
Improved Pattern Selection for PDB Heuristics
in Classical Planning (Extended Abstract)

Sascha Scherrer Florian Pommerening Martin Wehrle
University of Basel, Switzerland

iPDB (Haslum et al. 2007)

I State-of-the-art pattern selection algorithm
I Selects patterns (sets of variables) using hill-climbing

search in the space of pattern collections
I Canonical heuristic of resulting pattern collection used

in A∗-search

Local Maxima in iPDB
I Hill-climbing can terminate early in local maximum

I No extension with one variable has sufficient improvement
I Well-known but unaddressed problem (already pointed out by

Haslum et al. (2007))

iPDB with Variable Neighborhood Search

I Addresses the problem of local maxima
I Based on variable neighborhood search (Mladenovic

and Hansen 1997)
I Looks for successor collections of increasing size
I Extends existing candidate patterns by further causally

related variables
I Resets candidate collection once an improving

candidate is found
I Anytime algorithm: runs as long as resources are

available
I We limit resources to stop the hill-climbing

Pseudocode (iPDB)

function generate-candidates(P) :
Candidates := ∅
for P ∈ P :

for V ∈ P :

for V ′ ∈ causally-related(V ) \ P :

Candidates := Candidates ∪ {P ∪ {V ′}}
return Candidates

function iPDB() :
P := {{Vg} | Vg is a goal variable}
Candidates := generate-candidates(P)
while True :

S := generate-samples(1000)
for PC ∈ Candidates :

improvement[PC] := |{s ∈ S | hP∪{PC}(s) > hP(s)}|
Pbest := Candidate with highest improvement
if improvement[Pbest] > threshold :

P := P ∪ {Pbest}
Candidates := generate-candidates(P)

else :

return hP

Pseudocode (iPDB-VNS)

function generate-candidates(P) :
Candidates := ∅
for P ∈ P :

for V ∈ P :

for V ′ ∈ causally-related(V ) \ P :

Candidates := Candidates ∪ {P ∪ {V ′}}
return Candidates

function iPDB-VNS() :
P := {{Vg} | Vg is a goal variable}
Candidates := generate-candidates(P)
while True :

S := generate-samples(1000)
for PC ∈ Candidates :

improvement[PC] := |{s ∈ S | hP∪{PC}(s) > hP(s)}|
Pbest := Candidate with highest improvement
if improvement[Pbest] > threshold :

P := P ∪ {Pbest}
Candidates := generate-candidates(P)

else :

Candidates := generate-candidates(Candidates)
if time or memory limit exceeded :

return hP

Experimental Evaluation

I Evaluated on IPC tasks
I optimal tracks 1998–2011

I Resource limits
I Very important to limit both time

and memory
I Robust to parameter changes

I iPDB-VNS improves iPDB
I Heuristic quality
I Number of solved tasks

I iPDB-VNS is competitive
with LM-cut

Heuristic Quality

#Expansions during A∗ search

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s
.

unsolved

hiPDB-VNS

900s,400M

h
iP
D
B

9
0
0
s
,4
0
0
M

Solved Tasks

hiP
D

B
∞

,∞

hiP
D

B
90

0s
,4

00
M

hiP
D

B
-V

N
S

90
0s

,4
00

M

hLM
-c

ut

Airport (50) 25 38 38 28
Depot (22) 8 8 11 7
Elevators (50) 36 36 43 40
Floortile (20) 2 2 4 7
Miconic (150) 55 55 55 141
Parcprinter (50) 22 28 28 31
TPP (30) 6 6 8 7
Transport (50) 17 17 24 17
Trucks (30) 8 8 10 10
Woodworking (50) 13 23 23 29

Sum (502) 192 221 244 317
Sum in other domains (894) 474 473 481 452

Total sum (1396) 666 694 725 769
Coverage score (in %) 50.72 52.68 55.45 53.60


