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Setting

• optimal classical planning
• A∗ search + admissible heuristic
• pattern databases
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How to select patterns?

• bin packing (Edelkamp 2001)
• genetic algorithms (Edelkamp 2006)
• hill climbing (Haslum et al. 2007)
• CPC (Franco et al. 2017)
• CEGAR (Rovner et al. 2019)
• systematic naive (Felner et al. 2004)
• systematic (Pommerening et al. 2013)
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How to combine multiple PDB heuristics?

• maximize
• cost partitioning
• saturated cost partitioning

3/15



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics
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Diverse orders for saturated cost partitioning

Diversification algorithm

• sample 1000 states Ŝ
• start with empty set of orders
• for 200 seconds:

• sample a new state s
• find a greedy order for s
• if a sample in Ŝ profits from it, keep it
• otherwise, discard it
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Idea

• select patterns
• compute diverse saturated cost partitionings over PDBs
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Idea

• select patterns with saturated cost partitioning
• compute diverse saturated cost partitionings over PDBs
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A new pattern selection algorithm

function Sys-SCP(Π)
C← ∅
repeat for at most Tx seconds
σ ← ⟨⟩
for P ∈ Order(Sys) and at most Ty seconds do
if P /∈ C and PatternUseful(σ, P) then
σ ← σ ⊕ P
C← C ∪ {P}

until σ = ⟨⟩
return C

function PatternUseful(σ, P)
return ∃s ∈ S(T ) : hSCPσ (cost, s) < hSCPσ⊕P(cost, s) <∞
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Computing PatternUseful on projections

Theorem

∃s ∈ S(T ) : hSCPσ (cost, s) < hSCPσ⊕P(cost, s) <∞
⇔ ∃s′ ∈ S(TP) : 0 < h∗TP(rem, s′) <∞
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Using the theorem

• keep track of the remaining cost function
• select a PDB if it has positive finite goal distances
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Pattern orders

order by increasing pattern size, break ties by:

• random
• states in projection
• active operators
• Fast Downward variable order:

• up: [7, 5], [8, 2], [8, 5]
• down: [8, 5], [8, 2], [7, 5]
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Algorithm details

• store dead ends to prune states during search
• reuse Sys-SCP pattern sequences for diversification
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Systematic patterns with limits

Lim: 2M states per PDB, 20M states in collection, 100 seconds

Max pattern size 1 2 3 4 5

Sys-Naive 840 937 914 752 571
Sys-Naive-Lim 840 968 1004 912 878
Sys 840 986 1057 922 731
Sys-Lim 840 985 1088 1050 1035
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Sys-SCP vs. other pattern selection algorithms

HC Sys-3-Lim CPC CEGAR Sys-SCP

Coverage 966 1088 1055 1098 1168
#domains Sys-SCP better 28 23 21 21 –
#domains Sys-SCP worse 3 2 3 3 –
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Future work

• test patterns on samples
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Summary

• new pattern selection algorithm based on
saturated cost partitioning

• outperforms all previous pattern selection algorithms
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Coverage

fd-up – 5 6 5 4 3 3 1140.0

states-up 6 – 6 8 5 2 2 1153.0

random 10 10 – 8 7 6 3 1148.2

ops-down 7 8 9 – 4 7 3 1141.0

states-down 9 8 9 7 – 4 2 1152.0

ops-up 11 12 12 11 11 – 6 1166.0

fd-down 12 10 12 10 9 6 – 1168.0
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