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Abstract

Fluent merging is a reformulation technique for classical
planning problems that can be applied automatically or semi-
automatically. The reformulation strives to transform a plan-
ning task into a representation that allows a planning algo-
rithm to find solutions more efficiently or to find solutions of
better quality. This work introduces different approaches for
fluent merging and evaluates them within a state-of-the-art
planning system.

Introduction
In classical planning we try to find plans in a fully observ-
able world. While searching for a plan we move from one
state to another. Each state is a function that assigns values
to a number of variables. The set of values a variable can
have is called its domain.

In the original definition of planning problems in PDDL
notation (McDermott et al. 1998) there are only Boolean
variables. Recent research has shown that combining sev-
eral such variables into more general finite-domain vari-
ables, a process that has been called fluent merging (van den
Briel, Kambhampati, and Vossen 2007), can make plan
search more efficient. Helmert (2009) discusses a substan-
tial number of planning approaches that benefit from such
a conversion. Success stories include a SAT-based planner
(Chen, Zhao, and Zhang 2007), a planner based on inte-
ger programming (van den Briel, Vossen, and Kambham-
pati 2005), symbolic planning with BDDs (Edelkamp and
Helmert 2001) and heuristic search planners using pattern
databases (Edelkamp 2001; Haslum et al. 2007), merge-and-
shrink abstractions (Helmert, Haslum, and Hoffmann 2007),
the causal graph heuristic (Helmert 2004) or the context-
enhanced additive heuristic (Helmert and Geffner 2008). In
all these cases, finite-domain fluents are derived by combin-
ing groups of Boolean variables that cannot be true simulta-
neously (i. e., which are mutex).

In this paper, we examine additional ways of merging flu-
ents in order to facilitate planning, using a representation
where mutex propositions have already been combined as a
starting point. Our work is inspired by an article by van den
Briel, Kambhampati, and Vossen (2007), in which the au-
thors describe the possible benefits of general fluent merg-
ing for planning. They claim that only combining mutex

propositions is too conservative and propose the combina-
tion of finite-domain variables that have “strong dependen-
cies”. They mention two possible methods for discovering
such dependencies. The first method merges variables with
the property that all operators that change one of the vari-
ables also mention the other variable in a precondition or
effect. The second method merges variables with the prop-
erty that at least one operator has a precondition but no ef-
fect on the first variable and an effect on the second variable.
(However, this is a very general criterion and is often satis-
fied by thousands of variable pairs in a planning task, not all
of which can be merged within practical resource limits.)

Van den Briel et al. present examples that indicate that
their ideas could lead to improved planner performance, but
do not report experimental results or provide a precise al-
gorithm. They suggest that further research on the topic is
necessary.

Formal Semantics
We formalise finite-domain planning tasks using the SAS+

formalism (Bäckström and Nebel 1995), largely following
the notation of Helmert, Haslum, and Hoffmann (2007).
(We briefly remark that our implementation has been ex-
tended to cover finite-domain representations allowing con-
ditional effects, but we limit ourselves to the easier SAS+

case here for simplicity of presentation.)

Definition 1 (SAS+ planning task)
An SAS+ planning task or SAS+ task for short is a 4-tuple
Π = 〈V,O, s0, s?〉 with the following components:

• V = {v1, . . . , vn} is a set of state variables or fluents,
each with an associated finite domain Dv . If d ∈ Dv we
call the pair v = d an atom.
A partial variable assignment over V is a function s on
some subset of V such that s(v) ∈ Dv wherever s(v) is
defined. If s(v) is defined for all v ∈ V , s is called a state.

• O is a set of operators, where an operator is a triple
〈name, pre, eff〉 where name, the name of the operator
is a unique symbol that distinguishes this operator from
others, and pre and eff are partial variable assignments
called preconditions and effects, respectively.

• s0 is a state called the initial state, and s? is a partial
variable assignment called the goal.



We assume that the reader is familiar with the semantics
of planning tasks (operator application, plans, etc.) and re-
fer to the literature for details (e. g., Helmert, Haslum, and
Hoffmann 2007). To clarify notation, we only recall one im-
portant definition, that of transition systems.

Definition 2 (transition systems)
A transition system is a 5-tuple T = 〈S,L, T, s0, S?〉 such
that

• S is a finite set called the set of states of T ,
• L is a finite set called the set of transition labels or labels

of T ,
• T ⊆ S × L× S is the set of transitions of T ,
• s0 ∈ S is the initial state of T , and
• S? ⊆ S is the set of goal states of T .

We write (s
l−→ s′) ∈ T or simply s

l−→ s′ when T is clear
from context to denote that T has a transition from s to s′

with label l, i. e., to denote 〈s, l, s′〉 ∈ T .

Planning semantics are defined in terms of transition sys-
tems. Put briefly, each planning task Π defines a transition
system whose states are the states of Π (i. e., the complete as-
signments to the fluents of Π), whose initial and goal states
match the initial and goal states of Π, and whose transitions
are defined by the semantics of operator application for the
operators of Π, with transition labels corresponding to oper-
ator names.

In addition to the transition system of the complete plan-
ning task Π, for the purposes of fluent merging we are also
interested in more localised views that only capture the se-
mantics of planning tasks with respect to a particular fluent.
This can be achieved by considering transition systems in-
duced by atomic abstractions. Again, we only provide the
definition for the limited case that is important for this work
and refer to the literature for more general definitions of ab-
stractions and induced transition systems (Helmert, Haslum,
and Hoffmann 2007).

Definition 3 (atomic abstractions)
Let Π = 〈V,O, s0, s?〉 be an SAS+ task, and let v ∈ V
be one of its state variables. The transition system in-
duced by the atomic abstraction to v, or more succinctly
the transition system for v, is the transition system Tv =
〈Sv, Lv, T v, sv0, S

v
? 〉 such that:

• Sv = Dv (i. e., the domain of v forms the states of Tv),
• Lv is the set of operator names in O,

• there is a transition d
l−→ d′ whenever the transition sys-

tem defined by Π has a transition s
l−→ s′ with states s and

s′ such that s(v) = d and s′(v) = d′,
• sv0 = s0(v) (i. e., the initial state in Tv is the value of v in

the initial state of Π), and
• Sv

? consists of all possible values d ∈ Dv that can occur
in goal states of Π.

Even though they are defined semantically, based on the
exponentially large transition systems of planning tasks,
transition systems induced by atomic abstractions in SAS+

tasks can be computed syntactically, i. e., using efficient op-
erations directly on the compact task representation Π. In
particular, an operator 〈name, pre, eff〉 induces a transition
transition d

name−−−→ d′ in the transition system for v iff
• d is compatible with pre(v), i. e., pre(v) is undefined or

pre(v) = d, and
• 〈d, d′〉 is compatible with eff(v), i. e., eff(v) is undefined

and d = d′, or eff(v) = d′.
Moreover, it is not necessary to iterate over all (possibly

exponentially many) goal states in order to determine Sv? :
rather, the set of abstract goal states is simply the complete
domain Dv if s?(v) is undefined, and {s?(v)} otherwise.

A transition system for a variable v can be viewed as a la-
beled directed graph, and it shares many similarities with do-
main transition graphs (DTGs), introduced by Jonsson and
Bäckström (1998). Van den Briel et al. use DTGs as the
basis for defining fluent merging. However, there are some
semantic differences between the two kinds of graphs, which
make definitions of fluent merging based on DTGs slightly
more complicated. In particular, atomic abstractions for v
represent the behaviour of all operators with respect to v,
while DTGs only consider operators that change the value
of the represented variable.

Given only the DTGs of a planning task, it is not pos-
sible to reconstruct which operators have preconditions on
variables that they do not modify. Given only the transi-
tion systems for individual variables, however, it is possible
to reconstruct the complete transition system of an SAS+

task (Helmert, Haslum, and Hoffmann 2007, Theorem 8 and
following discussion). This is done through the operation
of computing synchronised products (Helmert, Haslum, and
Hoffmann 2007), which also provide the formal underpin-
nings of fluent merging.

Definition 4 (synchronised product)
Let T 1 = 〈S1, L, T 1, s10, S

1
?〉 and T 2 = 〈S2, L, T 2, s20, S

2
?〉

be transition systems with the same labels.
The synchronised product of T 1 and T 2 is defined as

T 1 ⊗ T 2 = 〈S,L, T, s0, S?〉, where
• S = S1 × S2,

• (〈s1, s2〉 l−→ 〈t1, t2〉) ∈ T iff (s1
l−→ t1) ∈ T 1 and (s2

l−→
t2) ∈ T 2,

• s0 = 〈s10, s20〉, and
• S? = S1

? × S2
? .

Synchronised products play an important role in the com-
putation of so-called merge-and-shrink abstractions; they
correspond to the merge steps in the abstraction computa-
tion (Helmert, Haslum, and Hoffmann 2007). They also pro-
vide a clean and direct semantics for fluent merging in SAS+

tasks. As discussed above, SAS+ tasks can be equivalently
represented through the set of all atomic transition systems,
{Tv | v ∈ V}. Fluent merging then means choosing two
fluents u, v ∈ V , removing their transition systems Tu and
Tv from the set, and replacing them with their synchronised
product, Tu ⊗ Tv . If we interpret this at the task level, this
can be seen as replacing fluents u and v with a product fluent
u⊗ v, a view which we will take on in the following.



There is one small issue that makes this symmetry be-
tween state variables and transition systems imperfect: in
cases where a goal value is defined for one of u and v but
not the other, there is no clean way of defining a goal value
for the product fluent u⊗ v. However, this can easily be ad-
dressed by standard compilation techniques to compile away
disjunctive goals (Gazen and Knoblock 1997).

Fluent Merging in Fast Downward
Based on the theoretical definition of Fluent Merging we
briefly discuss how we implemented the technique by in-
tegrating it into the Fast Downward planning framework
(Helmert 2006). First we briefly explain the framework it-
self. In order to find a plan, Fast Downward proceeds in
three main stages (Helmert 2006):

• In the translation stage, a PDDL (McDermott et al. 1998)
problem is parsed, normalised, grounded and translated
into an SAS+ planning task.

• In the knowledge compilation stage a relevance analysis is
performed and some data structures are prepared for the
last stage.

• In the last stage the actual search is executed. For this
purpose many different heuristics and search methods are
available.

We integrate fluent merging between the first and second
stage. The fluent merging algorithm reads the SAS+ plan-
ning task that was written by the translator and outputs a new
SAS+ planning task with merged variables. The new com-
ponent can be integrated easily since none of the original
components have to be altered.

Fluent Merging Algorithm
The fluent merging algorithm is composed of two steps. In
the first step, we select groups of variables that are then
merged in the second step. We tested many different se-
lection methods and will discuss them later. This section
explains the second step, the generic merging procedure.

The merging procedure follows the definition of synchro-
nised products that provides the formal semantics of fluent
merging, but unlike that definition works directly on the task
description level.

Let Π = 〈V,O, s0, s?〉 be an SAS+ planning task and
a, b ∈ V the variables that we want to replace with a merged
variable a⊗ b.

Merged Variable The new variable is assigned the do-
main Da ×Db.

Initial State We set s0(a⊗ b) = 〈s0(a), s0(b)〉.

Operators Every operator that mentions a or b in its pre-
condition or effect needs to be updated. In some cases, a sin-
gle operator needs to be replaced by multiple new operators.
All new operators are assigned the same name as the original
operator, so that plans for the modified problem (described
as sequences of operators represented by their names) can
be used verbatim as plans for the original problem. The al-
gorithm for adapting an operator is shown in Figure 1. The

procedure adapt-operator(ops O, op o, var a, var b)
1. 〈name, pre, eff〉 := o

2. if o mentions neither a nor b then
3. return
4. if eff(a) and eff(b) are defined and

pre(a) and pre(b) are undefined then
5. eff(a⊗ b) := 〈eff(a), eff(b)〉
6. return
7. possa := {pre(a)} if defined, else Da

8. possb := {pre(b)} if defined, else Db

9. foreach apre ∈ possa do
10. foreach bpre ∈ possb do
11. aeff := eff(a) if defined, else apre

12. beff := eff(b) if defined, else bpre

13. prenew := pre

14. effnew := eff

15. prenew(a⊗ b) := 〈apre, bpre〉
16. effnew(a⊗ b) := 〈aeff, beff〉
17. onew := 〈prenew, effnew〉
18. O := O ∪ {〈name, prenew, effnew〉}
19. O := O \ {o}

Figure 1: Algorithm that adapts an operator o ∈ O during
the merge of variables a and b.

special cases in lines 2–6 are not strictly necessary, but speed
up the computation and lead to a more compact result in
common cases.

Goal We have to distinguish three cases:

• s?(a) and s?(b) undefined:
Nothing to do.

• s?(a) and s?(b) both defined:
Set s?(a⊗ b) = 〈s?(a), s?(b)〉.

• Exactly one of s?(a) and s?(b) is defined:
Without loss of generality, we assume that s?(a) is de-
fined. Then any of the values in the set {〈s?(a), d〉 |
d ∈ Db} should be treated as a possible goal value for
a⊗ b. Since SAS+ cannot represent goals of this form di-
rectly, we use a standard compilation technique for first
compiling the actual goal into an operator (Gazen and
Knoblock 1997) and then adapt this operator as described
previously.

After these steps, all references to the old variables a and
b can be removed from the task description.

While the algorithm as described only merges two vari-
ables at a time, it can be invoked repeatedly to merge
“groups” or “clusters” of more than two variables. For ex-
ample, to merge variables a, b and c into a single group, we
would first merge a and b into a ⊗ b and then a ⊗ b and c



into (a⊗ b)⊗ c. Synchronised product operations are asso-
ciative and commutative modulo isomorphism of transition
systems, so the precise merge order does not matter.

Variable Selection
There are many possible criteria for finding variables to
merge. In this section we present the methods that we have
implemented in the course of this work. A selection method
is an algorithm that has the following input:
• An SAS+ planning task Π = 〈V,O, s0, s?〉
• m, the number of variables that should be merged into a

single “group” or “cluster”
• n, the maximum number of such groups to form

It returns a set of variable groups to be merged by the
combination algorithm. Usually it will produce m groups of
size n each, unless this is not possible because m · n > |V|.
A selection method may also opt to produce smaller or fewer
groups if it cannot find a sufficient number of suitably large
promising candidate groups to merge, but this is not the case
for the simpler methods described in this section.

The first set of experiments was conducted with the se-
lection methods below. In these methods, each group is as-
signed a score that represents its suitability to be merged.
This assignment is done by an evaluation function e : V ×
V → R that assigns a numerical value to all pairs of vari-
ables in the planning task. If m ≥ 3, i. e., we seek to merge
groups of three or more variables, variable groups G of size
m are scored by computing the sum of all pairwise scores for
pairs of variables in G. In the last step of the selection al-
gorithm all groups are sorted in descending order of scores
and we repeatedly pick the first group in the list until the
maximum number of merges n has been reached. Groups to
be merged are not allowed to overlap: once a variable has
formed part of a merge, all groups that contain it are elimi-
nated from further consideration.

We experimented with the following evaluation functions:
• Random variables (rand)

Randomly select variable groups.

e(a, b) = random()

• Mutex variables (mutex)
Prefer groups with variables whose domains are maxi-
mally mutex, i. e., contain as many value pairs as possible
that cannot be simultaneously true according to the mutex
information generated by Fast Downward’s translation al-
gorithm.

e(a, b) = |{(da, db) ∈ Da ×Db | da and db mutex}|

• Number of atoms (size)
Choose variables whose merging minimises the total
number of atoms of the planning task.

e(a, b) = −(|Da⊗b| − (|Da|+ |Db|))

• Connected variables (conn)
Prefer variable groups that are heavily connected in the
causal graph.

conn(a, b) = cg weight (a, b) + cg weight (b, a)

Domain no-merge rand mutex size conn cycles goals ops
blocks (35) 35 35 35 35 31 31 31 35
driverlog (20) 20 17 13 16 19 14 18 15
grid (5) 5 1 1 5 0 1 1 2
gripper (20) 20 20 15 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28 28 28
logistics98 (35) 35 28 35 35 20 20 21 11
miconic (150) 150 150 150 150 150 150 150 150
mprime (35) 35 30 35 35 34 29 35 20
psr-small (50) 50 49 48 48 47 48 47 49
zenotravel (20) 20 20 16 16 20 20 19 15
depot (22) 17 11 14 12 15 15 13 14
freecell (80) 78 75 77 76 72 72 57 37
pathways (30) 15 14 16 17 14 14 13 15
pipes-nt (50) 38 5 8 16 14 14 9 16
pipes-t (50) 24 9 3 17 11 8 9 15
rovers (40) 34 31 34 35 34 34 34 24
schedule (150) 60 58 59 59 54 52 39 60
tpp (30) 28 20 24 24 22 24 23 16
trucks (30) 17 15 14 16 14 14 16 6
Total (880) 709 616 625 660 619 608 583 548

Table 1: Comparison of solved tasks for different fluent
merging methods with the hcea heuristic, n = 5 and m = 2.
Number of tasks in each domain is shown in parentheses.
In the domains above the separator line no-merge already
solves all instances, so no improvement is possible. Below
the separator the best results among the different selection
methods are highlighted in bold and cases where the perfor-
mance of the no-merge method is exceeded are underlined.

e(a, b) = conn(a, b)

Here, the cg weight of a causal graph edge is the number
of operators that induce it (Helmert 2006).

• Two-cycle pairs (cycles)
Prefer variables that form a two-cycle in the causal graph.

e(a, b) =


conn(a, b) if 〈a, b〉 ∈ E

and 〈b, a〉 ∈ E

conn(a, b)− 109 else

Here E is the set of directed edges of the causal graph.
• Goal variables (goals)

Prefer variables that appear in the goal description.

e(a, b) =

{
conn(a, b) if s?(a) or s?(b) defined
conn(a, b)− 109 else

• Variables minimizing number of operators (ops)
Prefer variable groups whose merging minimise the num-
ber of new operators.

e(a, b) = |O| − |Onew|
Here Onew is the set of operators that would result from
merging a and b.

Table 1 shows the number of tasks solved by a greedy
best-first search with deferred evaluation (Richter and
Helmert 2009) and the hcea heuristic in a number of IPC do-
mains after applying fluent merging with the selection meth-
ods mentioned above. For the experiments we allowed the



search component of the planner to run for at most 30 min-
utes and use 2 GB of memory. The column no-merge reports
results without performing fluent merging. The maximum
group size m is set to 2 in these experiments, while the max-
imum number of groups n is set to 5. Other experiments
(n ∈ {10, 20, . . . , 100, 125, 150, 175, 200, 250, 300},m ∈
{3, 4, 5, 6, 7}) all led to worse performance, i. e., fewer plans
found in more time.

Although some of the entries in the table show improve-
ments by performing fluent merging, we were not satisfied
with the overall results. While looking for a smarter selec-
tion method we found the same object method, which per-
formed significantly better in the Schedule and Pathways
domains. (Unfortunately, other domains were not tested at
the time.) Between the initial tests with the above men-
tioned methods and the experiments with the same object
method, the implementation of the hcea heuristic in Fast
Downward was improved, making a direct comparison to
the other methods’ results difficult. We are currently rerun-
ning all experiments with the improved hcea version.

Same Object Method
The “same object method” exploits the fact that planning
tasks are typically not given directly in a grounded repre-
sentation like SAS+, but instead use a first-order PDDL
representation based on logical predicates and objects. As
a first approximation, it is not entirely unreasonable to as-
sume that SAS+ fluents that stem from PDDL propositions
that talk about the same object are more closely related than
ones which do not. For example, even without looking
at any operator definitions, a human problem solver might
suspect that the two grounded propositions (painted
chair1) and (polished chair1) are more closely
related to each other than the two grounded propositions
(painted chair1) and (polished table3) be-
cause they speak of the same object, chair1.

The same object method starts by associating exactly
one object from the input PDDL representation with each
SAS+ fluent. Recall that each SAS+ fluent v (before
we apply our fluent merging algorithm) is formed from a
group Av of mutually exclusive PDDL atoms. The object
associated with v is simply the object that occurs most
frequently as a term in the atoms Av . (Tie-breaking rules are
applied when there is no unique such atom.) For example,
variable v might be derived from mutex group Av =
{(at c2 loc1),(at c2 loc2),(at c2 loc3)},
which mentions the objects c2, loc1, loc2 and loc3. Of
these objects, c2 is mentioned most frequently and hence
becomes the object associated with v.

We only allow merges of fluents that are associated with
the same object. However, since this can still lead to merged
fluents with very large domains, we again limit the number
of variables to be merged into a single group and the num-
ber of groups to merge, as in the previous algorithms. Af-
ter some experimentation and following the comparatively
good performance of the “size” method in the previous ex-
periment, we decided to use the combined domain size of a
group, i. e., the product of the domain sizes of the involved
variables, as the quality measure for a merge, preferring

groups whose combined domain size is as low as possible.

Experiments
In our initial experiments, the same object method signif-
icantly outperformed the other variable selection methods
we tried, so all our subsequent experiments were based on
this approach. After discouraging initial results with the
merge-and-shrink heuristic (Helmert, Haslum, and Hoff-
mann 2007) and the landmark-cut heuristic (Helmert and
Domshlak 2009), we concentrated our further experiments
on satisficing configurations of Fast Downward. We again
used greedy best-first search with deferred evaluation and
tested three different heuristics:

• hcea: the context-enhanced additive heuristic (Helmert
and Geffner 2008)

• hFF: the FF/additive heuristic (Hoffmann and Nebel 2001;
Keyder and Geffner 2008)

• hCG: the causal graph heuristic (Helmert 2004)

In all our experiments, forming groups of only two flu-
ents (m = 2) produced better results than using larger
clusters, so we only present results for this case. For the
second fluent merging parameter, the number n of groups
to form, the picture is more varied and differs signifi-
cantly from domain to domain. Therefore, we report re-
sults for different values of this parameter, taken from the
set {0 (no merges), 2, 5, 10, 15, 20, 30}. For all experiments
we used a 30 minute timeout for the search component of
the planner.

The hcea heuristic could not be significantly improved by
fluent merging. Here only three more planning tasks could
be solved by combining variables, and the overall coverage
never improved.

The other two heuristics however showed some stronger
potential benefits from fluent merging. As Table 2 shows,
a total of 6 problem instances for hFF and 12 instances for
hCG could be solved by some variation of fluent merging that
eluded the same algorithm in the original problem represen-
tation. We should note that those two heuristics are already
highly competitive planning methods. For hFF, some pa-
rameter settings also achieve better overall performance in
the tested domains. Table 3 provides detailed results for a
particularly positive case, the challenging Sokoban domain,
in which fluent merging increases the coverage of hFF from
24 to 29 (out of 30) solved instances.

Conclusions and Future Work
We have provided the first general implementation and ex-
perimental evaluation of fluent merging for classical plan-
ning. Our results show that the approach holds promise: in
some domains and with some combination methods, simply
reformulating a problem instance by merging certain pairs
of fluents improved problem solving performance.

However, our results also make it obvious that fluent
merging does not improve heuristic accuracy across the
board, and that further research is needed to find out which
and how many fluents to merge, and whether fluent merging
is useful for a given planning task at all.



Merges hFF Merges hCG

Domain 0 2 5 10 15 20 30 0 2 5 10 15 20 30
airport (50) 25 25 25 25 25 25 25 21 21 21 21 21 20 20
assembly (30) 30 30 30 30 30 30 30 6 7 7 7 7 7 7
depot (22) 19 18 19 20 20 20 20 12 12 12 12 13 13 13
driverlog (20) 20 20 20 20 20 20 20 20 20 18 18 18 18 18
freecell (80) 76 80 78 77 79 78 75 72 70 70 75 74 74 72
miconic (150) 150 150 150 150 150 80 80 150 150 150 150 150 80 80
pprinter (30) 23 22 22 22 22 22 22 24 23 23 22 22 22 22
pipes-nt (50) 43 41 42 42 43 42 42 24 23 24 25 25 25 26
pipes-t (50) 38 39 38 37 39 37 37 17 18 17 15 16 15 15
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 40 40 40 40 40 40 37 32 31 32 31 31 32 32
satellite (36) 34 34 34 34 34 34 34 34 34 34 34 34 34 34
schedule (150) 150 149 149 149 149 149 148 149 149 149 149 149 149 149
sokoban-sat (30) 24 28 29 28 28 28 28 27 26 24 25 25 25 25
storage (30) 20 20 20 20 19 19 19 20 20 20 20 20 20 20
tpp (30) 30 30 30 30 30 30 30 27 27 27 27 27 27 26
trucks (30) 19 17 17 18 18 18 18 10 11 11 11 11 12 11
wood-sat (30) 29 29 28 28 28 28 29 11 11 11 11 11 14 12
Total (908) 820 822 821 820 824 750 744 706 703 700 703 704 637 632

Table 2: Comparison of solved tasks for different maximum numbers of merges using the heuristics hFF and hCG. The maximum
group size is set to 2 in this experiment. Number of tasks in each domain is shown in parentheses. Best results for each heuristic
are highlighted in bold.

hFF 0 Merges hFF 2 Merges hFF 5 Merges
Inst. Cost Exp. Time Cost Exp. Time Cost Exp. Time
Sokoban

#16 345 29682 4.18 329 21743 3.97 371 24656 5.39
#17 114 8543 1.27 215 29104 5.31 247 38733 8.51
#18 497 2421586 314.03 275 1033770 172.36 301 752976 152.67
#19 93 351433 182.57 52 776873 476.85
#20
#21 256 75853 11.23 224 41600 8.62 236 81226 19.9
#22 389 4024596 767.93 409 3824691 833.27
#23 343 24924 2.98 311 31248 5.46 299 27809 5.68
#24 137 173933 26.48 165 219517 40.26 137 139241 30.57
#25 221 71862 12.14 185 74991 14.67 245 89785 20.78
#26 402 577660 110.98 320 794300 200.1 434 1404490 420.94
#27 113 529446 197.51 97 923336 412.6
#28 536 1983688 557.24 486 3858328 1287.57
#29 779 4673208 914.51
#30 502 886401 134.08 494 719545 116.84 470 677857 127.8

Table 3: Detailed results for the sokoban-sat08-strips domain (15 smallest tasks omitted), using greedy best-first search with
deferred evaluation and hFF. The maximum group size was set to 2. For each number of merges we report the plan cost, number
of expansions and search time in seconds. Best results are highlighted in bold.



Additionally, it can be expected that the parameters for
the maximum number of merges and the maximum group
size were not optimally set in our experiments. With cur-
rent planning systems obtaining more and more knobs to
tweak, the automatic parameter tuning methods like the ones
found in the ParamILS framework appear worth investigat-
ing (Hutter et al. 2009).

Finally, we remark that in this work, we used the finite-
domain representations generated by Fast Downward’s
translation component as a starting point. As van den Briel,
Kambhampati, and Vossen (2007) observe, the reformula-
tion performed by this translator is already a form of flu-
ent merging (based on mutexes of the planning instance at
hand), and it is far from clear whether the particular merg-
ing choices performed by the translation algorithm are ideal.
Hence, another interesting question is whether we can derive
a general fluent merging algorithm that starts from a regular
Boolean encoding of a planning task and leads to a better
representation than the one found by Fast Downward’s de-
fault algorithm.
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