
Automatic Configuration of Sequential Planning Portfolios

Jendrik Seipp and Silvan Sievers
Universität Basel

Basel, Switzerland
{jendrik.seipp,silvan.sievers}@unibas.ch

Frank Hutter
Universität Freiburg
Freiburg, Germany

fh@informatik.uni-freiburg.de

Abstract

Sequential portfolios have been demonstrated to be very pow-
erful at exploting the complementary strength of different
planners. Similarly, automated algorithm configuration can
find high-performance customized instantiations of a param-
eterized planning framework. Although some work has been
done towards combining algorithm configuration and port-
folios, the problem of automatically generating a sequential
portfolio from a parameterized algorithm for a given type of
planning tasks is unsolved. Here, we present an approach for
this problem that greedily generates the (planner configura-
tion, runtime) pair that, when appended to the current port-
folio, maximizes portfolio improvement per runtime spent.
This method yields portfolios that are provably within a con-
stant factor of optimal and yields promising results compared
to previous portfolios from the literature.

Introduction
Over the years the automated planning community has cre-
ated a very large number of different planning algorithms.
However, none of them dominates all others on all plan-
ning tasks. Since automatically choosing the best planner
for a given task remains a mostly unsolved problem, today’s
most successful planners run a sequential portfolio of indi-
vidual planners (Coles et al. 2012). A prototypical example
of a planner portfolio is Fast Downward Stone Soup (FDSS)
(Helmert, Röger, and Karpas 2011), which won the deter-
ministic optimizing track of the 2011 International Planning
Competition (IPC) and was the runner-up in the determinis-
tic satisficing track.

Recently, several approaches have been developed for au-
tomatically constructing portfolios. Given a finite set of
plannersA and their performance on a benchmark set Π, the
aspeed system (Hoos et al. 2012a) constructs the optimal se-
quential portfolio of algorithms in A for Π; however, this is
anNP-hard problem and aspeed’s runtime requirement can
be very large. Streeter and Smith (2008) introduced an effi-
cient greedy algorithm that constructs a portfolio guaranteed
to be within a constant factor of the optimal one. For a more
general overview of the work on sequential portfolios in the
automated planning community we refer to Vallati (2012).

While planning portfolios combine the complementary
strengths of existing planners on a heterogeneous set of
benchmarks, performance on a particular homogeneous type

of instances can often be improved by tuning a planner’s
parameters. Specifically, applied to highly parameterized
planning systems, automated algorithm configuration has
recently been shown to find novel planner instantiations that
are customized to yield the highest available performance on
particular types of benchmark instances (Fawcett et al. 2011;
Vallati et al. 2013).

Due to their respective success, several recent lines of
work found in the Satisfiability Testing (SAT) literature
use algorithm configuration to construct portfolios of a sin-
gle parameterized algorithm based on algorithm selection
(Rice 1976) and on parallel execution of solvers (Huberman,
Lukose, and Hogg 1997). The portfolio construction proce-
dure Hydra (Xu, Hoos, and Leyton-Brown 2010) uses algo-
rithm configuration to determine configurations of a highly
parameterized algorithm to be used as component solvers
in the SATzilla portfolio-based algorithm selector (Xu et al.
2008). Likewise, the GREEDY method in Hoos et al. (2012b)
uses algorithm configuration to determine parameter config-
urations for a parallel portfolio. However, there does not yet
exist a general procedure for constructing sequential portfo-
lios from a highly parameterized algorithm.

In this paper, we present such a method with the objective
of performing well for a given heterogeneous set of bench-
marks Π. A special case of this problem has already been
considered by Seipp et al. (2012a), who considered a set Π
comprised of 21 known subsets, Π = Π1 ∪ · · · ∪Π21. They
first used algorithm configuration to identify a customized
configuration Ci of a planning system for each known sub-
set Πi and in a second step used several different meth-
ods for combining {C1, . . . , C21} in a sequential portfolio.
Their results suggest that given enough time, it is best to run
{C1, . . . , C21} with equal time shares; however, for shorter
runtimes better results were obtained by only running a sub-
set of them, and by running some configurations longer than
others (Seipp et al. 2012b).

Our work removes the need to know which subsets the
benchmark set Π is comprised of, and the need for a two-step
process: rather than optimizing separately for known ho-
mogeneous subsets Π1, . . . ,Π21 of Π, we directly optimize
portfolio performance for the entirety of Π. Specifically,
starting with an empty portfolio, we use algorithm config-
uration to greedily find (configuration, time slice) pairs that,
when appended to the current portfolio, produce the high-



Algorithm 1 Configure a portfolio for instances Π, space of
algorithms A and total portfolio runtime T , using a budget
B for each call to OPTIMIZE.

function CONFIGUREPORTFOLIO(Π, A, T )
P ← 〈〉
Tused ← 0
while r = T − Tused > 0 do
〈a, t〉 ← OPTIMIZE(P , A, Π, r, B)
Π← Π \ {π ∈ Π | q(〈a, t〉, π) = 1}
if Π reached fixpoint then return P
P ← P ⊕ 〈a, t〉
Tused ← Tused + t

return P

est gain (number of additionally solved tasks for optimal
planning; quality improvement for satisficing planning) per
time unit spent. Invoking theoretical results by Streeter and
Smith (2008), we can prove that this conceptually simple
procedure yields sequential portfolios whose performance
is within a constant factor of the optimal portfolio, con-
cerning both the expected number of benchmarks solved in
any given time T and the expected runtime for solving a
benchmark. Experiments show that our procedure also con-
structs strong portfolios in practice. Specifically, for satisfic-
ing planning we achieve better performance on the training
benchmark set Π than any previous portfolio.

Definitions

Informally, a classical planning task π consists of an initial
state, a set of goal states and a set of operators. Solving π
implies finding an operator sequence that leads from the ini-
tial state to a goal state. While optimal planning is the task
of finding the solution with the minimum sum of operator
costs, in satisficing planning any solution is accepted. Let
A be a possibly infinite set of planning algorithms. Then
we define c(〈a, t〉, π) as the cost of the solution a ∈ A finds
on planning task π within time t, or ∞ if it does not find
a solution. Furthermore we let c?(π) be the minimum solu-
tion cost for task π. Following the evaluation criteria from
the IPC for satisficing planners we define the solution qual-
ity q(〈a, t〉, π) = c?(π)

c(〈a,t〉,π) as the minimum known solution
cost divided by the solution cost achieved by a in time t.
Note that in optimal planning this quality is either 0 or 1.
The pair 〈a, t〉 is said to solve a task π if q(〈a, t〉, π) = 1.

Next we need to define the notion of sequential portfolios.

Definition 1. Sequential portfolios.
A sequential planning portfolio P is a sequence of pairs
〈a, t〉 where a is a planning algorithm and t ∈ N>0 is the
time a is allowed to run for.

The quality q(P, π) of a portfolio on planning task π is the
maximum quality any component 〈a, t〉 of P achieves on π.
A portfolio P solves a task π if any of its components 〈a, t〉
solves it. We denote the portfolio resulting from appending
a component 〈a, t〉 to a portfolio P by P ⊕ 〈a, t〉.

Configuration of Sequential Portfolios
We outline our algorithm that automatically configures port-
folios for satisficing and optimal planning in Alg. 1. It takes
as input a set of training instances Π, a configuration space
of planning algorithmsA, and the time T that the portfolio is
allowed to run. The procedure starts from an empty portfo-
lio P and iteratively extends it. After appending a (planner,
time slice) pair 〈a, t〉 to P , we remove all tasks π from Π that
were solved by 〈a, t〉 in order to focus on other, unsolved in-
stances in the next iteration. The procedure terminates when
the sum of P ’s components’ time slices reaches the avail-
able time T or when the chosen best pair 〈a, t〉 does not solve
any additional tasks. Note that such a pair 〈a, t〉 will not be
added to the portfolio.

We select the next (planner, time slice) pair 〈a, t〉 with
the subsidiary procedure OPTIMIZE. Intuitively, OPTIMIZE
aims to maximize the marginal improvement of portfolio
performance per time spent. More formally, it tries to maxi-
mize the performance metric

mP (〈a, t〉,Π) =
q(P ⊕ 〈a, t〉,Π)− q(P,Π)

t
. (1)

Note that for optimal planning this means we seek to
maximize the number of newly solved tasks per time spent,
whereas for satisficing planning it means a maximal increase
in quality per time spent.

While Alg. 1 also works for a finite set of pre-specified
planner configurations, as noted above, A is the configu-
ration space of a parameterized planning framework in our
case. As the number of candidate algorithms and time lim-
its of such a configuration space is infinite, we use an al-
gorithm configuration procedure to automatically find pairs
〈a, t〉 that maximize the performance metric in Eq. 1.

Since algorithm configuration procedures evaluate the
performance of candidate configurations on single instances
at a time, in order to optimize the performance metric in
Eq. 1, we must define a performance metric m′P (〈a, t〉, π)
such that mP (〈a, t〉,Π) =

∑
π∈Πm

′
P (〈a, t〉, π). For-

tunately, this is trivial for the additive qualities we aim
to optimize in satisficing and optimal planning by setting
m′P (〈a, t〉, π) = mP (〈a, t〉, {π}). Similar to what was done
in the Hydra portfolio construction procedure (Xu, Hoos,
and Leyton-Brown 2010), we can cache the computation
of this marginal improvement m′P (〈a, t〉, π) of a pair 〈a, t〉
over a portfolio P on an instance π by remembering the best
quality qold(π) the current portfolio P achieves on each in-
stance π ∈ Π; to evaluate m′P (〈a, t〉, π), we must then only
run a on π for time t and compare the result with qold(π).
Note that this means the cost of a single evaluation of 〈a, t〉
is bound by t. This is a key difference to the Hydra con-
struction mechanism (Xu, Hoos, and Leyton-Brown 2010)
or the greedy construction of parallel portfolios by Hoos et
al. (2012b), which have to run a with the total time budget T
allocated for the portfolio. Since t is typically only a small
fraction of T , our subsidiary algorithm configuration proce-
dure can make much more progress in the same amount of
time than when being used by these other portfolio construc-
tion procedures.



Theoretical Analysis
We now analyze our algorithm theoretically, using results
by Streeter and Smith (2008), who studied a special case of
Alg. 1 where the sets A and Π are finite and we know the
time required by every planner a ∈ A on every planning
task π ∈ Π. Defining the expected runtime of a portfolio on
benchmark set Π as its average time to success, Streeter and
Smith (2008) showed that

• for any ε > 0, it isNP-hard to find a portfolio guaranteed
to have an expected runtime bounded by a factor of 4− ε
times the expected runtime of the optimal portfolio;

• it is NP-hard to find a portfolio whose quality within a
time budget T is guaranteed to be bounded by a factor
of 1− 1/e times the quality of the optimal portfolio with
time budget T ; and

• the greedy algorithm finds portfolios with approximation
ratios to the optimal portfolio that are simultaneously tight
for both expected runtime and quality.

Given a perfect algorithm configuration procedure, their
results (Theorems 2 and 3 of Streeter and Smith (2008)) di-
rectly apply to prove the following theoretical guarantees for
Alg. 1:

Theorem 1. Let q∗ be the highest possible quality a portfo-
lio comprised of configurations from A can achieve in time
T on benchmark set Π, and let r∗ be the lowest expected
runtime on Π a portfolio comprised of configurations from
A can achieve. Given a procedure OPTIMIZE that returns a
maximizer 〈a, t〉 of Eq. 1, Alg. 1 will then construct a port-
folio with quality bounded by (1− (1/e)) · q∗ and expected
runtime bounded by 4 · r∗.

We note that this theorem only provides a guarantee for
the set (or distribution) of benchmarks Π used for training
the portfolio. When the learned portfolio is used for another
benchmark set Π′, all depends on how similar Π and Π′ are.
If the tasks in Π′, for example, come from domains with
very different characteristics than those in Π or are consis-
tently harder, then the portfolio may not perform well. We
note that this problem of generalization is not unique to au-
tomatic portfolio design; a planner (or even portfolio) manu-
ally designed for high performance on Π would have exactly
the same problem. We also note that in practice, OPTIMIZE
will only yield the truly optimal portfolio component 〈t, a〉
rarely, especially when searching over combinatorial param-
eter spaces with 50+ categorical parameters. However, as we
will show in the experiments, it often finds portfolio compo-
nents that yield strong portfolio performance.

Experiments
We now study our automated portfolio configuration algo-
rithm empirically. In order to directly compare against the
most closely related work by Seipp et al. (2012a), we focus
on satisficing planning (the only kind considered by them)
and use the same setup (including the same parameterized
planning framework and the same planning tasks).

The parameterized framework for satisficing planning
Seipp et al. (2012a) used is that of the Fast Downward (FD)

planning system (Helmert 2006). We refer to Fawcett et
al. (2011) for a detailed description of its numerous search
algorithms and heuristics, but note briefly that this frame-
work comprises 70 parameters, which, when discretized,
give rise to 1.935× 1026 possible configurations.

The benchmark set Π used by Seipp et al. (2012a) com-
prises a total of 724 tasks from 21 domains from the IPC
1998–2006 challenges. Seipp et al. (2012a) exploit knowl-
edge about this composition by configuring custom planners
for each of the 21 domains. In contrast, our automated port-
folio construction mechanism does not require this knowl-
edge and operates directly on Π. As Seipp et al. (2012a),
we follow the IPC rules by setting the total portfolio limit to
30 minutes and aborting each component planner if it uses
more than 2 GB of memory.

As the OPTIMIZE procedure of our algorithm, we use
the algorithm configuration procedure SMAC (Hutter, Hoos,
and Leyton-Brown 2011) because of its ability to handle
both categorical and numerical parameters of very large con-
figuration spaces. To evaluate the impact of better configu-
ration procedures, we evaluate our algorithm with different
time budgets B for SMAC.

Table 1 gives an overview over the training performance
of two sets of portfolios learned for satisficing planning: one
optimizes coverage (ie uses qualities of 0 or 1 in OPTIMIZE),
the other one optimizes quality as described in the previous
section. Both variants were tested with different budgets
B ∈ {1h, 2h, 5h, 10h}. We compare against the perfor-
mance of satisficing FDSS (1 and 2) and the portfolio gen-
erators presented in Seipp et al. (2012a): Cluster (cluster),
Domain-wise (dw), Increasing Time Limit (inc), Random
Iterative Search (ris), Selector (sel), Stone Soup (ss) and the
uniform portfolio (uniform). Analyzing the last two blocks
of the table with our portfolios, we can observe that the
training performance of our portfolios increases as expected
with the time allowed for each configuration run. Compared
against each other, there is a clear advantage of optimizing
for quality and not for coverage. When comparing against
the other approaches, we observe that our portfolios opti-
mizing quality with budgets of 5h and 10h achieve a better
performance than any other portfolio.

Figure 1 shows how quality improves during the portfo-
lio configuration. Each point represents the time at which
the portfolio switches to a new configuration and the cor-
responding achieved quality at that time. The displayed
qualities represent those learned at configuration time.1 We
observe that higher time budgets for the configuration pro-
cedure result in higher portfolio performance, especially
in the early stages of the portfolio. Not surprisingly, for
all budgets, quality improves quickly in the beginning and
then slows down as it becomes harder and harder to make
marginal improvements over the portfolio so far.

1In contrast, Table 1 evaluates the portfolios as anytime-search
algorithms, where each iteration except the first uses the cost of
the solution from the previous iteration as a maximum bound on
g-values during search, thus possibly improving the overall qual-
ity. This explains why our 5h and 10h portfolios achieve the same
quality after the configuration process, but have a distinct evalua-
tion quality.



FDSS Seipp et al. (2012a) Objective: Coverage Objective: Quality
Quality 1 2 cluster dw inc ris sel ss uniform 1h 2h 5h 10h 1h 2h 5h 10h

airport (39) 31.82 31.69 32.69 30.71 31.52 30.85 31.71 32.85 32.69 28.69 31.82 28.66 30.96 29.76 31.89 31.91 32.89
depot (20) 15.26 14.52 17.46 16.79 15.85 17.32 17.32 17.34 18.41 15.61 17.06 17.63 16.56 16.19 17.07 17.02 17.46
driverlog (9) 8.33 7.83 8.41 7.93 7.82 8.47 8.41 8.43 8.28 8.25 7.98 8.13 8.10 8.09 8.32 8.36 8.50
freecell (78) 71.45 69.35 74.68 72.13 71.92 74.67 74.55 74.55 74.78 73.20 74.59 74.91 74.84 74.58 75.00 75.33 76.28
grid (5) 4.56 3.91 4.74 4.64 4.51 4.74 4.74 4.74 4.74 4.70 4.93 4.93 4.95 4.98 5.00 4.97 4.97
logistics-00 (28) 27.43 26.63 27.77 27.76 27.63 27.90 27.84 27.83 27.80 27.61 27.59 27.84 27.89 27.91 27.97 27.90 27.94
miconic-full (90) 75.72 75.86 76.09 75.99 67.87 76.14 76.21 76.09 75.93 71.83 72.43 73.03 70.79 77.69 78.66 78.23 78.50
mprime (26) 26.00 25.07 26.00 26.00 26.00 26.00 25.92 25.92 26.00 25.69 26.00 26.00 26.00 26.00 26.00 26.00 26.00
opt-telegraphs (47) 17.00 5.00 17.00 8.00 12.00 14.00 20.00 14.00 16.00 4.00 11.00 11.00 19.00 20.00 22.00 47.00 47.00
pathways (17) 16.71 16.04 16.75 16.70 16.81 16.81 16.73 16.71 16.73 16.74 16.69 16.77 16.58 16.85 16.86 16.84 16.84
philosophers (43) 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00
pipesworld-nt (43) 33.28 34.21 36.39 34.02 33.14 35.78 36.61 35.41 35.37 35.45 36.02 36.04 36.45 35.93 36.16 36.15 36.21
pipesworld-t (47) 33.96 33.17 38.11 37.11 35.33 38.47 37.26 38.47 37.92 34.82 35.43 34.90 37.20 33.96 34.39 34.90 37.63
psr-large (42) 21.87 22.03 24.12 25.09 23.09 23.06 25.03 23.00 24.06 20.24 22.45 22.56 22.77 19.89 21.43 21.48 22.45
rovers (21) 19.83 18.56 20.23 20.11 20.10 20.26 20.21 20.25 20.23 19.29 20.14 19.60 19.35 20.22 20.15 20.28 20.48
satellite (22) 21.76 21.31 21.66 21.61 21.57 21.68 21.67 21.67 21.63 20.67 20.72 20.54 21.26 19.92 21.42 20.93 21.91
schedule (80) 74.02 69.75 76.49 76.23 76.16 76.60 75.96 76.36 76.51 74.09 73.16 74.00 74.26 76.66 77.27 79.60 78.61
storage (20) 11.86 10.64 9.90 9.60 9.60 9.90 9.90 9.90 9.90 10.72 9.70 10.72 11.61 10.44 9.77 10.48 11.87
tpp (17) 15.66 13.87 15.83 15.21 15.55 15.64 15.82 15.83 15.87 15.22 15.21 15.25 15.11 15.80 16.00 15.79 15.98
trucks (23) 12.12 11.38 15.17 13.09 10.89 17.41 15.30 15.36 15.11 15.48 15.54 15.27 18.78 14.58 13.41 16.38 15.25
zenotravel (7) 6.54 6.47 6.73 6.63 6.25 6.73 6.73 6.73 6.71 6.52 6.39 6.57 6.84 6.87 6.87 6.89 6.85

Sum (724) 588.21 560.29 609.23 588.34 576.60 605.41 610.92 604.43 607.66 571.81 587.86 587.35 602.29 599.32 608.66 639.46 646.62

Table 1: Quality of our portfolios compared to FDSS and portfolios from Seipp et al. (2012a) for the IPC 1998–2006 domains.

100 101 102 103

400

600

Time in seconds

Q
ua

lit
y

10h
5h
2h
1h

Figure 1: Total quality of the portfolios optimizing addi-
tional quality per time as a function of the portfolio time
going from 0 to 18000 seconds.

Although this paper focuses on automated construction
portfolio for a given benchmark set Π, one may wonder
how well the portfolios generalize beyond Π. Seipp et
al. (2012a) evaluated generalization performance on the IPC
2011 benchmark set. These benchmarks are quite different
since no domain in Π contains action costs (whereas some
domains in IPC 2011 do) and generally, problems from the
IPC benchmark sets have become substantially more dif-
ficult over the years. Consequently, Seipp et al. (2012a)
demonstrated that the portfolio with the best training perfor-

mance on benchmark set Π is not the best for the IPC 2011
data, and the same holds in our case. Although it had the
highest performance on Π, our 10h quality optimized port-
folio achieved a test quality of 231.90, which is better than
FDSS 1 (207.52) and FDSS 2 (193.52), but worse than the
uniform portfolio (247.93) of Seipp et al. (2012a).

We also evaluated our method for optimal planning, us-
ing 21 benchmark domains amounting to 835 solvable tasks
from the IPC 1998–2006 challenges. In this case, our auto-
mated method only solved 476 instances, compared to the
491 instances solved by FDSS, the winner of the optimal
planning track in the IPC 2011. We believe this is because
our OPTIMIZE procedure SMAC did not have enough time
to find good enough configurations. Due to the higher run-
times needed to solve instances in optimal planning, SMAC
only managed to execute roughly one third of the FD runs it
executed for satisficing planning. Combined with this hur-
dle, it is not surprising that 10h of automated algorithm con-
figuration is too short to find configurations as good as those
manually defined by the leading human experts who con-
structed FDSS.

Conclusion
In this work, we presented a novel method for combining
the strengths of sequential portfolios for planning and the
possibility of using algorithm configuration to automatically
find good configurations from a given parameter space. By
incorporating the timeout for each portfolio component into
the configuration space and optimizing for the highest port-
folio improvement per runtime spent, we further reduced the
required CPU time for the overall configuration process. Ex-



periments showed promising results, especially for satisfic-
ing planning.

In future work, we plan to study the case of optimal plan-
ning in more detail. We also plan to use our algorithm to
configure portfolios on the combined configuration spaces
of multiple different planning systems. To facilitate general-
ization to unknown test sets, we plan to configure portfolios
on a much broader class of planning tasks. We also plan to
configure portfolios for the setup of the IPC learning track,
where test and training sets can be expected to be very simi-
lar.

References
Coles, A.; Coles, A.; Garcı́a Olaya, A.; Jiménez, S.; Linares
López, C.; Sanner, S.; and Yoon, S. 2012. A survey of the
Seventh International Planning Competition. AI Magazine
33(1):83–88.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-specific config-
uration using Fast Downward. In ICAPS 2011 Workshop on
Planning and Learning, 13–17.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoos, H.; Kaminski, R.; Schaub, T.; and Schneider, M. T.
2012a. aspeed: ASP-based solver scheduling. In Dovier, A.,
and Costa, V. S., eds., ICLP (Technical Communications),
volume 17 of LIPIcs, 176–187. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.
Hoos, H.; Leyton-Brown, K.; Schaub, T.; and Schneider, M.
2012b. Algorithm configuration for portfolio-based paral-
lel SAT-solving. In Coletta, R.; Guns, T.; O’Sullivan, B.;
Passerini, A.; and Tack, G., eds., Proceedings of the 1st
Workshop on COmbining COnstraint solving with MIning
and LEarning (CoCoMile 2012), 7–12.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 265:51–54.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial model-based optimization for general algorithm con-
figuration. In Coello, C. A. C., ed., Proceedings of the
Fifth Conference on Learning and Intelligent OptimizatioN
(LION 2011), 507–523. Springer.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65–118.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012a.
Learning portfolios of automatically tuned planners. In Mc-
Cluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds.,
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (ICAPS 2012), 368–
372. AAAI Press.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012b.
Learning portfolios of automatically tuned planners: De-
tailed results. Technical Report 268, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.

Streeter, M. J., and Smith, S. F. 2008. New techniques for
algorithm portfolio design. In Proceedings of the 24th Con-
ference in Uncertainty in Artificial Intelligence (UAI 2008),
519–527.
Vallati, M.; Fawcett, C.; Gerevini, A.; Hoos, H. H.; and
Saetti, A. 2013. Automatic generation of efficient domain-
optimized planners from generic parametrized planners. In
Helmert, M., and Röger, G., eds., Proceedings of the Sixth
Annual Symposium on Combinatorial Search (SoCS 2013),
184–192. AAAI Press.
Vallati, M. 2012. A guide to portfolio-based planning.
In Sombattheera, C.; Loi, N. K.; Wankar, R.; and Quan,
T. T., eds., Proceedings of the 6th International Workshop
on Multi-disciplinary Trends in Artificial Intelligence (MI-
WAI 2012), volume 7694, 57–68. Springer.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hy-
dra: Automatically configuring algorithms for portfolio-
based selection. In Fox, M., and Poole, D., eds., Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI 2010), 210–216. AAAI Press.


