
From Non-Negative to General Operator Cost Partitioning
Proof Details

Technical Report CS-2014-005

Florian Pommerening and Malte Helmert and Gabriele Röger and Jendrik Seipp
University of Basel
Basel, Switzerland

{florian.pommerening,malte.helmert,gabriele.roeger,jendrik.seipp}@unibas.ch

This technical report contains detailed proofs for our
AAAI paper (Pommerening et al. 2015). We use the same
notation and concepts as described there.

Connection to Operator-Counting Constraints
We show that operator-counting constraints yield cost-
partitioned heuristics even if auxiliary variables are used.

Theorem 1. Let C be a set of operator-counting constraints
for a state s. Then

hLP
C (cost) = hOCP((hLP

{C})C∈C , s).

In the following, we assume that there are n operator-
counting variables Count = (Counto1 , . . . ,Counton)> and
mC auxiliary variables AuxC = (AuxC1 , . . . ,Aux

C
mC

)> for
each constraint C ∈ C. We further assume w.l.o.g. that
all variables are non-negative and all constraints are greater-
than-or-equal constraints. We later introduce equations that
correspond to unbounded variables in the dual. We mark
such dual variables with a star (e. g., ∗Costo).

An operator-counting constraint C over Count and
AuxC with kC inequalities consists of an (n × kC)
matrix coeffsCount(C) (influence on the operator-counting
variables), an (mC × kC) matrix coeffsAux(C) (influence
on the auxiliary variables), and a kC-vector of bounds
bounds(C) ∈ RkC .

The integer program for an operator-counting constraint
C using cost function cost is IP{C}(cost):

Minimize
∑
o∈O

cost(o)Counto subject to

coeffsCount(C)Count + coeffsAux(C)AuxC ≥ bounds(C)

Count ≥ 0 and AuxC ≥ 0

Counto is an integer for all o ∈ O

We consider the LP relaxation (LP{C}(cost)) of
IP{C}(cost) which drops the integrality condition for
Counto. The dual of LP{C}(cost) has kC variables Dual =

(Dual1, . . . ,DualkC
)> and n+mC constraints. Interpreting

cost as the vector of costs we can write is as

Maximize bounds(C) ·Dual subject to

coeffsCount(C)>Dual ≤ cost

coeffsAux(C)>Dual ≤ 0

Dual ≥ 0

We now consider a set C of operator-counting constraints
for a state s. The linear program LPC(cost) is:

Minimize
∑
o∈O

cost(o)Counto subject to

coeffsCount(C)Count + coeffsAux(C)AuxC ≥ bounds(C)

for C ∈ C
Count ≥ 0 and AuxC ≥ 0 for C ∈ C

We now introduce new variables LCountCo and new equa-
tions LCountCo = Counto for every C ∈ C and o ∈ O.
This allows us to replace every occurrence of Counto in the
remaining inequalities by LCountCo :

Minimize
∑
o∈O

cost(o)Counto subject to

coeffsCount(C)LCountC + coeffsAux(C)AuxC ≥ bounds(C)

Count− LCountC = 0

for C ∈ C
Count ≥ 0 and AuxC ≥ 0,LCountC ≥ 0 for C ∈ C
For each constraint C, the dual of this LP contains one

non-negative variable DualCi for each of its inequalities 1 ≤
i ≤ kC and one unbounded variable ∗CostCo for each of
its equations. Bounds and objective function change their
role, so objective coefficients are bounds(C) for DualC and
0 for ∗CostC . The primal variables AuxC only occur in
the inequalities for constraint C and correspond to the dual
constraints

coeffsAux(C)>DualC ≤ 0

The primal variables LCountC only occur in the inequalities
and equations for constraint C and correspond to the dual
constraints

coeffsCount(C)>DualC − ∗CostC ≤ 0



Each primal variable Counto occurs in exactly one equation
for each constraint C and corresponds to the dual constraints∑

C∈C

∗CostCo ≤ cost(o)

Together, these constraints make up the dual of
LPC(cost):

Maximize
∑
C∈C

bounds(C) ·DualC subject to

coeffsCount(C)>DualC ≤ ∗CostC

coeffsAux(C)>DualC ≤ 0

DualC ≥ 0

for C ∈ C∑
C∈C

∗CostCo ≤ cost(o) for o ∈ O

The first two inequalities are exactly the dual constraints
of LP{C}(∗Cost

C) and the objective function is exactly the
sum of the dual objective functions for these LPs. The re-
maining inequality ensures that ∗CostC defines a general
cost partitioning. As we maximize the sum of individual
heuristic values over all possible general cost partitionings,
the result is the optimal general cost partitioning of the com-
ponent heuristics.

Net-Change Constraints
In the paper, we show that the state equation heuristic is per-
fect for the projection on a goal variable V , i. e.

hSEQ(s, cost) = h∗(s, cost) in ΠV for every V ∈ vars(s?)

Here we show that non-goal variables can be transformed
into goal variables without influencing the heuristic value.
The statement then holds for every V ∈ V and the proof in
the paper shows that hLP

CV (cost) = hV (s).
We extend the domain of each non-goal variable V with a

new value v∗ and the goal description with the fact 〈V, v∗〉.
Additionally, we add a new operator oV that is free of cost,
has no preconditions and the single effect 〈V, v∗〉. This
transformation obviously does not change the perfect heuris-
tic value: oV can be added for all non-goal variables to any
plan for the original task to satisfy the new goals. Each plan
for the transformed task is a plan for the original task if all
occurrences of oV are removed.

The transformation also does not change the value of the
state equation heuristic. Because the new operator oV can be
applied independent of the value of V , it falls in the category
of operators that sometimes produce 〈V, v∗〉 and sometimes
consume 〈V, v′〉 for every v′ ∈ dom(V ) \ {v∗}. Net change
constraints only mention operators that produce a fact or al-
ways consume it. Thus, existing constraints are not changed
by adding oV .

In the objective function of the LP each operator occurs
weighted by its cost. Since the cost of oV is 0, the objective
function is unchanged.

The only modification to the linear program is the con-
straint that is added for the new fact 〈V, v∗〉. As operator oV

is the only one producing this fact and no operator consumes
it, the new constraint is

CountoV ≥ 1

The variable CountoV occurs only in this constraint and does
not influence the objective value, so it can safely be set to 1.
The LP for the transformed task thus has the same solutions
for the counting variables of the original operators.

Potential Heuristics
Admissible and consistent potential heuristics can be classi-
fied by a linear program and the paper shows how to do this
for a restricted set of tasks. Here we generalize this defini-
tion for arbitrary planning tasks.

For a partial variable assignment p, we introduce the no-
tation maxpot(V, p) for the maximal potential that a state
consistent with p can have for variable V :

maxpot(V, p) = max
s consistent with p

pot(〈V, s[V ]〉)

=

{
pot(〈V, p[V ]〉) if V ∈ vars(p)

maxv∈dom(V ) pot(〈V, v〉) otherwise

A potential heuristic hpot is goal-aware if and only if
hpot(s) ≤ 0 for all states s consistent with s?. It is sufficient
to require this condition only for a state that is consistent
with s? and has maximal potential among all goal states:

max
s consistent with s?

hpot(s) =
∑
V ∈V

maxpot(V, s?) ≤ 0

The resulting inequality is not state-dependent and is neces-
sary and sufficient for hpot to be goal-aware.

A potential heuristic hpot is consistent if and only if
hpot(s) ≤ cost(o) + hpot(sJoK) for every state s and every
operator o applicable in s. This condition can be simplified
as follows because all facts that are not changed by an effect
cancel out:

cost(o) ≥
∑
V ∈V

pot(〈V, s[V ]〉)−
∑
V ∈V

pot(〈V, sJoK[V ]〉)

=
∑

V ∈vars(eff (o))

(pot(〈V, s[V ]〉)− pot(〈V, eff (o)[V ]〉))

Again, it is sufficient to require the inequality only for a state
that is consistent with the operator’s precondition and that
has maximal potential:

cost(o) ≥
∑

V ∈vars(eff (o))

(maxpot(V, pre(o))− pot(〈V, eff (o)[V ]〉))

The resulting inequality is no longer state-dependent and is
necessary and sufficient for consistency.

Goal-aware and consistent potential heuristics can thus be
compactly classified as a set of linear equations. A goal-
aware and consistent heuristic is also admissible, so we can
use an LP solver to optimize any linear combination of po-
tentials and transform the solution into a consistent and ad-
missible potential heuristic.



Definition 1. Let f be a solution to the following LP:

Maximize opt subject to
∗P〈V,v〉 ≤ ∗MaxV for all V ∈ V and v ∈ dom(V )∑

V ∈V
maxpot(V, s?) ≤ 0∑

V ∈vars(eff (o))

(
maxpot(V, pre(o))− ∗P〈V,eff (o)[V ]〉

)
≤ cost(o)

for all o ∈ O

with maxpot(V, p) =

{∗P〈V,p[V ]〉 if V ∈ vars(p)
∗MaxV otherwise

where the objective function opt can be chosen arbitrarily.
Then the function potopt(〈V, v〉) = f(P〈V,v〉) is the po-

tential function optimized for opt and hpot
opt is the potential

heuristic optimized for opt.

Corollary 1. The heuristic hpot
opt is goal-aware, consistent,

and admissible for any linear combination of potentials opt.

Potential Heuristic Estimate in the Initial State
We consider the potential heuristic optimized for the ini-
tial state, i. e. using the optimization criterion optsI

=∑
V ∈V P〈V,sI[v]〉.

Proposition 1. hpot
optsI

(sI) = hSEQ(sI).

The state equation estimate hSEQ(sI) can be written as
an LP heuristic for an operator-counting constraint SEQ for
sI with coefficient matrix coeffs(SEQ) and bounds vector
bounds(SEQ). The matrix coeffs(SEQ) has a column for
each operator and a row for each fact. The entry for operator
o and fact 〈V, v〉 is

(coeffs(SEQ))o,〈V,v〉 =


1 if o always produces 〈V, v〉
1 if o sometimes produces 〈V, v〉
−1 if o always consumes 〈V, v〉
0 otherwise

=


1 if eff (o)[V ] = v

−1 if pre(o)[V ] = v and
V ∈ vars(eff (o))

0 otherwise

The vector of bounds contains the following entry for each
fact 〈V, v〉:

bounds(SEQ)〈V,v〉 = 1{if s?[V ] = v} − 1{if sI[V ] = v}

The heuristic value hSEQ(sI) is the objective value of the
following LP:

Minimize
∑
o∈O

cost(o)Counto subject to

coeffs(SEQ)Count ≥ bounds(SEQ)

Count ≥ 0

The dual of this LP has one non-negative variable X〈V,v〉
for each fact 〈V, v〉 and one constraint for each operator:

Maximize
∑
V ∈V

v∈dom(V )

bounds(SEQ)〈V,v〉X〈V,v〉 subject to

coeffs(SEQ)>X ≤ cost
X ≥ 0

The objective function is 0 for all facts that are neither
contained in sI nor in s? so it can be simplified to:∑

V ∈vars(s?)

X〈V,s?[V ]〉 −
∑
V ∈V

X〈V,sI[V ]〉

The constraint for operator o is 0 for all variables that are
not affected by o:∑
V ∈vars(eff (o))

X〈V,eff (o)[V ]〉 −
∑

V ∈vars(eff (o))
∩vars(pre(o))

X〈V,pre(o)[V ]〉 ≤ cost(o)

We call the resulting linear program LP(SEQ) and use
LP(pot) for the LP calculated for hpot

optsI
(sI).

A solution f for LP(SEQ) can be converted into a solu-
tion g for LP(pot) that has the same objective value. This
can be checked by setting

g(∗P〈V,v〉) =

{
f(X〈V,s?[V ]〉)− f(X〈V,v〉) if V ∈ vars(s?)

− f(X〈V,v〉) otherwise

g(∗MaxV ) = max
v∈dom(V )

g(∗P〈V,v〉)

The objective function of LP(pot) under g is identical to
the one of LP(SEQ) under f :∑
V ∈V

g(∗P〈V,sI[V ]〉) =
∑

V ∈vars(s?)

f(X〈V,s?[V ]〉)−
∑
V ∈V

f(X〈V,sI[V ]〉)

The inequality g(∗P〈V,v〉) ≤ g(∗MaxV ) is obviously sat-
isfied. To show

∑
V ∈V g(maxpot(V, s?)) ≤ 0, we show

that g(maxpot(V, s?)) ≤ 0 holds for all V . For a goal
variable V we have g(maxpot(V, s?)) = g(∗P〈V,s?[V ]〉) =
f(X〈V,s?[V ]〉) − f(X〈V,s?[V ]〉) = 0. For non-goal variables
there is some vmax ∈ dom(V ) with

g(maxpot(V, s?)) = g(∗MaxV ) = max
v∈dom(V )

g(∗P〈V,v〉)

= g(∗P〈V,vmax〉) = −f(X〈V,vmax〉) ≤ 0

For the last inequality we consider each variable V ∈
vars(eff (o)) separately. If V ∈ vars(pre(o)):

g(maxpot(V, pre(o)))− g(∗P〈V,eff (o)[V ]〉)

= g(∗P〈V,pre(o)[V ]〉)− g(∗P〈V,eff (o)[V ]〉)

= f(X〈V,eff (o)[V ]〉)− f(X〈V,pre(o)[V ]〉)

For V /∈ vars(pre(o)) there is some vmax ∈ dom(V ) with

g(maxpot(V, pre(o)))− g(∗P〈V,eff (o)[V ]〉)

= g(∗MaxV )− g(∗P〈V,eff (o)[V ]〉)

= g(∗P〈V,vmax〉)− g(∗P〈V,eff (o)[V ]〉)

= f(X〈V,eff (o)[V ]〉)− f(X〈V,vmax〉) ≤ f(X〈V,v〉)



Summing over all variables in vars(eff (o)) then shows the
desired inequality with the constraint from LP(SEQ).

We have shown that a solution from LP(SEQ) can be
converted into a solution for LP(pot) with the same objec-
tive value. For the other direction, we show that a solution g
for LP(pot) can be converted into a solution f for LP(SEQ)
with an objective value that is at least as high. For this trans-
formation, we set

f(X〈V,v〉) = g(∗MaxV )− g(∗P〈V,v〉).

Since g(∗MaxV ) ≥ g(∗P〈V,v〉) for all values v, the assign-
ment f is non-negative.

The objective value for assignment f is:∑
V ∈vars(s?)

f(X〈V,s?[V ]〉)−
∑
V ∈V

f(X〈V,sI[V ]〉)

=
∑

V ∈vars(s?)

(
g(∗MaxV )− g(∗P〈V,s?[V ]〉)

)
−
∑
V ∈V

(
g(∗MaxV )− g(∗P〈V,sI[V ]〉)

)
=
∑
V ∈V

g(∗P〈V,v〉)−
∑

V ∈V\vars(s?)

g(∗MaxV )

−
∑

V ∈vars(s?)

g(∗P〈V,s?[V ]〉)

=
∑
V ∈V

g(∗P〈V,sI[V ]〉)−
∑
V ∈V

g(maxpot(V, s?))

≥
∑
V ∈V

g(∗P〈V,sI[V ]〉)

The last step uses the goal-awareness condition of LP(pot).
To show that the inequality of LP(SEQ) is satisfied by

the assignment f , we again consider each variable V ∈
vars(eff (o)) separately. If V ∈ vars(pre(o)):

f(X〈V,eff (o)[V ]〉)− f(X〈V,pre(o)[V ]〉)

= g(∗P〈V,pre(o)[V ]〉)− g(∗P〈V,eff (o)[V ]〉)

= g(maxpot(V, pre(o))− g(∗P〈V,eff (o)[V ]〉)

For V /∈ vars(pre(o)):

f(X〈V,eff (o)[V ]〉)

= g(∗MaxV )− g(∗P〈V,eff (o)[V ]〉)

= g(maxpot(V, pre(o)))− g(∗P〈V,eff (o)[V ]〉)

Summing over all variables in vars(eff (o)) then shows the
desired inequality with the constraint from LP(pot).

We have seen that solutions can be converted back and
forth between LP(SEQ) and LP(pot) without lowering the
objective value, which means both LPs must calculate the
same heuristic value.

References
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the Twenty-Ninth AAAI Conference

on Artificial Intelligence (AAAI 2015). AAAI Press. To ap-
pear.


