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Abstract

Many recent planning heuristics are based on LP optimiza-
tion. However, planning experts mostly use LP solvers as a
black box and it is often not obvious to them which LP tech-
niques would be most suitable for their specific applications.
To foster the communication between the planning and the
optimization community, this paper gives an easily accessible
overview over these recent LP-based heuristics, namely the
optimal cost partitioning heuristic for abstractions, the post-
hoc optimization heuristic, a landmark heuristic, the state-
equation heuristic, and a delete relaxation heuristic. All these
heuristics fit the framework of so-called operator-counting
constraints, which we also present.

Introduction
In recent years, linear programming attracted considerable
attention in the planning community to compute heuristics
for cost-optimal planning. Researchers in planning usually
consider the underlying LP solvers as black boxes but often
lack the required knowledge to select a suitable configura-
tion of the solver.

The aim of this paper is to foster the communication be-
tween the planning and the optimization community by de-
scribing the core of these recent heuristics in a way that is
also accessible for readers who are not planning experts.

This paper comprises the following heuristics:

• the optimal cost partitioning heuristic for abstractions
(Katz and Domshlak 2008; 2010),

• the post-hoc optimization heuristic (Pommerening,
Röger, and Helmert 2013),

• a heuristic based on disjunctive action landmarks (Karpas
and Domshlak 2009; Keyder, Richter, and Helmert 2010;
Bonet and Helmert 2010),

• the state equation heuristic (van den Briel et al. 2007;
Bonet 2013), and

• a delete relaxation heuristic (Imai and Fukunaga 2014).

We will first give just enough background in planning to
enable the reader to understand the following introduction
of each of the heuristics. We try to keep the explanations as
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high-level as possible but still sufficiently precise to give a
clear idea of the core of these heuristics and of the character
of the underlying linear programs.

The heuristics presented in this paper are not the first ap-
plications of linear optimization to planning. While there
is no space for an extensive survey of earlier work, we still
would like to give a few pointers.

The line of research on LP-based heuristics was started by
a heuristic for partial-order planning, based on an LP model
with a restricted plan length and explicitly represented time
points (Bylander 1997). Another line of research does not
derive heuristic estimates by optimization but aims to solve
the planning task directly with a suitable IP model. These
IP formulations (Vossen et al. 1999) were originally de-
rived from SAT formulations for planning (Kautz and Sel-
man 1996) but were later further refined (van den Briel and
Kambhampati 2005; van den Briel, Vossen, and Kambham-
pati 2008).

Background
Planning Tasks The general aim of classical planning is to
find a sequence of operators that transforms the world from
a given initial situation (or state) into a situation that sat-
isfies a given goal condition. The simplest commonly used
formalism to describe such planning tasks is the STRIPS for-
malism.

A STRIPS planning task is given by a tuple Π =
〈A,O, I,G, cost〉, where
• A is a set of atoms,
• O is a set of operators,
• I ⊆ A is the initial state,
• G ⊆ A is the goal, and
• cost : O → R+

0 is the cost function, which assigns every
operator a non-negative cost.
A state is given by a subset of the atoms. If a state con-

tains an atom we also say that the atom is true in this state,
otherwise it is false in this state.

Each operator o ∈ O has a precondition pre(o) ⊆ A, an
add effect add(o) ⊆ A, and a delete effect del(o) ⊆ A. An
operator o is applicable in a state s if all atoms in its pre-
condition are true in s (formally pre(o) ⊆ s). Applying a
in state s results in a successor state s′ which is determined
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Figure 1: Example logistic task.

by the operator effects: atoms in the add effect become true
in s′, atoms in the delete effect become false. It is also al-
lowed that an atom occurs in the add and the delete effect
of an operator. In this case the add effect wins. All other
atoms are unaffected by the operator application. Formally,
the successor state is s′ = (s \ del(o)) ∪ add(o).

A state s satisfies the goal G if all atoms in G are true in
s, formally G ⊆ s. Such a state is also called a goal state.

For state s, an s-plan is a sequence π = 〈o1, . . . , on〉 of
operators that are subsequently applicable starting from s,
and whose application leads to a goal state. The cost of the
plan is the sum of the individual operator costs: cost(π) =∑

1≤i≤n cost(oi). A plan for the task is a plan for the initial
state (an I-plan). The aim of optimal planning is to find a
plan of minimum cost.

From a different perspective, a STRIPS planning task is
just a concise description of the underlying transition sys-
tem or state space. In general a transition system is a tuple
〈S, si, G, L, T, cost〉, where

• S is a finite set of states,

• si ∈ S is the initial state,

• G ⊆ S is the set of goal states,

• L is a finite set of labels,

• T is a set of labeled transitions 〈s, l, s′〉 with s, s′ ∈ S
and l ∈ L, and

• cost : L→ R+ is the cost function.

A plan for a transitions system is a sequence of transitions
that leads from the initial state to a goal state. Its cost is the
sum of the label costs.

A STRIPS planning task Π = 〈A,O, I,G, cost〉 induces a
transition system 〈S, si, G′, L, T, cost′〉 in the intuitive way:
The set of states S consists of all possible states of the task,
which correspond to all possible subsets of A: S = P(A).
The initial state is the same in both perspectives. The set of
goal states of the transition system is the set of goal states
of the planning task: G′ = {s ∈ S | G ⊆ s}. The labels
correspond to the operators (L = O) and both perspectives
use the same cost function (cost′ = cost). There is a labeled
transition 〈s, o, s′〉 ∈ T iff o is applicable in s and the suc-
cessor state is s′. With this definition, a plan for the task
corresponds to a plan for the induced transition system and
vice versa.

Running Example Throughout the paper we use the plan-
ning task in Figure 1 as a running example where a truck
needs to transport a package from location B to location A
and then move back to location B again. Initially the truck
is at location A. There are six different operators: load-A
and load-B load the package into the truck at location A and

B, respectively, unload-A and unload-B are the inverse op-
erators, and drive-A-B and drive-B-A move the truck fromA
to B and vice versa.

We can formulate this task with the set of atoms
{package-at-A, package-at-B, package-in-truck, truck-at-A,
truck-at-B}. The initial state is {truck-at-A, package-at-B}
and the goal is {truck-at-B, package-at-A}.

Consider load-B as an example for an operator. To
load the package at location B the package and the truck
must be there: pre(load-B) = {truck-at-B, package-at-B}.
Loading the package has the effect that the pack-
age is no longer at location B but in the truck:
del(load-B) = {package-at-B} and add(load-B) =
{package-in-truck}. This operator can obviously be applied
in state {truck-at-B, package-at-B} resulting in successor
state {truck-at-B, package-in-truck}. Assuming a suitable
formulation of the other operators, a plan for this task would
be 〈drive-A-B, load-B, drive-B-A, unload-A, drive-A-B〉. If
each drive operator costs 5 and all other operators cost 1,
then the cost of this plan is 17.

We will discuss the state space induced by this example
in the next section.

Heuristics The most common approach for optimal plan-
ning is heuristic search with the A∗ algorithm (Hart, Nilsson,
and Raphael 1968). The search algorithm requires a heuris-
tic that estimates for a given state s the cost of an s-plan.
A∗ guarantees optimality of the solution if the heuristic is
admissible, i. e. the estimate is a lower bound for the cost
of every s-plan. Informally, an admissible heuristic never
overestimates the goal distance.

We say that an admissible heuristic h dominates a heuris-
tic h′ if for all states s, it holds that h(s) ≥ h′(s). Higher
heuristic estimates allow A∗ to prune more nodes from its
search space.

In the following, we will introduce several admissible
heuristics. Depending on what is more intuitive, we will
switch between the STRIPS task and the transition system
perspective.

Optimal Cost Partitioning for Abstractions
An abstraction heuristic is computed from a simplified ver-
sion of the original transition system. It is based on an ab-
straction function α that maps the original states to states of
the abstract transition system. Typically, we require that ev-
ery path from s to s′ in the original space induces an equally
labeled path in the abstract space from α(s) to α(s′) (i. e.,
the abstraction function is a homomorphism) and that the
induced path has less or equal cost. If in addition all goal
states are mapped to abstract goal states this ensures that the
optimal abstract plan cost for α(s) is an admissible heuristic
estimate for the original state s.

Figure 2a shows the part of the state space of our example
task that is reachable from the initial state. The figure shows
two abstraction functions (shaded and dashed regions) that
map all states that are in the same region to the same abstract
state. The corresponding abstract state spaces are shown in
Figure 2b. It is easy to check that all labeled paths in the
original state space have a corresponding path in the abstract
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(a) Reachable state space. The state labeled XY is the
state where the truck is at position X and the package at
Y . The shaded and dashed areas show two abstraction
functions.
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Figure 2: Abstractions for our example task.

spaces. The cheapest paths in the abstract state spaces are
1

drive-B-A−−−−−→ 2
drive-A-B−−−−−→ 3 and 1

drive-A-B−−−−−→ 2
drive-A-B−−−−−→ 3, re-

spectively. Since drive operators have a cost of 5, the heuris-
tic estimate from each abstraction is 10.

Different abstraction heuristics can be combined into a
dominating estimate by taking their maximum. In our ex-
ample, this is not very informative, as both heuristic esti-
mates are 10. Taking the sum is not admissible in general.
This can be seen in the example, where the sum of both es-
timates is 20 while the optimal cost is 17. In this case, the
cost of operator drive-A-B contributes too much to the total
cost. However, if we suitably adapt the cost functions of the
abstract systems we can add up the estimates in a way that
dominates the maximum and preserves admissibility. A suf-
ficient condition for this is that the sum of the cost we assign
to an operator in each abstract system does not exceed its
original cost. In our example, we can set the cost operator
drive-A-B to 0 in the first and to 5 in the second abstraction.
If we also set the cost of drive-B-A to 5 and 0 respectively,
the heuristic values of the abstractions are 5 and 10. We can
now add up these estimates for a total of 15. If heuristic es-
timates can be added like this without losing admissibility,
we call the heuristics additive.

There are infinitely many ways to distribute the costs be-
tween different abstractions. The optimal cost partitioning
heuristic (Katz and Domshlak 2008; 2010) optimizes the
cost distribution to get the best admissible estimate for a
state. LetA be the set of abstractions over which we want to
distribute the costs. Each abstraction α ∈ A has its own
transition system T α with the abstract states Sα, the ab-
stract goal states Gα and the abstract transitions Tα. We are
mostly interested in the subset of transitions that are not self-
loops which we call state-changing transitions SCTα ⊆ Tα.
The estimate of the optimal cost partitioning heuristic for the
set of abstractions A in state s is the objective value of the
following LP or∞ if the LP is not bounded feasible:
Linear Program 1 (Optimal cost partitioning)
Optimization variables:
• Cαo for α ∈ A, o ∈ O,

describing the cost of operator o in T α,
• Dαs′ for α ∈ A, s′ ∈ Sα,

measuring the cheapest cost to reach s′ from α(s) in T α
under the cost partitioning given by the variables Cαo , and

• Hα for α ∈ A
for the heuristic estimate for abstraction α.

Maximize:
∑
α∈A Hα

Subject to:

Dαs′ = 0 for all α ∈ A and s′ = α(s)

Dαs′′ ≤ Dαs′ + Cαo for all α ∈ A and 〈s′, o, s′′〉 ∈ SCTα

Hα ≤ Dαs′ for all α ∈ A and s′ ∈ Gα∑
α∈A

Cαo ≤ cost(o) for all o ∈ O

0 ≤ Cαo ,D
α
s′ ,H

α for all o ∈ O, α ∈ A and s′ ∈ Sα

Pommerening et al. (2015) have recently shown that it is
not necessary to restrict cost partitioning to non-negative op-



erator costs and that it is beneficial to allow arbitrary values
for Cαo .

The main disadvantage of optimal cost partitioning is that
for each heuristic computation, the LP has to compute the
cheapest plan in all abstract transition systems while in par-
allel adapting the cost functions. This is expensive because
the cost function is optimized for every state. The usual al-
ternative is to fix the cost function for the abstractions in
advance for the duration of the search. With a fixed cost
function, the goal distance of every abstract state can be
precomputed with one backwards traversal of the abstract
space and determined with a cheap hash table look-up during
the search. While optimal cost partitioning leads to better
heuristic estimates than provided by precomputed heuristics,
the reduction of the size of the search space does not usually
outweigh the overhead in the heuristic computation.

Post-hoc Optimization of Heuristic Values
Post-hoc optimization is inspired by a domain-specific ob-
servation by Felner, Korf, and Hanan (2004) for the sliding
tile puzzle. They considered a large set of heuristics, each re-
porting a lower bound on the movements required for a small
subset of all tiles. They noticed that they can derive addi-
tional information from the interactions of these bounds, us-
ing a domain-specific NP-hard optimization method. Post-
hoc optimization exploits a generalization of these interac-
tions with polynomial-time linear optimization.

Consider using a fixed cost function for the abstraction
heuristics introduced in Figure 2b. The heuristic estimate
corresponds to a cheapest plan in the abstract system, and
there always is a cheapest plan without self-loops because
all operator costs are non-negative. Therefore, an operator
that only occurs as a label on self-loops (e.g. load-B) cannot
contribute to the heuristic estimate. Thus, only the operators
incurring true abstract state transitions are relevant for this
heuristic.

This notion of relevance can be extended to arbitrary
heuristics: an operator is irrelevant for a heuristic estimate
if the same estimate is also admissible for the task that only
differs from the original one in that this operator is free of
cost. Otherwise the operator is relevant.

If we know for several admissible heuristics that already
a subset of the operators is sufficient to justify the heuristic
estimate, we can perform further reasoning about the true
optimal plan costs.

As an example consider a task with three operators oA,
oB and oC . Assume we have three admissible heuristics
hAB , hAC and hBC for which only the operators indicated
in the superscripts are relevant. For state s, all heuristics
report a heuristic estimate of 2. From hAB(s) = 2, we
can conclude that the cost incurred by operators oA and
oB in any s-plan is at least 2. Let YX denote the number
of occurrences of oX (X ∈ {A,B,C}) in an arbitrary s-
plan. Then this statement can be expressed by the inequality
cost(oA)YA + cost(oB)YB ≥ 2. We can derive analogous
constraints from the heuristics hAC and hBC . These con-
straints are satisfied by any s-plan. To get a lower bound on
the optimal plan cost, we need to minimize the overall plan

cost, considering all operators. Since the number of occur-
rences of each operator in an s-plan must be integral, this
gives rise to the following integer program:

Minimize: cost(oA)YA + cost(oB)YB + cost(oC)YC
Subject to:

hAB = 2 ≤ cost(oA)YA + cost(oB)YB

hAC = 2 ≤ cost(oA)YA + cost(oC)YC

hBC = 2 ≤ cost(oB)YB + cost(oC)YC

By summing up the three constraints we can easily see that
the objective value is at least 3, which dominates the best
individual heuristic estimate of 2.

This general approach is called post-hoc optimization
(Pommerening, Röger, and Helmert 2013). It only cares
about which operator costs are relevant for the heuristic es-
timate, not how they influence the heuristic estimate.

For a task with operator set O and a set H of admissible
heuristics, the estimate of the post-hoc optimization heuris-
tic for a state s is the objective value of the linear program
Linear Program 2 (Post-hoc optimization)
Optimization variables:
• Yo for o ∈ O for the number of occurrences of o in a plan
Minimize:

∑
o∈O cost(o)Yo

Subject to:

h(s) ≤
∑
o∈O

o is relevant for h in s

cost(o)Yo for all h ∈ H

0 ≤ Yo for all o ∈ O

Note that also the objective value of the corresponding
IP would be an admissible estimate but we usually use the
weaker LP because it allows one to compute the estimate
in polynomial time. So far, post-hoc optimization has only
been used with relevance information that was independent
of the evaluated state. This has the advantage that the matrix
of the LP is stable over the individual heuristic evaluations.

In comparison to the optimal cost partitioning in the pre-
vious section it can be shown that the post-hoc optimization
also computes a state-specific cost partitioning, albeit under
additional restrictions: it cannot change individual opera-
tor costs but can only scale all operator costs within each
heuristic by a factor that depends on the heuristic but not on
the operator (Pommerening, Röger, and Helmert 2013).

Disjunctive Action Landmarks
A disjunctive action landmark (Zhu and Givan 2003;
Helmert and Domshlak 2009) for a state s is a set of op-
erators of which at least one must be part of any s-plan.

For an example of how we can exploit such land-
marks, consider a task with three operators o1, o2, o3 with
cost(o1) = cost(o3) = 3 and cost(o2) = 5. Let {o1, o2} and
{o2, o3} be disjunctive action landmarks for state s. From
each individual landmark we can determine that every s-plan
must cost at least 3 (the cost of the cheapest operator in the
landmark). However, we can also use variables Yi for the
number of occurrences of operator oi in an arbitrary s-plan,



requiring that Yi ≥ 0. From the given landmarks we can
then derive the constraints Y1 + Y2 ≥ 1 and Y2 + Y3 ≥ 1,
respectively. Since all these constraints are satisfied by ev-
ery s-plan, we can determine an admissible estimate by min-
imizing the total plan cost 3Y1 + 5Y2 + 3Y3 subject to these
constraints and establish a better heuristic estimate of 5.

For the general case, consider an arbitrary task with oper-
ator setO. Let L be a set of disjunctive action landmarks for
state s. Then the estimate of the optimal landmark heuristic
for state s is the objective value of the LP
Linear Program 3 (Disjunctive action landmarks)
Optimization variables:
• Yo for o ∈ O for the number of occurrences of o in a plan
Minimize:

∑
o∈O cost(o)Yo

Subject to: ∑
o∈L

Yo ≥ 1 for all L ∈ L

Yo ≥ 0 for all o ∈ O
Using linear programming to derive heuristic estimates

from landmarks was introduced by Karpas and Domsh-
lak (2009) as cost partitioning for landmarks. Their
LP formulation was improved by Keyder, Richter, and
Helmert (2010). The formulation presented here is due to
Bonet and Helmert (2010) and corresponds to the dual of
the representation by Keyder et al.

State Equation Heuristic
For the next heuristic, consider our running example task
from Figure 1 again. It is clear that we only can unload the
package from the truck if it is in the truck, so it must pre-
viously have been loaded. Similarly, we cannot unload the
package more often than we load it. Again, using variables
Yo to denote the number of occurrences of o in an arbitrary
plan, we can express the latter of these statements with a
constraint Yload-A + Yload-B − Yunload-A − Yunload-B ≥ 0.

Such a constraint can be defined for each atom of the
task. Consider atom package-in-truck. We say that opera-
tors load-A and load-B produce this atom because previous
to the operator application it is false and afterwards it is true.
Analogously, operators unload-A and unload-B consume
this atom. We call the difference of the number of producers
and consumers in a plan the net change of the atom. The
previous expression Yload-A +Yload-B−Yunload-A−Yunload-B is
the net change of atom package-in-truck. Since in each plan,
we cannot consume the atom more often than we produce it,
the net change cannot be negative.

Now consider atom package-at-A. We know that in the
goal this atom must be true and in the initial state it is not.
Therefore, the corresponding net change Yunload-A − Yload-A
must be at least 1.1 For atom package-at-B we have the op-
posite situation: It is initially true but in the goal it may be
false. Therefore, a plan may consume it once more than it
produces the atom: Yunload-B − Yload-B ≥ −1.

1In this case, we could also fix the net change to exactly 1 but
as we will see later this is not possible in general and does not add
new information to the heuristic.

If we collect these net change constraints for the entire
task, we can again “reason” about all possible plans of the
task and determine a lower bound on the optimal plan cost
by minimizing the corresponding sum (where O denotes the
set of all six operators of the task):

Minimize:
∑
o∈O cost(o)Yo

Subject to:

truck-at-A : Ydrive-B-A − Ydrive-A-B ≥ −1

truck-at-B : Ydrive-A-B − Ydrive-B-A ≥ 1

package-at-A : Yunload-A − Yload-A ≥ 1

package-at-B : Yunload-B − Yload-B ≥ −1

package-in-truck : Yload-A + Yload-B

− Yunload-A − Yunload-B ≥ 0

for all o ∈ O Yo ≥ 0

The cheapest solution is to set the variables Yload-B,
Yunload-A and Ydrive-A-B to 1 and all other variables to 0. The
resulting heuristic estimate is 7 which in this task signifi-
cantly underestimates the optimal plan cost of 17. The rea-
son is that the LP is not aware of the fact that the truck has to
move to drop off the package. The atom truck-at-A is a pre-
condition of the operator unload-A but is not consumed by
it, so Yunload-A does not occur in the constraint for truck-at-A.

The general heuristic that is based on this kind of rea-
soning is known by different names, inspired by different
perspectives: van den Briel et al. (2007) call it an order-
relaxation heuristic because it only considers how often op-
erators are applied in a plan ignoring the order of the ap-
plications. Bonet (2013) calls it the state equation heuristic
because he motivates it from the state equation associated to
the Petri-net representation of the planning task. The Petri-
net perspective also gave rise to the name flow heuristic.

The main obstacle in generalizing the approach is that
we must determine whether an operator actually produces
(or consumes) an atom. Planning operators can “add” an
atom to the state in which they are applied even though this
atom is already true in the state. In this case, the operator
would not produce the atom and should not be counted as a
producer. Likewise, operators that delete atoms that are al-
ready false should not be counted as consumers in this state.
Since the constraints should hold for all possible plans we do
not know the states in which the operators are applied. We
therefore use a special classification for such operators: for
each atom, we classify the operators adding the atom into
those that always produce the atom (i.e. guarantee that it
was false before) and those that sometimes produce it (i.e.
cannot guarantee that is was previously false). Likewise,
we classify operators deleting an atom into those that al-
ways consume and those that sometimes consume it. With
this classification, the expression

∑
o always produces a Yo +∑

o sometimes produces a Yo −
∑
o always consumes a Yo is an upper

bound on the actual net change of atom a in a specific plan
because it overestimates the producers and underestimates
the consumers.

To specify a lower bound on each net change, we need to
consider the current state s and the goal. For atom a, define



S(a) = 1 if a is true in s and 0 otherwise. Similarly, define
G(a) = 1 if it is required in the goal and 0 otherwise. Then it
is easy to see that in every s-plan the differenceG(a)−S(a)
is a lower bound for the net change of a.

Since these bounds on the actual net change are valid for
each possible s-plan, we can again determine an admissible
heuristic estimate by optimizing the overall plan cost. The
state equation heuristic for a state s is the objective value of
the LP:

Linear Program 4 (State equation heuristic)
Optimization variables:

• Yo for o ∈ O for the number of occurrences of o in a plan

Minimize:
∑
o∈O cost(o)Yo

Subject to:

G(a)− S(a) ≤
∑

o always produces a

Yo +

∑
o sometimes produces a

Yo −∑
o always consumes a

Yo for all atoms a

0 ≤ Yo for all o ∈ O

Typically, we can determine only for very few STRIPS
operators that they always produce or consume an atom
based on their syntactic structure. For this reason, we usu-
ally strengthen this analysis with information on mutual ex-
clusivity of atoms.2

We only have presented net change constraints based on
the operators that sometimes produce an atom where the
numeric bound of the constraint underestimates the actual
net change. Pommerening et al. (2014) call such constraints
lower-bound net change constraints. They also consider the
opposite notion of upper-bound net change constraints that
use a numeric upper bound and are based on the operators
that sometimes consume an atom. However, these upper-
bound constraints do not carry additional information be-
cause every feasible solution for the set of all lower-bound
net change constraint is also feasible for all upper-bound net
change constraints.

Bonet and van den Briel (2014) have further extended the
state equation heuristic and also allow constraints for sets of
atoms. The details on this extension would be beyond the
scope of this paper.

Delete Relaxations
The last heuristic we want to introduce is based on the con-
cept of delete relaxation (Bonet and Geffner 2001; Hoff-
mann and Nebel 2001). Similar to abstractions, the delete
relaxation of a planning task is a simpler version of the orig-
inal task with the property that every plan for the original

2Two atoms a and b are mutually exclusive if in every reachable
state at most one of them can be true. If for such atoms an operator
precondition requires a to be true and the effect adds b we can
conclude that the operator always produces b. Mutually exclusive
atoms can be precomputed (e. g., Helmert 2009).

A B

A B

A B

A B

drive-A-B

load-B

unload-A

Figure 3: Solution for the example task’s delete relaxation.

task is also a plan for the relaxation. Delete relaxation ig-
nores the negative side effects of all operators, i.e. operators
of the delete relaxation only add atoms and never remove
them. Delete relaxed tasks are easier in several ways: first,
applying an operator never makes a previously applicable
operator inapplicable. Second, once an operator was ap-
plied, applying it again cannot make additional atoms true
because all atoms in the add effect are already true and can-
not be falsified by other operators. As a direct consequence,
the maximal length of an optimal plan can be limited to the
number of operators.

Consider the delete relaxation of our running example.
Dropping the delete effects means that after driving the
truck, it is at both locations at the same time and after load-
ing or unloading the package, it is both in its new and its
old position. After the first driving operator has been ap-
plied, the package can thus be loaded into the truck at B and
then unloaded at A without moving the truck again. Figure
3 shows a solution for the delete relaxation.

Solving a delete relaxed problem optimally is still a hard
problem (NP-equivalent) so most heuristics based on the
delete relaxation approximate its solution in some way.

Imai and Fukunaga (2014) present an integer program that
exactly defines the cost of an optimal delete relaxed plan for
a state s and consider several of its relaxations. Their for-
mulation consists of inequalities that are necessary and suf-
ficient properties of a relaxed plan. It exploits that with re-
laxed planning the length of an optimal plan can be bounded
by the number of operators in O. Therefore, it is sufficient
to distinguish up to |O|+ 1 different time points 0 to |O|.

The cost of the optimal plan for the delete relaxation is the
objective value of the following integer program (described
below). In addition to the optimization variables, it uses the
constant function S(a) that maps atoms in s to 1 and all
other atoms to 0 and a sufficiently large constant M .



Linear Program 5 (Delete Relaxation)
Optimization variables:

• Uo ∈ {0, 1} for o ∈ O
indicating whether o is part of the plan

• Ra ∈ {0, 1} for a ∈ A
indicating whether a is reached in the plan

• Fo,a ∈ {0, 1} for o ∈ O, a ∈ A
indicating whether o is the first operator in the plan that
adds a

• To ∈ {0, . . . , |O|} for o ∈ O
indicating the time operator o is applied in the plan. The
first operator can be applied at time point 0 and value |O|
indicates that the operator was not used.

• Ta ∈ {0, . . . , |O|} for a ∈ A
indicating the time atom a was true for the first time.
Value 0 means that a was already true in the state s.

Minimize:
∑
o∈O cost(o)Uo

Subject to:

Ra,Uo,Fo,a ∈ {0, 1}
Ta,To ∈ {0, . . . , |O|} f.a. o ∈ O, a ∈ A
Ra = 1 f.a. a ∈ G (1)

S(a) +
∑
o adds a

Fo,a ≥ Ra f.a. a ∈ A (2)

Uo ≥ Fo,a f.a. o ∈ O, a ∈ add(o) (3)
Ra ≥ Uo f.a. o ∈ O, a ∈ pre(o) (4)
Ta ≤ To f.a. o ∈ O, a ∈ pre(o) (5)
To + 1 ≤ Ta +M(1− Fo,a) f.a. o ∈ O, a ∈ add(o) (6)

A plan for the delete relaxation must reach every goal
atom (1). An atom is reached if it is true in s or there is
an operator that adds the atom for the first time (2). An op-
erator can only be a first achiever for a atom if it is used
(3). An operator can only be used if all its preconditions are
reached (4) before it is applied (5) Finally, if an operator is
the first achiever of an atom then this atom must be added
for the first time directly after the operator is used (6). In the
last equation M is a constant that is large enough to satisfy
the inequality if Fo,a = 0. Since the time steps are limited
to the number of operators, M = |O|+ 1 is sufficient.

Every feasible solution of the integer program can be
transformed into a plan for the delete relaxation and the ob-
jective function calculates the cost of this plan. The plan
shown for our example in Figure 3 corresponds to a solution
that sets Uo = 1 for the operators drive-A-B, load-B and
unload-A with time steps To of 0, 1, and 2 respectively. The
operator drive-A-B adds the atom truck-at-B for the first time
in time step 1, so Fdrive-A-B,truck-at-B = 1. Likewise, load-B
and unload-A are first achievers for the package to be in the
truck and at A. All other atoms are true in s so Ra = 1
for all atoms a. For unused operators such as drive-B-A the
solution sets Uo = 0 and To = |O|.

Imai and Fukunaga experimented with solving this IP
and its LP relaxation and report that the LP solution often
gives a very close or perfect approximation of the IP so-
lution. They also considered several variable elimination

techniques based on operators or atoms. Variables for op-
erators can be eliminated if the respective operator either
is necessary in every plan (an action landmarks) or can be
shown to be unnecessary in the presence of an other opera-
tor. Similarly, variables for atoms can be eliminated if they
are reached by every plan (fact landmarks) or can be de-
tected irrelevant for reaching the goal.

Note that for the IP and its LP relaxation we can alterna-
tively use a formulation with the previously seen objective
function

∑
o∈O cost(o)Yo, adding an additional inequality

Uo ≤ Yo for each o ∈ O.

Operator-counting Constraints
It is no coincidence that all but the optimal cost partition-
ing heuristic for abstractions use the same objective func-
tion. We intentionally formulated the heuristics this way so
that they fit the general framework of so-called operator-
counting constraints (Pommerening et al. 2014). This
framework allows one to combine constraints from different
sources of information. The idea was not new: Bonet (2013)
already suggested to use landmark constraints for strength-
ening the estimate of the state-equation heuristic.

The generalized framework is defined on the notion of
operator-counting constraints. Such constraints are based
on operator-counting variables Yo for each operator o of the
task. An operator-counting constraint for state s is a set of
inequalities such that for every s-plan there exists a feasible
solution that sets each Yo to the number of occurrences of
o in this plan. The constraints are not restricted to operator-
counting variables. However, we can only combine them
into a constraint set if the only common variables between
constraints are the operator-counting variables.

Pommerening et al. (2014) have shown that for a con-
straint set C for state s the objective value of the following
linear program is an admissible heuristic estimate for s. This
is equally true if we restrict the operator-counting variables
to integers.

Linear Program 6 (General operator-counting constraints)
Optimization variables:

• Yo for o ∈ O for the number of occurrences of o in a plan
• all other optimization variables occurring in C

Minimize:
∑
o∈O cost(o)Yo

Subject to: C

The advantage of the framework is that it allows to arbi-
trarily combine the constraints of the previously seen heuris-
tics with the guarantee of an admissible heuristic estimate.
Adding additional operator-counting constraints results in a
dominating heuristic because it can only reduce the set of
feasible solutions. The resulting heuristic estimate can also
be strictly larger than all individual heuristic estimates.

For the optimal cost partitioning heuristic for abstractions
we presented a formulation that does not fit this framework.
The reason is that this representation is more easily acces-
sible. The heuristic is nevertheless covered by the gen-
eral framework because the dual of the shown formalization
fits the requirements of operator-counting constraints (Pom-
merening et al. 2014).



Conclusion
We have presented several recent LP-based heuristics for
cost-optimal planning. Apart from the optimal cost parti-
tioning for abstractions, the underlying LPs are usually not
overly large.

It is hard to characterize the size for a typical planning
instance because even in the standard benchmark suites for
optimal planning from the International Planning Competi-
tions this varies a lot. Lots of the instances have only a few
hundred operators but there are also many with tens of thou-
sands of operators and in the worst case there can be almost a
million. Also the number of atoms is in most cases far below
one hundred but it can go up to more than twenty thousands
on exceptionally hard tasks (which are beyond the current
capabilities of optimal planning).

While the individual LPs are usually solved very quickly,
the challenge is that during one A∗ search we easily need to
compute the heuristic for several million states. Indeed, for
a long time it was considered impractical to solve a linear
program for every single state. The recent heuristics show
that this is indeed possible and that it can be very beneficial.

However, very likely these heuristics do not realize their
full potential. On the one hand, LP solvers implement many
different solving strategies and for a non-expert it is not clear
which one is best suited for the problem at hand. On the
other hand, there is probably also some potential in refor-
mulations of the underlying LPs. For example, the original
definition of the post-hoc optimization aggregates variables
that always occur together in a constraint. This aggregation
gives a significant speed-up and we assume that there are
many other such tricks that are obvious to experts in linear
programming and optimization.
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