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Abstract
Many heuristics for cost-optimal planning are
based on linear programming. We cover several
interesting heuristics of this type by a common
framework that fixes the objective function of the
linear program. Within the framework, constraints
from different heuristics can be combined in one
heuristic estimate which dominates the maximum
of the component heuristics. Different heuristics
of the framework can be compared on the basis of
their constraints. We present theoretical results on
the relation between existing heuristics and experi-
mental results that demonstrate the potential of the
proposed framework.

1 Introduction
The central problem when designing an autonomous agent is
the problem of selecting the next action for the agent to ex-
ecute. In a truly autonomous system, this selection is based
only on the sequence of the actions performed and observa-
tions gathered, called execution, up to the time a new action
is needed. This problem is known as the control problem.

There are three main approaches for dealing with the con-
trol problem. In the first approach, the programming ap-
proach, the controller that selects the actions is hardwired in
the form of a program or circuit that is specific for the task.
This approach is used in simple problems or for agents that
implement simple control strategies, but it often falls short of
selecting appropriate actions when the agent encounters ex-
ecutions that were not anticipated by the ‘programmer’. In
the second approach, the learning approach, the agent is em-
bedded in the system and learns the controller as it tries the
different actions and observes their outcomes. In practice,
however, the agent needs to explore too many executions to
learn a useful controller making it unfeasible except for small
tasks. In the third approach, the model-based approach, the
system is described using a model that specifies the possible
states of the system, the effects and observations obtained af-
ter executing the actions, and the goals that the agent tries
† This paper was invited for submission to the Best Papers From Sis-
ter Conferences Track, based on a paper that appeared in the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS)
2014.

to achieve. This model is used to automatically synthetise
a controller that maps executions to the next action to per-
form. The problem is thus cast as a synthesis problem from a
given specification. Two obstacles for this approach are that
a suitable model for the task is needed, and that the synthesis
problem is intractable in general. But, this intractability does
not preclude the approach from being effective in meaningful
cases. Planning is the model-based approach to autonomous
behaviour. For a general introduction to planning models and
methods along these lines, see Geffner and Bonet [2013].

Classical planning is the simplest type of model in which
the initial state is fully known, the actions behave determin-
istically, and agent tries to achieve one of possibly many goal
states. The determinism implies that the agent is capable of
predicting the outcomes of the actions and, together with the
knowledge of the initial state, a controller is just a sequence
of actions to execute from the initial state and that results in
a goal state. On the other hand, the synthesis problem for
classical planning is the problem of finding a path in an im-
plicit graph of exponential size whose vertices stand for sys-
tem states and edges stand for action applications. In this
graph, we can look for satisficing or (cost-)optimal plans that
correspond to arbitrary or optimal paths in the graph.

In this paper we focus on the problem of computing op-
timal plans. A common way to find optimal paths in an im-
plicit graph is the standard best-first search with an admissible
heuristic (i.e. A∗). Such a heuristic must map states to cost
estimates that are less than or equal to the cost of the best path
from the state to a goal [Russell and Norvig, 2003].

Several recent admissible heuristics [van den Briel et al.,
2007; Karpas and Domshlak, 2009; Bonet, 2013; Pommeren-
ing et al., 2013] for cost-optimal planning show that it is
feasible and beneficial to obtain estimates by solving a lin-
ear program for every state encountered during the search.
The approaches differ in their formulation of the objective
and constraints, which depend on the type of information and
problem structure that is exploited for the computation of the
heuristics. Karpas and Domshlak use landmarks, Pommeren-
ing et al. exploit information from abstraction heuristics, and
van den Briel et al. and Bonet base their linear programs on
network flows for the state variables.

We will show that all these approaches are covered by a
single framework that fixes the optimization function of the
linear program. The framework provides:



• a clear and crisp formulation that is able to capture many of
the existing state-of-the-art heuristics for optimal planning,

• a simple way to combine different heuristics (and thus dif-
ferent types of information) into new heuristics that are
more powerful than the isolated component heuristics,

• new methods of analysis that allow us to better understand
the limitations of the current heuristics and to reveal deep
connections between heuristics, and

• a practical way to define heuristics that currently set the
state of the art in heuristics for optimal planning.

Helmert and Domshlak [2009] provide the following clas-
sification for most of the heuristics for optimal planning, in-
cluding all the heuristics that are state of the art:

• the delete relaxation [Bonet and Geffner, 2001],

• critical paths: the hm family [Haslum and Geffner, 2000],

• abstractions like pattern databases [Edelkamp, 2001],
merge-and-shrink abstractions [Helmert et al., 2014] and
structural patterns [Katz and Domshlak, 2009], and

• landmarks, like the admissible landmark heuristics of
Karpas and Domshlak [2009].

As we will see, many of these heuristics can be captured ef-
ficiently in our framework, while for others we still do not
know. Characterizing known heuristics within the proposed
framework is not only of theoretical interest. The informa-
tion provided by one heuristic can be easily combined with
the information provided by other heuristics to define novel
heuristics that often exhibit a synergistic effect: the new es-
timates are often strictly more informed than the estimates
provided by each component alone.

Recently, the LP-based framework was used to express
even better heuristics either by extracting more useful infor-
mation from the problem or by observing novel ways to opti-
mally combine the estimates provided by different heuristics
[Bonet and van den Briel, 2014; Pommerening et al., 2015].

We start by introducing SAS+ planning and our new
framework, which is based on operator-counting constraints.
Afterwards, we present a wide range of such constraints
and explain how they are used to express existing and novel
heuristics. We then present some experimental results and
end with a discussion. The reader is referred to Pommeren-
ing et al. [2014] for a more complete exposition and results.

2 The SAS+ Model and Heuristics
A SAS+task is a tuple Π = 〈V,O, sI , sG, cost〉 where V is a
finite set of variables. Each variable V ∈ V has a finite do-
mainDV . A (partial) state s is a (partial) variable assignment
over V . We write vars(s) for the domain of definition of s
and s[V ] for the value of V in s. A partial state s is consistent
with a partial state s′ if s[V ] = s′[V ] for all V ∈ vars(s′).
An atom V = v is true in state s iff s[V ] = v.

Each operator o in the finite set of operatorsO is associated
with a precondition pre(o) and an effect eff(o), which are both
partial variable assignments over V . We require that V = v
cannot be both a precondition and an effect of o. This is not
a real restriction because such effects would be redundant.

The (complete) state sI is the initial state of the task and the
partial state sG describes its goal. The cost function cost :
O → R+

0 assigns a non-negative cost to each operator.
An operator o is applicable in a state s if s is consistent

with pre(o). The resulting state of applying an applicable
operator o in state s is the state res(o, s) with

res(o, s)[V ] =

{
eff(o)[V ] if V ∈ vars(eff(o))
s[V ] otherwise.

A sequence of operators π = 〈o1, . . . , on〉 is applicable in
state s0 if there are states s1, . . . , sn with si = res(oi, si−1)
for 1 ≤ i ≤ n. The resulting state of this application is
res(π, s0) = sn. The cost of π is the sum of its operator costs
cost(π) =

∑n
i=1 cost(oi).

For state s, an s-plan is an operator sequence π applicable
in s such that res(π, s) is consistent with sG. An sI -plan is
just called a plan. A plan with minimal cost is called optimal.

A function h that maps states to non-negative numbers (or
∞) is called a heuristic. A heuristic h is called admissible if
h(s) ≤ h∗(s) for all states s, where h∗(s) is the cost of an
optimal s-plan (or∞ if no s-plan exists).

3 Operator-counting Constraints
Recently proposed heuristics [van den Briel et al., 2007;
Bonet, 2013; Pommerening et al., 2013] are based on lin-
ear programs of similar form. They formalize constraints that
must be satisfied by every plan π and use a variable Yo for
each operator o such that setting Yo to the number of occur-
rences of o in π satisfies the constraints.

We will show that these heuristics (and some other ones)
can be covered by a common framework based on the notion
of operator-counting constraints:
Definition 1 (Operator-counting constraints) Let Π be a
planning task with operator set O, and let s be one of its
states. Let Y be a set of non-negative real-valued and integer
variables, including an integer variable Yo for each operator
o ∈ O along with any number of additional variables. The
variables Yo are called operator-counting variables.

If π is an s-plan, we denote the number of occurrences of
operator o ∈ O in π with Y πo . A set of linear inequalities
over Y is called an operator-counting constraint for s if for
every s-plan π, there exists a feasible solution with Yo = Y πo
for all o ∈ O.

A constraint set for s is a set of operator-counting con-
straints for s where the only common variables between con-
straints are the operator-counting variables.

As an example, C1 = {Yo1 − 2Yo2 ≥ 0} is an operator-
counting constraint expressing that in every plan, o1 must
occur at least twice as often as o2. The set of inequalities
C2 = {Yo1 − Z ≥ 2,Yo2 + Z ≥ 1} with auxiliary integer
variable Z is another constraint. The set {C1, C2} is a con-
straint set becauseC1 andC2 do not share auxiliary variables.
Definition 2 (Operator-counting programs) The operator-
counting integer program IPC for constraint set C is:

Minimize
∑
o∈O cost(o)Yo subject to C .

The operator-counting linear program LPC is the LP-
relaxation of IPC .



From Definition 1, if π is a plan, then there exists a solution
to both IPC and LPC where Yo = Y πo for all o ∈ O. The cost
of the plan is cost(π) =

∑
o∈O cost(o) · Y πo , and hence the

optimal plan cost is an upper bound for the objective value of
the IP/LP. This allows us to define admissible heuristics:

Definition 3 Let Π be a planning task, and let C be a function
that maps states s of Π to constraint sets for s.

The IP heuristic hIP
C (s) is the objective value of the integer

program IPC(s). The LP heuristic hLP
C (s) is the objective value

of the linear program LPC(s). Infeasible IPs/LPs are treated
as having an objective value of∞.

Note that the requirement that an operator-counting con-
straint must have a feasible solution with Yo = Y πo for every
plan π is stricter than necessary for admissibility. It is suffi-
cient that whenever a solution exists, there is one optimal plan
π∗ such that all operator-counting constraints have a feasible
solution with Yo = Y π

∗

o .
If all operator costs of a planning task are integer, we can

obviously improve the LP heuristic estimate without losing
admissibility by rounding up to the nearest integer.

4 Types of Operator-counting Constraints
In this section we describe four types of operator-counting
constraints that capture different state-of-the-art heuristics.

Landmark Constraints
A (disjunctive) action landmark [Zhu and Givan, 2003;
Helmert and Domshlak, 2009] for a state s is a set of op-
erators of which at least one must be part of any s-plan.

Using linear programming to derive heuristic estimates
from landmarks was introduced by Karpas and Domshlak
[2009] for computing optimal cost partitionings for land-
marks. The LP formulation was improved by Keyder et al.
[2010]. Bonet and Helmert [2010] introduced an alternative
formulation that directly fits into our framework and showed
that it is the dual of the representation by Keyder et al.

Strengthening heuristics with landmarks is not a new idea:
Domshlak et al. [2012] propose it for abstraction heuristics
and Bonet [2013] for the LP-based state-equation heuristic.
He uses the same constraints as Bonet and Helmert [2010]:

Definition 4 Let L ⊆ O be an action landmark for state s of
task Π. The landmark constraint clms,L for L is

∑
o∈L Yo ≥ 1.

Since at least one action of the landmark occurs in every s-
plan, landmark constraints are operator-counting constraints.

Post-Hoc Optimization Constraints
Post-hoc optimization heuristics [Pommerening et al., 2013]
exploit knowledge on certain operators not being able to con-
tribute to a heuristic estimate:

Definition 5 Let Π be a planning task with operator set O,
let h be an admissible heuristic for Π, and let N ⊆ O be
a set of operators that are noncontributing in the sense that
the h-values are still admissible in a modified planning task
where the cost of all operators in N is set to 0. The post-
hoc optimization constraint cPH

s,h,N for h, N and state s of Π

consists of the single inequality
∑
o∈O\N cost(o)Yo ≥ h(s).

An important special case applies to pattern database
(PDB) heuristics for planning [Edelkamp, 2001], which are
based on projections of a planning task Π to a subset (called
a pattern) of the state variables. Operators that do not modify
any variable in the pattern are noncontributing. We denote
with cpdbs,P the post-hoc optimization constraint for state s and
the PDB heuristic hP for pattern P .

Net Change Constraints
Bonet [2013] introduces the state-equation heuristic hSEQ by
relating planning tasks to Petri nets and deriving constraints
based on the net change of the number of tokens in the Petri
net locations caused by the firing of transitions. Here, we
present the general ideas behind hSEQ but working on the
planning task directly, leading us to a deeper understanding.

We say that an operator o applied in state s produces an
atom V = v if s[V ] 6= v and res(o, s)[V ] = v and that it
consumes the atom if s[V ] = v and res(o, s)[V ] 6= v. The net
change of the atom from state s to the successor state res(o, s)
is 1 if o produces the atom, −1 if it consumes it and 0 other-
wise. This idea can be lifted to valid sequence of operators
(plans). If π is an operator sequence that is applicable at state
s, the net change that π induces over an atom is either 1, −1
or 0 whether π produces, consumes or leaves the atom un-
changed. A necessary condition for π to be an s-plan is that
π should produce every goal atom that does not hold at s and
leave unchanged every goal atom that holds at s.

We want to use this necessary condition to derive operator-
counting constraints. Informally, the accumulated net change
for an atom V = v of an operator sequence π adds up all op-
erator applications that produce the atom and subtracts those
that consume the atom. Without knowing the exact sequence
π, one cannot predict the states are visited by the path π
from s to the goal, and thus decide when and what atoms
are produced or consumed. However, we can still obtain use-
ful bounds on the induced net change for candidate plans on
a given atom V = v. For this, let us consider four disjoint
classes of operators for the atom V = v: the class APV=v of
operators that always produce the atom, the class SPV=v of
operators that sometimes produce the atom, the class ACV=v

of operators that always consume the atom, and the class
SCV=v of operators that sometimes consume the atom. Oper-
ators that do not fall into one of these classes never change the
truth value of the atom. For example, if we are told that the
plan π for state s contains exactly two operators in APV=v ,
one operator in ACV=v , and no operator in the other classes
for the atom V = v, then we can be sure that the atom V = v
will hold after executing π at s.

The net change on an atom V = v that a sequence π in-
duces between a state s and the resulting state res(π, s) can
only take a limited number of values if π is an s-plan:

pncs→?V=v =



{0, 1} if sG[V ] is undefined and s[V ] 6= v

{−1, 0} if sG[V ] is undefined and s[V ] = v

{1} if sG[V ] = v and s[V ] 6= v

{−1} if sG[V ] = v′ and s[V ] = v 6= v′

{0} otherwise.

These values and operator classes are combined as follows:



Definition 6 Let Π be a planning task with operator set O.
The lower-bound net change constraint cncls,V=v for atom V =
v and state s is the constraint∑

o∈APV=v

Yo +
∑

o∈SPV=v

Yo −
∑

o∈ACV=v

Yo ≥ min pncs→?V=v ;

the upper-bound net change constraint cncus,V=v is

max pncs→?V=v ≥
∑

o∈APV=v

Yo −
∑

o∈ACV=v

Yo −
∑

o∈SCV=v

Yo .

As before, it is not very difficult to show that the lower- and
upper-bound net change constraints are operator-counting
constraints. That is, if π is an s-plan for state s, the assign-
ment Yo = Y πo for o ∈ O satisfies all such constraints.

Cost Partitioning Constraints for Abstractions
An abstraction heuristic maps each state s of a planning task
Π through a homomorphic mapping α to an abstract state
α(s). The heuristic estimate for s is the cost of the cheap-
est path from α(s) to an abstract goal state in the transition
system T α induced by α on the planning task Π.

In general, the estimates of provided by a set A of abstrac-
tion heuristics can only be combined admissibly by taking
their maximum. Action cost partitionings permit the esti-
mates to be added up while retaining admissibility by dis-
tributing the costs of the actions across all the abstractions in
A; i.e., if costα(o) ≥ 0 is the cost assigned to operator o in
the abstraction α, an action cost partitioning sets the action
costs such that

∑
α∈A costα(o) ≤ cost(o) for each o ∈ O.

An optimal cost partitioning [Katz and Domshlak, 2010]
computes the best estimate obtainable by any action cost par-
titioning for a given set A of abstractions. Unfortunately,
the best partitioning is state-dependent and its computation at
each state is often too expensive [Pommerening et al., 2013].

For a set A of abstraction mappings for task Π, let T α =
〈Sα, sαI , Gα, Tα〉 denote the transition system induced by
α ∈ A, where Sα is the set of abstract states, sαI is the abstract
initial state andGα is the set of abstract goal states. Each tran-
sition 〈s, o, s′〉∈Tα from state s to state s′ is labeled with the
operator o that induces it. The subset SCTα ⊆ Tα contains
all state-changing transitions 〈s, o, s′〉 with s 6= s′.

The estimate of the optimal cost partitioning heuristic hOCP
A

forA in state s ∈ S is the objective value of the following LP
or∞ if the LP is not bounded feasible:

Maximize
∑
α∈A Hα subject to

Dαs′ = 0 for all α ∈ A and s′ = α(s)

Dαs′′ ≤ Dαs′ + Cαo for all α ∈ A and 〈s′, o, s′′〉 ∈ SCTα

Hα ≤ Dαs′ for all α ∈ A and s′ ∈ Gα∑
α∈A Cαo ≤ cost(o) for all o ∈ O

with all variables restricted to be non-negative.

Intuitively, variable Cαo describes the cost of operator o in
T α. Given this cost partitioning, variable Dαs′ measures the
cheapest cost to reach s′ from α(s) in the abstract system and
Hα is the (additive) heuristic estimate for abstraction α.

At first glance, the cost partitioning LP seems unrelated
to the operator-counting constraint framework. However, it
turns out that the dual of the LP (which must have the same
objective value) is a direct fit for our framework, offering a
new perspective on optimal cost partitioning. This dual LP is
to Minimize

∑
o∈O cost(o)Yo subject to the constraints cOCP

s,α
(defined next) for all abstraction mappings α ∈ A.

Definition 7 Let α be an abstraction mapping for task Π and
let T α = 〈Sα, sαI , Gα, Tα〉 be the induced abstract transi-
tion system with SCTα ⊆ Tα being the set of state-changing
transitions. For a state s of Π, the optimal cost partitioning
constraint cOCP

s,α is defined in terms of the following variables:
operator-counting variables Yo for o ∈ O, goal-achievement
indicator variables Gαs for s ∈ Gα, and transition-counting
variables Tαt for t ∈ SCTα. The constraint cOCP

s,α consists of:
1. a transition count inequality for each operator o ∈ O:

Yo ≥
∑

t∈SCTα
t labeled with o

Tαt ,

2. a goal inequality
∑
s′∈Gα G

α
s′ ≥ 1, and

3. a flow inequality for all abstract states s′ 6= α(s) in Sα:∑
t∈SCTα
t ends in s′

Tαt −
∑

t∈SCTα
t starts in s′

Tαt ≥
{
Gαs′ if s′ ∈ Gα
0 if s′ /∈ Gα .

Given an s-plan π for state s, we can find an assignment to
the variables in cOCP

s,α that satisfies the constraint. Namely, we
set Yo to Y πo , Gαs′ to 1 or 0 depending on whether executing
π in T α ends in s′ or not, and Tαt to the number of times that
the transition t is used when executing π in T α. Thus, the
cOCP
s,α constraints are operator-counting constraints.

A closer look at the proof of this claim shows that there is
a solution of the LP that uses only integer values. This means
that the constraints remain sound when interpreting cOCP

s,α as
an integer program. This results in a heuristic that dominates
Katz and Domshlak’s optimal cost partitioning, yet the new
heuristic is not known to be efficiently computable.

Delete Relaxation Constraints
The delete-relaxation heuristic h+ is best outlined in planning
tasks that are expressed with a propositional language like
STRIPS [Fikes and Nilsson, 1971]. The estimate h+(s) for
state s in a such task Π refers to the cost of an optimal s-plan
in the task Π+ that results from removing the “delete effects”
[Bonet and Geffner, 2001].

Imai and Fukunaga [2014] present an IP that exactly com-
putes the estimate h+(s) for a given state s using a formula-
tion that associates feasible solutions with s-plans in Π+, and
every such plan with a feasible solution that encodes it.

Imai and Fukunaga use an encoding that uses indicator
variables Uo ∈ {0, 1} for each o ∈ O, and with an objec-
tive that minimizes

∑
o∈O cost(o)Uo. We can make the set

of constraints into an operator-counting constraint by adding
the operator-counting variables Yo with constraints Yo ≥ Uo,
for every o ∈ O, and by changing the objective function to
minimize

∑
o∈O cost(o)Yo [Röger and Pommerening, 2015].

The resulting constraint for state s is denoted by cdr
s .



5 Relationship to Existing Heuristics
We now sketch how several existing heuristics can be ex-
pressed within the operator-counting constraint framework.

Landmark Heuristic with Optimal Cost Partitioning
Optimal cost partitioning for landmarks [Karpas and Domsh-
lak, 2009] can be expressed in our framework.
Theorem 1 For state s, let C(s) be a set of landmark con-
straints for s. Then hLP

C (s) = hLM
opt (s), where hLM

opt is the land-
mark heuristic with optimal cost partitioning using the same
landmarks as in C.

The LM-cut heuristic [Helmert and Domshlak, 2009] com-
putes a cost partitioning for the set of action landmarks that
it finds. Bonet [2013] proposed to use these landmarks for
specifying constraints in the sense of this paper. Thus, any
LP heuristic using these constraints dominates LM-cut.

Post-Hoc Optimization Heuristic
The definition of the post-hoc optimization heuristic hPhO

H,N
involves a variable merging step which speeds up its compu-
tation but has no influence on the heuristic estimate. If we
omit this step, it is defined by an LP which minimizes the ob-
jective function

∑
o∈O Co, where Co represents the total cost

incurred by operator o in a plan. Replacing each occurrence
of Co by cost(o)Yo brings the LP into the required form.
Theorem 2 Let hPhO

H,N be the post-hoc optimization heuristic
for a set of heuristics H where N (h) denotes the noncon-
tributing operators of h ∈ H. For state s, let CH,N (s) =
{cPH
s,h,N (h) | h ∈ H}. Then hPhO

H,N = hLP
CH,N .

State-Equation Heuristic
The state-equation heuristic fits directly out framework.
Theorem 3 For state s, let C(s) denote the set of lower-
bound net change constraints for s and all atoms. Then the
state-equation heuristic hSEQ equals the LP heuristic hLP

C .

Optimal Cost Partitioning for Abstractions
We derived the optimal cost partitioning constraints from the
dual of the LP which defines the optimal cost partitioning
heuristic. As a bounded feasible LP and its dual have the
same optimal value, the heuristic fits our framework.
Theorem 4 Let A be a set of abstractions. For state s, let
CA(s) be the constraints {cOCP

s,α | α ∈ A}. Then hOCP
A = hLP

CA .

Delete-Relaxation Heuristic
As shown by Imai and Fukunaga [2014] (cf. Röger and Pom-
merening [2015]) the objective of the integer program IPcdr

s

equals the delete-relaxation estimate h+(s) for state s. The
LP relaxation LPcdr

s
provides a lower bound to h+ that is ac-

curate in several cases [Imai and Fukunaga, 2014].

Critical Path Heuristics
Among the four classes of heuristics identified by Helmert
and Domshlak [2009], the class of critical path heuristics is
the only that we do not know how to capture. This class only
contains the heuristics hm [Haslum and Geffner, 2000] that
are in some sense different from the others and that exploit a
type of information that the other heuristics do not consider. It
is an open and important question whether such heuristics can
be efficiently captured with operator-counting constraints.
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barman (20) 4 4 4 4 4 4 4 4 4 4
elevators (20) 7 9 16 16 4 17 16 15 16 18
floortile (20) 4 2 2 6 2 6 6 4 6 7
nomystery (20) 10 11 16 14 8 16 12 14 14 14
openstacks (20) 11 14 14 14 5 14 11 11 11 14
parcprinter (20) 20 11 13 13 7 14 20 20 20 13
parking (20) 3 5 1 2 1 1 2 1 1 3
pegsol (20) 18 17 17 17 10 17 18 17 16 17
scanalyzer (20) 11 9 4 11 7 10 10 10 8 12
sokoban (20) 16 19 20 20 13 20 20 20 19 20
tidybot (20) 7 13 14 14 4 14 10 8 10 14
transport (20) 6 6 6 6 4 6 6 5 6 6
visitall (20) 17 16 16 10 15 17 19 17 18 11
woodworking (20) 9 5 10 11 2 13 16 10 16 12
Sum IPC 2011 (280) 143 141 153 158 86 169 170 156 165 165
IPC 1998–2008 (1116) 487 446 478 586 357 589 618 516 598 598
Sum (1396) 630 587 631 744 443 758 788 672 763 763

Table 1: Coverage on the IPC benchmark suite. Best results
are highlighted in bold.

6 Experimental Evaluation
We implemented a general framework for LP heuristics in the
Fast Downward planning system [Helmert, 2006], support-
ing net change, landmark, PDB and optimal cost partitioning
constraints. The underlying LP solver is CPLEX v12.5.1. For
our evaluation, we use all tasks for optimal planning from the
IPC benchmark suite. All experiments were conducted on In-
tel Xeon E5-2660 processors (2.2 GHz) with a time limit of
30 minutes and a memory limit of 2 GB for each planner run.

For the different types of operator-counting constraints, we
consider the following five groups of constraints:
SEQ All lower-bound net change constraints, corresponding

to the state-equation heuristic hSEQ.

PhO-Sys1 All post-hoc optimization constraints for projec-
tions on goal variables.

PhO-Sys2 All post-hoc optimization constraints for system-
atically generated projections on up to two variables.

LMC All landmark constraints for the landmarks found by
the LM-cut heuristic.

OPT-Sys1 All optimal cost partitioning constraints for pro-
jections on goal variables.

Individual Constraint Groups
To get an idea of the quality of the different constraint groups,
we ran experiments with A∗, using one of the above config-
urations at a time. The resulting coverage is reported in the
first block of Table 1.

Optimal cost partitioning on LM-cut landmarks leads to
the highest coverage with a clear lead over the state-equation
heuristic and the post-hoc optimization heuristic for Sys2 pat-
terns, which are almost on par. Using only Sys1 patterns, the
post-hoc optimization heuristic solves 44 fewer tasks and the
optimal cost partitioning lags far behind with only 443 solved
tasks, compared to 744 by the best LP configuration.
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Figure 1: Number of expansions (excluding nodes on the final f -layer). The numbers (x/y) behind the configurations express
that among the y solved tasks, x have been solved with perfect heuristic estimates.

Comparing the coverage of the standard LM-cut heuristic
and of the LMC configuration reveals that the additional ef-
fort of computing the optimal cost partitioning for the same
landmarks does not pay off in terms of providing sufficiently
better guidance. A possible reason for this is that the LM-
cut heuristic already approximates h+ very closely, and the
corresponding LP heuristic is also bounded by h+.

For SEQ, we proved that that the upper bound net change
constraints are implied by the lower bound net change con-
straints, so their addition to SEQ cannot increase the value of
the resulting heuristic, and observed that the upper bound net
change constraints are strictly weaker than the upper bound
net change constraints [Pommerening et al., 2014].

Combinations of Constraint Groups
We showed that SEQ dominates OPT-Sys1 in terms of heuris-
tic guidance [Pommerening et al., 2014]. Since OPT-Sys1

also requires much more time to compute the heuristic, we
do not consider it in the combinations. Likewise, we also
omit PhO-Sys1 as SEQ and PhO-Sys2 give better coverage.
This leaves us with all combinations of SEQ, PhO-Sys2, and
LMC. The coverage results appear in Table 1.

A combination of SEQ and PhO-Sys2 looks promising be-
cause they have their strengths and weaknesses in different
domains. For example, using PhO-Sys2 solves 14 tasks in
the tidybot domain, while only 7 can be solved with SEQ. In
parcprinter the picture is reversed: using SEQ, we solve 20
tasks in contrast to only 13 with PhO-Sys2. Indeed, the com-
bination solves 672 instances, a clear improvement on each
individual heuristic solving 630 and 631 tasks, respectively.

The combination of PhO-Sys2 and LMC also pays off,
solving 758 task instead of 631 and 744, respectively.

The best combination is SEQ and LMC: with 788 tasks,
it solves 44 more tasks than its best component LMC and 25
more tasks than the standard LM-cut heuristic which is the
state of the art for optimal planning.

However, adding more constraints does not always have a
positive effect because the extra time needed to compute the
resulting LP may be in excess of the resulting extra guidance.

Constraint Interactions
Can we explain the better performance of the combinations
with the better guidance of more individual components, or is
there an additional positive effect through interactions of the

different constraints in the LP? The plots in Figure 1 show
the number of expansions using one LP heuristic with two
constraint groups against the expansions using the maximum
of the two individual LP heuristics.

In all three cases, we see clear synergy effects: combining
two sets of constraints in a single LP indeed leads to stronger
heuristic estimates than maximizing the estimates from two
separate LPs. These synergy effects are more pronounced
in the combinations of SEQ and PhO-Sys2 and of SEQ and
LMC than in the combination of PhO-Sys2 and LMC.

Considering coverage, however, the picture is somewhat
more mixed: some tasks can only be solved by the approaches
using a single large LP, others only by the maximum over two
LP heuristics, and both approaches end up too close to tell
apart in terms of overall coverage.

7 Discussion
We introduced a class of IP/LP heuristics based on operator-
counting constraints that subsumes many existing heuristics,
including the state-equation, post-hoc optimization and ad-
missible landmark heuristic as well as optimal cost partition-
ing of (explicit-state) abstraction heuristics. Our new LP for
optimal cost partitioning of abstraction heuristics is based on
a dualization of the originally suggested LP and suggests new
ways to combine abstraction heuristics with other sources of
knowledge, such as landmarks.

The framework is also effective for the theoretical analysis
of heuristics. Indeed, using the framework and formulations
presented here, we were able to show [Pommerening et al.,
2014] that the state-equation heuristic dominates the optimal
cost partitioning on single-variable abstractions and that the
safety-based extension of the state-equation heuristic cannot
improve heuristic accuracy.

More recently, Pommerening et al. [2015] show that solv-
ing the net change constraints alone is equivalent to comput-
ing an optimal general cost partitioning for the abstraction in
Sys1 (all the projections of variables). This answers an open
question on how the state-equation heuristic fits into the gen-
eral classification of heuristics.

For the future, we look forward for using the framework
to obtain new theoretical insight of existing heuristics, and to
define new constraints leading to more powerful heuristics.
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Geffner. Admissible heuristics for optimal planning. In
Proc. AIPS 2000, pages 140–149, 2000.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. ICAPS 2009,
pages 162–169, 2009.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. JACM, 61(3):16:1–63, 2014.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Imai and Fukunaga, 2014] Tatsuya Imai and Alex Fuku-
naga. A practical, integer-linear programming model for
the delete-relaxation in cost-optimal planning. In Proc.
ECAI 2014, pages 459–464, 2014.

[Karpas and Domshlak, 2009] Erez Karpas and Carmel
Domshlak. Cost-optimal planning with landmarks. In
Proc. IJCAI 2009, pages 1728–1733, 2009.

[Katz and Domshlak, 2009] Michael Katz and Carmel
Domshlak. Structural-pattern databases. In Proc. ICAPS
2009, pages 186–193, 2009.

[Katz and Domshlak, 2010] Michael Katz and Carmel
Domshlak. Optimal admissible composition of abstrac-
tion heuristics. AIJ, 174(12–13):767–798, 2010.

[Keyder et al., 2010] Emil Keyder, Silvia Richter, and Malte
Helmert. Sound and complete landmarks for and/or
graphs. In Proc. ECAI 2010, pages 335–340, 2010.

[Pommerening et al., 2013] Florian Pommerening, Gabriele
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rian Pommerening. Linear programming for heuristics in
optimal planning. In AAAI 2015 Workshop on Planning,
Search, and Optimization, 2015.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Artificial Intelligence — A Modern Approach. Prentice
Hall, 2003.

[van den Briel et al., 2007] Menkes van den Briel, J. Benton,
Subbarao Kambhampati, and Thomas Vossen. An LP-
based heuristic for optimal planning. In Proc. CP 2007,
pages 651–665, 2007.

[Zhu and Givan, 2003] Lin Zhu and Robert Givan. Land-
mark extraction via planning graph propagation. In ICAPS
2003 Doctoral Consortium, pages 156–160, 2003.


