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Abstract

Axioms are a feature of the Planning Domain Definition Language PDDL that can be considered as
a generalization of database query languages such as DATALOG. The PDDL standard restricts negative
occurrences of predicates in axiom bodies to predicates that are directly set by actions and not derived
by axioms. In the literature, authors often deviate from this limitation and only require that the set of
axioms is stratifiable. We relate the axioms to fixed point logics to show that this aspect does not affect
what queries can be expressed by the axioms.

1 Introduction

A world state in planning is specified by the interpretation of a relational vocabulary, i.e. a vocabulary
consisting only of constant and predicate symbols. The predicates are partitioned into basic and derived
predicates. The interpretation of basic predicates is directly affected by the actions of the agent. In contrast,
the interpretation of the derived predicates is derived from this interpretation of the basic predicates by
means of a logic program, consisting of so-called axioms. An axiom has the form P (%) < (&) and
expresses that the head P(Z) is true if the body p(Z) is true.

Consider as an example a basic predicate edge and a derived predicate reachable. The axiom

reachable(x,y) <+ edge(x,y) V Iz(edge(x, z) N reachable(z,y)) (1)

expresses that y is reachable from x if there is an edge from x to y or if « has some successor z from which
y is reachable. Axioms are evaluated by interpreting all derived atoms as false and successively making
them true based on the axioms until a fixed point is reached. With this example axiom we would therefore
interpret reachable as the transitive closure of the edge relation.

A variant of axioms has already been introduced in version 1.2 of the Planning Domain Definition
Language PDDL (McDermott et al., 1998) but has been dropped again in PDDL 2.1 (Fox and Long, 2003)
because the semantics were not clear. The previous example axiom corresponds to the form that was
reintroduced in PDDL 2.2 (Edelkamp and Hoffmann, 2004) and is also still in effect nowadays. This
last revision was backed up by work by Thiébaux et al. (2005) that established that axioms increase the
expressive power of PDDL and cannot be compiled away without a worst-case super-polynomial increase
of the task representation or plan size.

Interestingly, the official definition and the variant in this paper differ in an aspect, namely the restriction
on negated occurrences of predicates in axiom bodies. We call the axiom formalism from the official
PDDL 2.2 definition APy and the more general one from the compilability analysis AP. In APy, only basic
predicates may occur negated in axiom bodies, whereas AP also permits negated occurrences of derived
predicates as long as the set of axioms is stratifiable. This concept allows to partition the axioms into
several strata that are successively evaluated by individual fixed-point computations. A derived predicate
may occur negated in the body of an axiom if its interpretation has already been finalized by an earlier
stratum. Consider as an example in addition to axiom (1) an axiom acyclic() < Vz—reachable(x,x). The
negated occurrence of derived predicate reachable in this axiom would be permitted in AP but not in APy.



Thiébaux et al. (2005) were aware of this difference of axiom formalisms but did not consider this re-
striction on the axiom language in their analysis (but they did consider the impact of the stronger restrictions
to DATALOG and non-recursive DATALOG).

The restriction of negation to basic predicates was not uncommon at the time of the definition of PDDL
2.2 (e.g. Gazen and Knoblock, 1997; Coles and Smith, 2007) but in the past decade it became more com-
mon to permit (stratifiable) negated occurrences of derived predicates (e.g. Ivankovic and Haslum, 2015;
Miura and Fukunaga, 2017; Speck et al., 2019; Grundke et al., 2024; Speck and Gnad, 2024), although
sometimes only restricted to a variant of stratified DATALOG.

In this paper, we will clarify the question whether AP is fundamentally more expressive than APy and
show that this is not the case. As a side-result we will establish that both formalisms are strictly more
expressive than stratified DATALOG.

In contrast to Thiébaux et al. (2005), we consider axiom languages independently from planning tasks,
so we do not consider compilations that can transfer part of the axiom evaluation into a sequence of action
applications. Since our analysis builds on known results for least fixed point logic, we will first provide the
necessary background, formally introducing this logic and the axiom formalisms AP and APj. Afterwards
we establish our main result. We conclude with a discussion of possible implications and future work.

2 Background

We assume that the reader is familiar with first-order logic (FO). We only consider finite vocabularies o
that moreover are relational, i.e. they do not contain any function symbols except for the constants.

For a given FO-vocabulary o, a o-structure 2l consists of a universe U and an interpretation of each
symbol of o: each constant symbol ¢ is interpreted as a ¢® € U and each k-ary predicate P is interpreted
by a set P C Uk wWe only consider finite structures, i.e. the universe U is finite.

We write p(z1, .. ., T,) to indicate that 1, . . ., x,, are the free variables in (. A variable assignment o
maps free variables to elements of the universe. We write 2 = ¢(01, . .., 0,,) to indicate that p(z1, . .., z,)
is true under 2( and the variable assignment that maps x; to o;, using the usual semantics of FO.

We call a formula ¢ positive in predicate P if every occurrence of P in ¢ is under the scope of an
even number of negations. Otherwise, we say that P occurs negatively in . In the planning literature (e.g.
Thiébaux et al., 2005; Edelkamp and Hoffmann, 2004), the same concept of negative occurrences of P is
alternatively described as negated appearances in the negation normal form of .

A FO formula ¢(z1, . . ., z,) for vocabulary o specifies a query that associates each o-structure 2[ (with
universe U) with a subset of U™ as

o) ={(01,...,00) €U™ | A= p(01,...,0n)}.!

For two formalisms X and Y, we will write X < Y to express that every X -query () x has an equivalent
Y-query Qvy, i.e. both associate every finite structure 2 with the same set (Qx () = Qy ()). Itis easy
to see from this definition that < is transitive. We write X = Y if X <Y and Y < X, which means that
both formalisms can define the same queries.

2.1 Fixed Point Logics

Before we introduce the relevant fixed point logics, we first introduce fixed points as a property of operators
of the form F': P(S) — P(S), where S is a finite set and P(.S) denotes its power set.

Operator F' : P(S) — P(9) is called
* monotone if X C 'Y implies F'(X) C F(Y), and

* inductive if the sequence Xy = ), X, = F(X;) is increasing, i.e. X; C X, for all 7.

'We follow Libkin (2004) in overloading notation.



Every monotone operator is inductive and for inductive operators we define X, = U;’io X;. We only
consider finite sets .S, so there always is some n € Ny such that X,, = X ..

Aset X C S with X = F(X) is called a fixed point of F. 1Tt is the least fixed point Ifp(F) if
every other fixed point Y of F'is a superset of X. Every monotone operator F' has a least fixed point
Ifp(F) = {X | X = F(X)} and it holds that Ifp(F) = X (e.g. Libkin, 2004, Thm. 10.2).

For a structure 2 with finite universe U, let ¢(P, Z), where P is a k-ary predicate and |Z| = k, be
a formula that is positive in P. The formula induces an operator F, : P(U*) — P(U*) defined as
F (X)={0| A = ¢(P/X,0)}, where o(P/X, 6) means that P is interpreted as X in ¢. If o(P, Z) is
positive in P then F, is monotone (Libkin, 2004, Lemma 10.7).

Consider as an example formula p(above, z,y) := on(x,y)V3Iz(on(z, z) Aabove(z, y)) and a structure
2 with universe U = {a, b, ¢, d}, where on is interpreted as {(a, b), (b, c), (c,d)}.

For Xy = 0, we get X, := F(Xo) = {(a,b), (b, ¢), (c,d)} because these are the tuples for which
on is true. The existential subformula of ¢ is false for all z € U because above is interpreted as the
empty set X and thus false for all tuples. Applying the same operator to X, we get Xy 1= F,(X;) =
{(a,b), (b, ¢), (¢,d), (a,c), (b,d)}. For example, (a, ¢) is included in X because U contains element b, for
which on(a, b) is true (on being interpreted by ) and above(b, ¢) is true (above being interpreted as X7).
If we continue the sequence, we get X3 = X3 U {(a,d)} and X4, = X3. Since the sequence reached a
fixed point, we know that X, = Ifp(F,) = Xs.

We now are prepared to define the logic LFP:

Definition 1 (Libkin (2004), Definition 10.6). The logic LFP extends FO with the following formation rule:

o If (P, %) is a formula positive in P, where P is k-ary and t is a tuple of terms, where |Z| = |t| = k,
then
fpp 2 (P, ))(f)

is a formula, whose free variables are those of t.
The semantics is defined as follows: 2 |= [pp (P, 7)](0) iff 0 € Up(F,).

Continuing the blocksworld example, we can see that the structure 2 is a model of LFP formula
(P pove 2y P(@bove, x, y)|(a, d) and of LFP formula —3z[p ., ., (above, x,y)|(z, 2), expressing that
no object is above itself.

2.1.1 Simultaneous Fixed Points

In the previous definitions, the fixed point only iterates a single predicate. The formalism can be extended
to simultaneous fixed points as follows:

Consider a relational vocabulary ¢ and let P, . .., P, be new predicate symbols, where the arity of P;
is k;. Let &; be a k;-tuple of variables. Consider a set ® = {1 (P1,..., Pn, 1), ..., on(P1, ..., P, Zn)}
of formulas over o U { Py, ..., P, } that are all positive in all P;s.

For a structure 2 over o with universe U, each formula ¢; induces an operator F; : P(U*1) x .-+ x
P(Uk") — ’P(Uki) defined as Fi(Xl, - ,Xn) = {(7| A ): Qpi(Pl/le . ,Pn/Xn,é’)}
We define a sequence of vectors from P(U*1) x --- x P(U*) by Xy = (0,...,0) and X;41 =

(F1(X;), ..., Fn(X;)). This sequence has a fixed point, which we denote by X ..
The logic LFP-sim extends FO with the formation rule [ifpp, 4] (t), where # is a tuple of length k;. The

semantics is that 2 |= [ifpp, 4] (i) iff 3'is an element of the i-th component of X ..
Simultaneous iteration of several predicates does not increase the expressive power compared to the
iteration of a single predicate:

Theorem 1 (Libkin (2004), Corollary 10.8). LFP-sim = LFP.

212 LFP,

Logic LFPy is a syntactically very limited fragment of LFP-sim and extends FO as follows: Let ® be
a finite set of FO formulas (P, ..., P,,T) that are positive in all P;s. Then [pp, 4](Z) is an LFPy



formula. Note that this is not a formation rule as in Definition 1, so these formulas may not be further
combined with Boolean connectives, quantification or fixed point operators.
Although LFPy is very restrictive, it can be shown that it is as expressive as full LFP:

Theorem 2 (Libkin (2004), Corollary 10.13). LFP, = LFP.

2.2 Axiom Programs

We first define the general syntactic form of axioms and introduce some terminology.

Definition 2 (General Axiom Program). A general axiom program II over a vocabulary o is a finite set of
axioms of the form P(Z) < (&), where P(Z) is a FO atom over o and ¢(Z) is a FO formula over o such
that P(Z) and ¢(Z) have the same free variables .

We call P(Z%) the head and (&) the body of the axiom.

Every predicate symbol occurring in the head of an axiom is derived, all the other symbols in o are
basic. We write Ogerived for the derived predicates and oyic for the basic vocabulary.

In this paper, we use the established terminology from the planning community. In the related context of
database theory, the basic predicates are called extensional predicates and the derived predicates intensional
predicates.

In planning, the most general considered type of axiom programs are stratifiable axiom programs that
restrict the syntax of general axioms programs to enable a well-defined semantics. For ease of presentation,
we directly require a specific stratification. This does not limit the scope of our work because all stratifiable
axiom programs can be represented in this form and all stratifications of a stratifiable program are seman-
tically equivalent. Our definition is in this respect analogous to the definition of stratified DATALOG by
Ebbinghaus and Flum (1995).

Definition 3 (Stratified Axiom Program, AP). An axiom stratum is a general axiom program, in which all
bodies are positive in all derived predicates.

A stratified axiom program is a finite sequence (111, . . . | IL,,) of axiom strata over vocabularies o1, . . . , oy,
where (0 )basic = 0i—1 fori > 1.

We refer to the class of all stratified axiom programs over finite vocabularies as AP.

The condition on the vocabularies corresponds to the requirement that the program is stratified, i.e. for
all axioms P(Z) < (&) in stratum IT; it holds that

* if P’ appears positively in () then all axioms having P’ in their head are in UZZI I, and
* if P’ appears negatively in (&) then all axioms having P’ in their head are in UL_:ll I1y.

Intuitively, this definition ensures that recursion is not allowed through negation.

For the semantics, we first consider a single axiom stratum II over vocabulary o. Let 2 be a opysic-
structure with universe U. The stratum extends 2 to a o-structure 2A[TI] with the same universe U via a
simultaneous fixed point as follows: Let P, ..., P,, be the derived predicates from ogeriveq With arities
ki,...,kn,, respectively. We define an operator F : P(U*) x --- x P(U*") — P(U*) x --- x
P(Ukm) as F(Xl, NN ,Xm) = (Fl(Xl, NN 7Xm), ey Fm(Xl, [N 7X7n)) where Fi(Xl, e 7Xm) =
Up, @) o(Pr,..prsyenl0 | A = 0(PL/ Xy, P/ X, )}

Since F' is monotone, we can define a sequence of vectors from P(U*1) x --- x P(U*") as Xy =
(0,...,0) and XiJrl =F ()Zl) and this sequence reaches a fixed point X that corresponds to the least
fixed point of F'.

Stratum IT extends opagic-structure 2 to o-structure 2[I1], interpreting every symbol from 2 as in 2 and
each derived predicate P; as the i-th component of the least fixed point of F'.

For an entire stratified axiom program P = (IIy,...,IL,) over vocabularies o1, ..., oy, this exten-
sion is applied stratum by stratum, extending a (o7 )pasic-Structure 2 to a o, -structure A[P] as A[P] =
(c... (A )] .. ) [IL, .

A query refers to the interpretation of a specific predicate in the final structure:



Definition 4 (Axiom query). An axiom query over vocabularies o1, ... ,cy is a pair Q = (P, P), where P
is a stratified axiom program over these vocabularies and P is a derived predicate from some stratum (i.e.
a predicate symbol in o, \ (01 )vasic) with arity k.

The query associates each (01 )pasic-structure 2 (with universe U) with a set Q(A) C U k as the inter-
pretation of P in A[P], i.e. Q(A) = P,

The PDDL standard — as defined for PDDL 2.2 by Edelkamp and Hoffmann (2004) — only permits
negative occurrences of predicates that are set by actions directly and not evaluated by means of the axioms.
In our notation, this corresponds to restricting negative occurrences of predicates in axiom bodies to basic
predicates of the first stratum. Under this restriction all axioms can be combined into a single stratum
(Thiébaux et al., 2005) and every stratified axiom program with a single stratum respects this restriction,
so we use this property to define the second axiom formalism that we want to consider.

We call such axiom programs semipositive, following the terminology for the analogous restriction in
DATALOG with negation (Abiteboul et al., 1995).

Definition 5 (Semipositive Axiom Program, APy). A semipositive axiom program is a stratified axiom
program (1) that consists of a single stratum.
We refer to the class of all semipositive axiom programs over finite vocabularies as APy.

We can now turn to the question whether AP is strictly more expressive than AP,.

3 Equivalence of AP and AP,

Since semipositive axiom programs are a special case of stratified axiom programs, the following lemma
is trivial.

Lemma 1. APy < AP

Overall, we want to establish that indeed APy, = AP. We will achieve this indirectly, relating the
formalisms to fixed-point logics. We will separately establish that LFPy, < APy (Lemma 2) and that
AP < LFP-sim (Lemma 3). With LFP-sim = LFP = LFP; from Theorems 1 and 2, this implies that
AP < APy, so overall we get the equality of APy and AP and as a side result their equality to LFP.

Lemma 2. LFP, < AP,.

Proof. We show how we can translate every LFPy query ¢ over vocabulary o into an equivalent APy query
Q = (P, Q), i.e. for any finite o-structure 2/ it holds that Q(2) = ().

Let ¢(Z) be an arbitrary LFP, formula over some vocabulary o. Formula (&) is either a FO formula
or it has the form [ifpp, 5](%), where ® is a finite set of FO formulas.

If (&) is a FO formula, we introduce a new predicate () with arity |#| and use an axiom program
P = ({Q(Z) + »(Z)}) with a single axiom. Since ¢(&) does not mention the only derived predicate Q,
this program is trivially stratified. Since it consists of a single stratum, it is semipositive. It is easy to see
that the query Q = (P, Q) is equivalent to the query ¢ ().

If »(Z) has the form [fpp, ](7) with & = {p1(P1,..., Py, T1), ..., 0n(Pr, ..., Pp, @y)}, where
each P, has arity k;, we construct a program with a single stratum II; as follows:

For each formula ; (P, ..., Py, Z;) € ®, stratum IT; contains an axiom P;(%;) < ¢;(P1, ..., Pn, ;).
Note that for ¢ being an LFP, formula, each ¢; must be positive in all predicates P, . .., P,, so the axiom
program P := (II;) is stratified and semipositive. The APy query (P, P;) is equivalent to o(Z). O

Lemma 3. AP < LFP-sim.

Proof. We show how we can translate every AP query Q over o1,...,0, into an equivalent LFP-sim
formula ¢, i.e. on any finite (01 )pasic-structure 2 it holds that Q) = p(A).

Let Q = (II, Q) be an arbitrary AP query over o1, ..., 0, with II = (II1,...,II,) and let 2 be a finite
(01 )basic-structure. The following construction does not depend on .

We proof the statement by an induction over the strata.



We first only consider the first stratum II;. Let Py, ..., P, be the derived predicates from this stratum
and let Hf’ “ C II; contain the axioms that mention FP; in their head. We can assume w.l.0.g. that all these
axioms have the form P;(Z) < o(P1,. .., Py, ), using the same vector Z of free variables.

For each derived predicate P;, let

Up (P, P @)=\ @(P,... P, )
Pi(8)—@(Py,...,P,,T)EML i

and define formula set ¥ := {¢p,(P1,..., P, %) | i € {1,...,n}}.

Since II; is an axiom stratum, all bodies in its axioms are positive in P, ..., P, and consequently also
all formulas ¢ p, (Py, ..., P,, ) are positive in all these predicates.

Thus x p, (£) := [Ifp P vl (t) is an LFP-sim formula and it is easy to see from the semantics of axiom pro-
grams that ((II1 ), P;)(2) = x p, (2): the crucial insight is that the union in the operator F;(X1,..., X,,) =
Up,)o(py,....Pomenid | 4 F o(P1/Xy, ..., Py /Xy, 0)} from the semantics of an axiom stratum is
matched by the disjunction in x p,, so that F;(X1,...,X,,) = {0| A E xp,(P1/X1,..., P/ Xn,0)}, the
latter set being the corresponding operator from the semantics of a simultaneous fixed point in LFP-sim.

Moreover, for all 1 < j < n it holds that ((II4,...,IIL;), P;)(A) = xp, () because later strata do not
change the interpretation of P;.

Suppose that for every derived predicate P of an axiom stratum II, with ¢ < m, there is a LFP-sim
formula x p(f) such that for all # < j < n it holds that ((TIy,...,TI;), P)(A) = xp() (induction
hypothesis).

We show that then there also is such a formula x p for every derived predicate P of stratum 11L,,,. For this
purpose, we construct for each P € (0, )derived @ formula 1 p as in equation 2 with the difference that for
every occurrence of an atom P’ (#') where P’ is a derived predicate from an earlier stratum, we use instead
formula x p (f’ ) from the induction hypothesis. With U, := {¢p | P € (0 )derived }» We can define
LFP-sim-formula x p(#) := [lfpp’q,m](tj as the desired formula with ((IIy,...,IL;), P)(2) = xp(2) for
allm < j < n.

We have shown that for every derived predicate P there is an equivalent LFP-sim formula x p with
(II, P)(A) = xp (), so this is also true for predicate ) and we have overall shown that for every AP
query Q there is an equivalent LFP-sim query. O

With the discussion at the beginning of this section we immediately get the main result of this paper as
a corollary of Lemmas 1, 2 and 3:

Corollary 1. AP = APy, = LFP.

4 Discussion

We considered the question whether permitting several strata in PDDL axioms allows us to express queries
that could not be expressed with only a single stratum.

We answered this question negatively by means of the side result that both variants are equivalent to
the least fixed point logic LFP (on finite structures).

This side result is interesting in its own right because LFP is a well-studied formalism. For instance, it
is known that bounded fixed-point logic (also known as stratified fixed-point logic) BFP is strictly weaker
than LFP (Ebbinghaus and Flum, 1995, Th. 7.7.2). This logic BFP in turn is equally expressive as stratified
DATALOG (Ebbinghaus and Flum, 1995, Th. 8.1.1), which is a formalism very similar to AP, restricting
the bodies to (implicitly) existentially quantified conjunctions of literals.

This insight reveals a limitation of the Fast Downward planning system (Helmert, 2006), which in a
preprocessing phase translates the input task to a normal form where axioms are stratified DATALOG rules
(Helmert, 2009). According to our results, this is not always possible and, indeed, a closer look at Fast
Downward’s transformation reveals that it can lead to non-stratifiable programs.



For an example, consider axiom A := S(z) «+ 3y(M (z,y) AVz(=M(y, z) VS(z))).> The transforma-
tion would introduce a new predicate R(y) with axiom B := R(y) < 3z(M (y, z) A =S(z)) and replace
the axiom A with A" := S(z) + Jy(M (x,y) A—R(y)). Now S occurs negatively in the body of axiom B,
so axiom A’ must be in a strictly earlier stratum than B. But since R has a negative occurrence in the body
of axiom A’, axiom B must be on a strictly earlier stratum than A’. Overall, we see that a stratification is
no longer possible after this step of the transformation. In this example, the problem occurs because the
head predicate S occurs again under the scope of an universal quantifier in the body.

While a general transformation from AP to stratified DATALOG is not possible according to our theo-
retical results, the transformation by Fast Downward must only be correct for a specific given task, which
has a fixed finite universe. Thus it would be possible to expand universal quantifiers in axiom bodies for
the entire universe (for the prize of a blow-up in the representation size). It could also be possible to apply
a transformation that shifts part of the axiom evaluations into forced action applications, similar to the
compilations by Thiébaux et al. (2005).

Since this issue did never materialize from a practical perspective and indeed does not occur on the
benchmark instances of the international planning competitions, a natural question is whether the PDDL
standard is not unnecessarily generous.

Axioms contribute to the expressive power of PDDL (under certain compilabilty requirements) and
unless EXPTIME = PSPACE cannot be compiled away without a super-polynomial increase in plan or
task representation size. This is already true if they are restricted to pure DATALOG axioms (Thiébaux
et al., 2005, Thm. 3) but there can be different levels of expressivity (wrt. compilability) between pure
DATALOG and AP.

If we return from the compilability of entire planning tasks to the equivalence of the axiom and fixed-
point formalisms, we find some additional interesting pointers in the literature.

Stratified DATALOG programs can be separated into different fragments, depending on their breadth,
i.e. the maximal number of occurrences of derived predicates in axiom bodies from the same stratum. If
these are not permitted (breadth 0), the formalism is equivalent to FO?: with breadth 1 it is equivalent to
FO extended with a transitive closure operator, and for breadth > 2 the resulting formalism is equivalent
to general stratified DATALOG (Ebbinghaus and Flum, 1995, Cor. 8.1.3).

Since stratified DATALOG is the target formalism of the Fast Downward compilation, there is some
empirical evidence that this formalism would already be sufficient for many interesting practical purposes,
and it also is the considered formalism of some recent papers on axioms in planning (e.g. Miura and
Fukunaga, 2017; Speck et al., 2019). However, with its restriction to conjunctions of literals in rule bodies,
it is a bit cumbersome from a modelling aspect. An interesting starting point for an alternative formalism
would be the DATALOG(FO,V) (Gridel, 1991) that extends DATALOG to first-order formulas over the
basic vocabulary and a restricted form of universal quantification involving derived predicates. It is a proper
subset of stratified DATALOG (Gridel, 1991) and it would be interesting what other, similar formalisms
have been studied in the literature.

5 Conclusion

We have shown that the most general form of axiom programs in planning is equivalent to the variant from
the PDDL standard and more expressive than a common restriction to stratified DATALOG.

In this paper, we presented preliminary work and our analysis was purely focusing on the axiom lan-
guage and on the fundamental question whether there are queries that can be expressed in AP but not in
APy, no matter the representation size. In future work, we will also take representation size into consider-
ation and analyse the computational cost of a compilation.

2The example is taken from the proof by Kolaitis (1991) where he establishes that fixed point logic has a higher expressive power
than stratified DATALOG by means of a game-tree separation. The axiom expresses that player 1 has a winning strategy from position
x if she can move to a position y such that for all possible moves from y to z by player 2, player 1 has a winning strategy from z.

3This is consistent with the result by Thiébaux et al. (2005, Thm. 4) that this non-recursive stratified DATALOG does not increase
the expressive power of PDDL but can be compiled away.
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