. The preceding discussion
mostly focused on a comparison of the three combination
methods for PDB heuristics (A€, hP'© and hOP). We now
switch attention and discuss the different pattern selection
methods in the context of each of the three combination meth-
ods. The picture that emerges is quite different for each com-
bination method.

With optimal cost partitioning, computation time grows
fast with the number and size of patterns, so it is not sur-
prising that it performs best with the method that generates
the smallest number of patterns (systematic patterns of size
1; column g).

The canonical heuristic also does not combine well with
the larger systematically generated pattern sets (due to the
high number of additive patterns as discussed above). Note
that Sys' generates exactly the initial pattern set of the iPDB
method. Comparing columns a and e shows that hill-climbing
does not pay off on average, but this depends heavily on the
domain. One problem is that the iPDB procedure often re-
quires too much time. This indicates that better adaptive stop-
ping criteria for the hill-climbing search could be helpful.

With the post-hoc optimization heuristic, the systematic
pattern generation performs very well, with a sweet spot at
a maximal pattern size of 2. Comparing this best system-
atic pattern generation (column 1) to the iPDB pattern selec-
tion (column b) shows an impressive improvement of 41 in-
stances.

State of the art. We conclude with a brief comparison to
the state of the art in optimal planning. The LM-Cut heuristic
[Helmert and Domshlak, 20091, which is based on the ideas
of landmarks and delete relaxation, currently offers the best
performance on the IPC benchmark suite. Its results (col-
umn p in Table 1) show that there is still a gap to the best-
performing abstraction heuristics. However, comparing the
previous state of the art of abstraction heuristics in column
a to our best new configuration in column i (post-hoc opti-
mization on the systematic size-2 pattern collection) shows
an impressive improvement of 44 additionally solved tasks.

To show that further significant improvements are possible
with better pattern selection strategies, column n evaluates
the potential of h™"© under the assumption that there is an or-
acle predicting the optimal value for the maximal pattern size
within the range 1-4 for each domain (best parameters shown
in parentheses). This leads to a total of 675 solved tasks, an-
other improvement by 42. (The corresponding number for the
canonical heuristic is 648, not shown in the table.)

6 Conclusion

In this work, we attempted to push the current limits of ad-
ditive abstraction heuristics in optimal planning. From our
perspective, the most interesting contribution is the post-hoc
optimization heuristic, which explores the middle ground be-
tween the “trivial cost partitioning” of the canonical heuris-
tic, which set the previous state of the art in abstraction-based
planning systems, and the rich notions of cost partitioning
pioneered by Katz and Domshlak. We believe that both the
theoretical notions and the experimental results explored in
this paper offer many opportunities for future investigations.
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