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Abstract
Pattern databases are the foundation of some of the
strongest admissible heuristics for optimal classical
planning. Experiments showed that the most infor-
mative way of combining information from multi-
ple pattern databases is to use saturated cost parti-
tioning. Previous work selected patterns and com-
puted saturated cost partitionings over the resulting
pattern database heuristics in two separate steps.
We introduce a new method that uses saturated cost
partitioning to select patterns and show that it out-
performs all existing pattern selection algorithms.

1 Introduction
A∗ search [Hart et al., 1968] with an admissible heuristic
[Pearl, 1984] is one of the most successful methods for solv-
ing classical planning tasks optimally. An important build-
ing block of some of the strongest admissible heuristics are
pattern database (PDB) heuristics. A PDB heuristic precom-
putes all goal distances in a simplified state space obtained by
projecting the task to a subset of state variables, the pattern,
and uses these distances as lower bounds on the true goal dis-
tances. PDB heuristics were originally introduced for solving
the 15-puzzle [Culberson and Schaeffer, 1996] and have later
been generalized to many other combinatorial search tasks
[e.g., Korf, 1997; Felner et al., 2004] and to the setting of
domain-independent planning [Edelkamp, 2001].

Using a single PDB heuristic of reasonable size is usually
not enough to cover sufficiently many aspects of challeng-
ing planning tasks. It is therefore often beneficial to com-
pute multiple PDB heuristics and to combine their estimates
admissibly [Holte et al., 2006]. The simplest approach for
this is to choose the PDB with the highest estimate in each
state. Instead of this maximization scheme, we would like
to sum estimates, but this renders the resulting heuristic in-
admissible in general. However, if two PDBs are affected
by disjoint sets of operators, they are independent and we
can admissibly add their estimates [Korf and Felner, 2002;
Felner et al., 2004]. Haslum et al. [2007] later generalized
this idea by introducing the canonical heuristic for PDBs,
which computes all maximal subsets of pairwise independent
PDBs and then uses the maximum over the sums of indepen-
dent PDBs as the heuristic value.

Cost partitioning [Katz and Domshlak, 2008; Yang et al.,
2008] is a generalization of the independence-based meth-
ods above. It makes the sum of heuristic estimates ad-
missible by distributing the costs of each operator among
the heuristics. The literature contains many different cost
partitioning algorithms such as zero-one cost partitioning
[Edelkamp, 2002; Haslum et al., 2007], uniform cost parti-
tioning [Katz and Domshlak, 2008], optimal cost partition-
ing [Katz and Domshlak, 2008; Karpas and Domshlak, 2009;
Pommerening et al., 2015] and post-hoc optimization [Pom-
merening et al., 2013].

In previous work [Seipp et al., 2017a], we showed experi-
mentally for the benchmark tasks from previous International
Planning Competitions (IPC) that saturated cost partition-
ing (SCP) [Seipp and Helmert, 2014; Seipp and Helmert,
2018] is the cost partitioning algorithm of choice for PDB
heuristics. Saturated cost partitioning considers an ordered
sequence of heuristics. Iteratively, it gives each heuristic the
minimum amount of costs that the heuristic needs to justify
all its estimates and then uses the remaining costs for subse-
quent heuristics until all heuristics have been served this way.

Before we can compute a saturated cost partitioning over
pattern database heuristics, we need to select a collection
of patterns. The first domain-independent automated pat-
tern selection algorithm is due to Edelkamp [2001]. It par-
titions the state variables into patterns via best-fit bin pack-
ing. Edelkamp [2006] later used a genetic algorithm to search
for a pattern collection that maximizes the average heuristic
value of a zero-one cost partitioning over the PDB heuristics.

Haslum et al. [2007] proposed an algorithm that performs a
hill-climbing search in the space of pattern collections (HC).
HC evaluates a collection C by estimating the search effort
of the canonical heuristic over C based on a model of IDA∗

runtime [Korf et al., 2001].
Franco et al. [2017] presented the Complementary PDBs

Creation (CPC) method, that combines bin packing and ge-
netic algorithms to create a pattern collection minimizing the
estimated search effort of an A∗ search [Lelis et al., 2014].

Rovner et al. [2019] repeatedly compute patterns using
counterexample-guided abstraction refinement (CEGAR):
starting from a random goal variable, their CEGAR algorithm
iteratively finds solutions in the corresponding projection and
executes them in the original state space. Whenever a solu-
tion cannot be executed due to a violated precondition, it adds



the missing precondition variable to the pattern.
Finally, Pommerening et al. [2013] systematically generate

all interesting patterns up to a given size X (SYS-X). Experi-
ments showed that cost-partitioned heuristics over SYS-2 and
SYS-3 yield accurate estimates [Pommerening et al., 2013;
Seipp et al., 2017a], but using all interesting patterns of larger
sizes is usually infeasible.

We introduce SYS-SCP, a new pattern selection algo-
rithm based on saturated cost partitioning that potentially
considers all interesting patterns, but only selects useful ones.
SYS-SCP builds multiple pattern sequences that together
form the resulting pattern collection. For each sequence σ,
it considers the interesting patterns in increasing order by
size and adds a pattern P to σ if P is not part of an earlier
sequence and the saturated cost partitioning heuristic over σ
plus P is more informative than the one over σ alone.

2 Background
We consider optimal classical planning tasks in a SAS+-like
notation [Bäckström and Nebel, 1995] and represent a plan-
ning task Π as a tuple 〈V,O, s0, s?〉. Each variable v in the
finite set of variables V has a finite domain dom(v). A partial
state s is defined over a subset of variables vars(s) ⊆ V and
maps each v ∈ vars(s) to a value in dom(v), written as s[v].
We call the pair 〈v, s[v]〉 an atom and interchangeably treat
partial states as mappings from variables to values or as sets
of atoms. If vars(s) = V , we call s a state. We write S(Π)
for the set of all states in Π.

Each operator o in the finite set of operators O has a pre-
condition pre(o) and an effect eff(o), both of which are partial
states, and a cost cost(o) ∈ R+

0 . An operator o is applicable
in a state s if pre(o) ⊆ s. Applying o in s leads into state
s′ = sJoK with s′[v] = eff(o)[v] for all v ∈ vars(eff(o)) and
s′[v] = s[v] for all variables v ∈ V \ vars(eff(o)). The state
s0 is called the initial state and s? is a partial state, the goal.

Transition systems assign semantics to planning tasks.

Definition 1 (transition systems). A transition system T is a
labeled digraph defined by a finite set of states S(T ), a finite

set of labels L(T ), a set T (T ) of labeled transitions s `−→ s′

with s, s′ ∈ S(T ) and ` ∈ L(T ), an initial state s0(T ), and
a set S?(T ) of goal states.

A planning task Π = 〈V,O, s0, s?〉 induces a transition
system T with states S(Π), labels O, transitions {s o−→ sJoK |
s ∈ S(Π), o ∈ O, pre(o) ⊆ s}, initial state s0 and goal states
{s ∈ S(Π) | s? ⊆ s}.

Separating transition systems from cost functions allows
us to evaluate the same transition system under different cost
functions, which is important for cost partitioning.

Definition 2 (cost functions). A cost function for transition
system T is a function cost : L(T ) → R ∪ {−∞,∞}. It
is finite if −∞ < cost(`) < ∞ for all labels `. It is non-
negative if cost(`) ≥ 0 for all labels `. We write C(T ) for the
set of all cost functions for T .

Note that we assume that the cost function of the planning
task is non-negative and finite, but as in previous work we
allow negative [Pommerening et al., 2015] and infinite costs

[Seipp and Helmert, 2019] in cost partitionings. The general-
ization to infinite costs is necessary to cleanly state some of
our definitions.

Definition 3 (weighted transition systems). A weighted tran-
sition system is a pair 〈T , cost〉 where T is a transition sys-
tem and cost ∈ C(T ) is a cost function for T .

The cost of a path π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉 in a
weighted transition system 〈T , cost〉 is defined as cost(π) =∑n
i=1 cost(`i). It is∞ if the sum contains both +∞ and−∞.

If sn is a goal state, π is called a goal path for s0.

Definition 4 (goal distances and optimal paths). The goal dis-
tance of a state s ∈ S(T ) in a weighted transition system
〈T , cost〉 is defined as infπ∈Π?(T ,s) cost(π), where Π?(T , s)
is the set of goal paths from s in T . (The infimum of the empty
set is∞.) We write h∗T (cost, s) for the goal distance of s. If
h∗T (cost, s) =∞, we call s unsolvable. A goal path π from s
is optimal if cost(π) = h∗T (cost, s).

Optimal classical planning is the problem of finding an op-
timal goal path from s0 or showing that s0 is unsolvable.

We use heuristics to estimate goal distances [Pearl, 1984].

Definition 5 (heuristics). A heuristic for a transition sys-
tem T is a function h : C(T ) × S(T ) → R ∪ {−∞,∞}.
Heuristic h is admissible if h(cost, s) ≤ h∗T (cost, s) for all
cost ∈ C(T ) and all s ∈ S(T ).

Cost partitioning makes adding heuristics admissible by
distributing the costs of each operator among the heuristics.

Definition 6 (cost partitioning). Let T be a transition sys-
tem. A cost partitioning for a cost function cost ∈ C(T ) is
a tuple 〈cost1, . . . , costn〉 ∈ C(T )n whose sum is bounded
by cost:

∑n
i=1 costi(`) ≤ cost(`) for all ` ∈ L(T ). A

cost partitioning 〈cost1, . . . , costn〉 ∈ C(T )n over the heuris-
tics 〈h1, . . . , hn〉 for T induces the cost-partitioned heuristic
h(cost, s) =

∑n
i=1 hi(costi, s). If the sum contains +∞ and

−∞, it evaluates to the leftmost infinite value.

One of the cost partitioning algorithms from the literature
is saturated cost partitioning [Seipp and Helmert, 2018]. It
is based on the insight that we can often reduce the amount
of costs given to a heuristic without changing any heuristic
estimates. Saturated cost functions formalize this idea.

Definition 7 (saturated cost function). Consider a transition
system T , a heuristic h for T and a cost function cost ∈
C(T ). A cost function scf ∈ C(T ) is saturated for h and cost
if

1. scf(`) ≤ cost(`) for all labels ` ∈ L(T ) and

2. h(scf, s) = h(cost, s) for all states s ∈ S(T ).

A saturated cost function scf is minimal if there is no other
saturated cost function scf′ for h and cost with scf(`) ≤
scf′(`) for all labels ` ∈ L(T ).

Whether we can efficiently compute a minimal saturated
cost function depends on the type of heuristic. In earlier work
[Seipp and Helmert, 2018], we showed that this is possible
for explicitly-represented abstraction heuristics [Helmert et
al., 2007], which include PDB heuristics.



Definition 8 (minimum saturated cost function for abstraction
heuristics). Let 〈T , cost〉 be a weighted transition system and
h an abstraction heuristic for T with abstract transition sys-
tem T ′. The minimum saturated cost function mscf for h and
cost is

mscf(`) = sup

a
`−→b∈T (T ′)

(h∗T ′(cost, a)− h∗T ′(cost, b))

for all ` ∈ L(T ), where x−y = −∞ iff x = −∞ or y =∞.
Given a sequence of abstraction heuristics, the saturated

cost partitioning algorithm iteratively assigns to each heuris-
tic only the costs that the heuristic needs to preserve its esti-
mates and uses the remaining costs for subsequent heuristics.
Definition 9 (saturated cost partitioning). Consider a transi-
tion system T and a sequence of abstraction heuristics H =
〈h1, . . . , hn〉 for T . For all 1 ≤ i ≤ n, saturatei : C(T ) →
C(T ) receives a cost function rem and returns the minimum
saturated cost function for hi and rem. The saturated cost par-
titioning 〈cost1, . . . , costn〉 of a function cost ∈ C(T ) overH
is defined as:

rem0 = cost
costi = saturatei(remi−1) for all 1 ≤ i ≤ n
remi = remi−1 − costi for all 1 ≤ i ≤ n,

where the auxiliary cost functions remi represent the remain-
ing costs after processing the first i heuristics inH.

We write hSCP
H for the saturated cost partitioning heuristic

over the sequence of heuristics H. In this work, we compute
saturated cost partitionings over pattern database heuristics.

A pattern for task Π with variables V is a subset P ⊆ V .
By syntactically removing all variables from Π that are not
in P , we obtain the projected task Π|P inducing the abstract
transition system TP . The PDB heuristic hP for a pattern P
is defined as hP (cost, s) = h∗TP (cost, s|P ), where s|P is the
abstract state that s is projected to in Π|P . For the pattern se-
quence 〈P1, . . . , Pn〉 we define hSCP

〈P1,...,Pn〉 = hSCP
〈hP1 ,...,hPn 〉.

One of the simplest pattern selection algorithms is to gen-
erate all patterns up to a given sizeX [Felner et al., 2004] and
we call this approach SYS-NAIVE-X. It is easy to see that for
tasks with n variables, SYS-NAIVE-X generates

∑X
i=1

(
n
i

)
patterns. Usually, many of these patterns do not add much
information to a cost-partitioned heuristic over the patterns.
Unfortunately, there is no efficiently computable test that al-
lows us to discard such uninformative patterns. Even patterns
without any goal variables can increase heuristic estimates in
a cost partitioning [Pommerening, 2017].

However, in the setting where only non-negative cost func-
tions are allowed in cost partitionings, there are efficiently
computable criteria for deciding whether a pattern is interest-
ing, i.e., whether it cannot be replaced by a set of smaller pat-
terns that together yield the same heuristic estimates [Pom-
merening et al., 2013].

The criteria are based on the causal graph CG(Π) of a task
Π [Helmert, 2004]. CG(Π) is a directed graph with a node for
each variable in Π. If there is an operator with a precondition
on u and an effect on v 6= u, CG(Π) contains a precondition
arc from u to v. If an operator affects both u and v, CG(Π)
contains co-effect arcs from u to v and from v to u.

Algorithm 1 SYS-SCP: Given a planning task with states
S(T ), cost function cost and interesting patterns SYS, select
a subset C ⊆ SYS.

1: function SYS-SCP(Π)
2: C ← ∅
3: repeat for at most Tx seconds
4: σ← 〈〉
5: for P ∈ ORDER(SYS) and at most Ty seconds do
6: if P /∈ C and PATTERNUSEFUL(σ, P ) then
7: σ← σ ⊕ P
8: C ← C ∪ {P}
9: until σ = 〈〉

10: return C

11: function PATTERNUSEFUL(σ, P )
12: return ∃s ∈ S(T ) :

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞

Definition 10 (interesting patterns). A pattern P is interest-
ing if

1. CG(Π|P ) is weakly connected, and

2. CG(Π|P ) contains a directed path via precondition arcs
from each node to some goal variable node.

The systematic pattern generation method SYS-X gener-
ates all interesting patterns up to size X . We let SYS denote
the set of all interesting patterns for a given task. On IPC
benchmark tasks, SYS-X often generates much fewer patterns
than SYS-NAIVE-X for the same size limit X . Still, it is usu-
ally infeasible to compute all SYS-X patterns and the corre-
sponding projections for X > 3 within reasonable amounts
of time and memory. Also, we hypothesize that even when
considering only interesting patterns, usually only a small
percentage of the systematic patterns up to size 3 contribute
much information to the resulting heuristic.

For these two reasons we propose a new pattern selection
algorithm that potentially considers all interesting patterns,
but only selects the ones that it deems useful.

3 SYS-SCP Pattern Selection Algorithm
Our new pattern selection algorithm repeatedly creates a new
empty pattern sequence σ and only appends those interest-
ing patterns to σ that increase any finite heuristic values of a
saturated cost partitioning heuristic computed over σ.

Algorithm 1 shows pseudo-code for the procedure, which
we call SYS-SCP. It starts with an empty pattern collection
C. In each iteration of the outer loop, SYS-SCP creates a new
empty pattern sequence σ and then loops over the interesting
patterns P ∈ SYS in the order chosen by ORDER (see Sec-
tion 3.2) for at most Ty seconds. SYS-SCP appends a pattern
P to σ and includes it in C if there is a state s for which the
saturated cost partitioning over σ extended by P has a higher
finite heuristic value than the one over σ alone. Once an iter-
ation selects no new patterns or SYS-SCP hits the time limit
Tx, the algorithm stops and returns C.

We impose a time limit Tx on the outer loop of the al-
gorithm since the number of interesting patterns is exponen-



tial in the number of variables and therefore SYS-SCP usu-
ally cannot evaluate them all in a reasonable amount of time.
By imposing a time limit Ty on the inner loop, we allow
SYS-SCP to periodically start over with a new empty pattern
sequence.

The most important component of the SYS-SCP algorithm
is the PATTERNUSEFUL function that decides whether to se-
lect a pattern P . The function enumerates all states s ∈ S(Π),
which is obviously infeasible for all but the smallest tasks Π.
Fortunately, we can efficiently compute an equivalent test in
the projection to P .
Lemma 1. Consider a planning task Π with non-negative
cost function cost and induced transition system T . Let s ∈
S(T ) be a state, P be a pattern for Π and σ be a (possibly
empty) sequence of patterns 〈P1, . . . , Pn〉 for Π. Finally, let
rem be the remaining cost function after computing hSCP

σ for
cost.

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ 0 < h∗TP (rem, s|P ) <∞

Proof. hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
(1)⇔ hSCP

〈P1,...,Pn〉(cost, s) < hSCP
〈P1,...,Pn,P 〉(cost, s) <∞

(2)⇔
n∑
i=1

hPi(costi, s) <
n∑
i=1

hPi(costi, s) + hP (rem, s) <∞

(3)⇔ 0 < hP (rem, s) <∞ (4)⇔ 0 < h∗TP (rem, s|P ) <∞
Step 1 substitutes 〈P1, . . . , Pn〉 for σ and Step 2 uses the

definition of saturated cost partitioning heuristics. For Step 3
we need to show that x =

∑n
i=1 h

Pi(costi, s) is finite.
The inequality states x <∞. We now show x ≥ 0, which

implies x > −∞. Using requirement 1 for saturated cost
functions from Definition 7 and the fact that rem0 = cost
is non-negative, it is easy to see that all remaining cost
functions are non-negative. Consequently, hPi(costi, s) =
hPi(remi−1, s) ≥ 0 for all s ∈ S(T ), which uses require-
ment 2 from Definition 7 and the fact that goal distances are
non-negative in transition systems with non-negative weights.

The final step (4) uses the definition of PDB heuristics.

Theorem 1 (computing PATTERNUSEFUL on projections).
Consider a planning task Π with non-negative cost function
cost and induced transition system T . Let P be a single pat-
tern and σ be a (possibly empty) sequence of patterns. Fi-
nally, let rem be the remaining cost function after computing
hSCP
σ for cost.

∃s ∈ S(T ) : hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ ∃s′ ∈ S(TP ) : 0 < h∗TP (rem, s′) <∞

Proof. Follows directly from Lemma 1 and the fact that pro-
jections are induced abstractions: for each abstract state s′ in
an induced abstraction there is at least one concrete state s
which is projected to s′.

We use Theorem 1 in our SYS-SCP implementation by
keeping track of the cost function rem, i.e., the costs that re-
main after computing hSCP

σ . We select a pattern P if there are
any goal distances d with 0 < d <∞ in TP under rem.

Theorem 1 also removes the need to compute hSCP
σ⊕P from

scratch for every pattern P . This is important since we want
to decide whether or not to add P quickly and this operation
should not become slower when σ contains more patterns.

3.1 Dead Ends
To obtain high finite heuristic values for solvable states it is
important to choose good cost partitionings. In contrast, cost
functions are irrelevant for detecting unsolvable states. This
is the underlying reason why Lemma 1 only holds for finite
values and therefore why SYS-SCP ignores unsolvable states.

However, we can still use the information about unsolv-
able states contained in projections. It is easy to see that each
abstract state in a projection corresponds to a partial state in
the original task. If an abstract state is unsolvable in a pro-
jection, we call the corresponding partial state a dead end.
Since projections preserve all paths, any state in the original
task subsuming a dead end is unsolvable. We can extract all
dead ends from the projections that SYS-SCP evaluates and
use this information to prune unsolvable states during the A∗

search [Pommerening and Seipp, 2016].

3.2 Ordering Patterns
We showed in earlier work that the order in which satu-
rated cost partitioning considers the component heuristics has
a strong influence on the quality of the resulting heuristic
[Seipp et al., 2017b]. Choosing a good order is even more
important for SYS-SCP, since it usually only sees a subset of
interesting patterns within the allotted time. To ensure that
this subset of interesting patterns covers different aspects of
the planning task, we let the ORDER function generate the
interesting patterns in increasing order by size.

This leaves the question how to sort patterns of the same
size. We propose four methods for making this decision. The
first one (random) simply orders patterns of the same size
randomly. The remaining three assign a key to each pattern,
allowing us to sort by key in increasing or decreasing order.
Causal graph. The first ordering method is based on the
insight that it is often more important to have accurate heuris-
tic estimates near the goal states rather than elsewhere in the
state space [e.g., Holte et al., 2006]. We therefore want
to focus on patterns containing goal variables or variables
that are closely connected to goal variables. To quantify
“goal-connectedness” we use an approximate topological or-
dering ≺ of the causal graph CG(Π). We let the function
cg : V → N+

0 assign each variable v ∈ V to its index in ≺.
For a given pattern P , the cg ordering method returns the key
〈cg(v1), . . . , cg(vn)〉, where vi ∈ P and cg(vi) < cg(vj) for
all 1 ≤ i < j ≤ n. Since the keys are unique, they define
a total order. Sorting the patterns by cg in decreasing order
(cg-down), yields the desired order which starts with “goal-
connected” patterns.
States in projection. Given a pattern P , the states ordering
method returns the key |S(Π|P )|, i.e., the number of states in
the projection to P . We use cg-down to break ties.
Active operators. Given a pattern P , the ops ordering
method returns the number of operators that affect a variable
in P . We break ties with cg-down.



Coverage 10s 100s 1000s ∞
1s 1137 1132 1055 716
10s 1077 1168 1142 337
100s 1077 1082 1154 284
∞ 1077 1082 989 227

Table 1: Number of tasks solved by SYS-SCP using different time
limits Tx and Ty for the outer loop (x axis) and inner loop (y axis).

4 Experiments
We implemented the SYS-SCP pattern selection algorithm
in the Fast Downward planning system [Helmert, 2006]
and conducted experiments with the Downward Lab toolkit
[Seipp et al., 2017c] on Intel Xeon Silver 4114 processors.
Our benchmark set consists of all 1827 tasks without condi-
tional effects from the optimization tracks of the 1998–2018
IPCs. The tasks belong to 48 different domains. We limit time
by 30 minutes and memory by 3.5 GiB. All benchmarks1,
code2 and experimental data3 have been published online.

To fairly compare the quality of different pattern collec-
tions, we use the same cost partitioning algorithm for all col-
lections. Saturated cost partitioning is the obvious choice for
the evaluation since experiments showed that it is preferable
to all other cost partitioning algorithms for HC, SYS-2 and
CPC patterns in almost all evaluated benchmark domains
[Seipp et al., 2017a; Rovner et al., 2019]. As in previous
work, we maximize over multiple diverse saturated cost par-
titioning heuristics [Seipp et al., 2017b].

More concretely, for a given pattern collection C, we start
with an empty family of saturated cost partitioning heuristics
F and a set Ŝ of 1000 sample states obtained with random
walks [Haslum et al., 2007]. Then we iteratively sample a
new state s and compute a greedy order ω of C that works
well for s [Seipp, 2017]. If hSCP

ω has a higher heuristic es-
timate for any state s′ ∈ Ŝ than all heuristics in F , we add
hSCP
ω to F . We stop this diversification procedure after 200

seconds and then perform an A∗ search using the maximum
over the heuristics in F .

Before we compare SYS-SCP to other pattern selection al-
gorithms, we evaluate the effects of changing its parameters
in four ablation studies. We use at most 2M states per PDB
and 20M states in the PDB collection for all SYS-SCP runs.

4.1 Time Limits
Table 1 shows that a time limit for the outer loop is more
important than one for the inner loop, but for maximum cov-
erage we need both limits. The combination that solves the
highest number of tasks is 10s for the inner and 100s for the
outer loop. We use these values in all other experiments.

4.2 Dead Ends
All configurations from Table 1 store the dead ends from all
projections evaluated by SYS-SCP and use them to prune un-
solvable states during the A∗ search. For the best configu-

1Benchmarks: https://doi.org/10.5281/zenodo.2616479
2Code: https://doi.org/10.5281/zenodo.3233330
3Experimental data: https://doi.org/10.5281/zenodo.3233326
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Coverage

cg-up – 5 6 5 4 3 3 1140.0
states-up 6 – 6 8 5 2 2 1153.0
random 10 10 – 8 7 6 3 1148.2
ops-down 7 8 9 – 4 7 3 1141.0
states-down 9 8 9 7 – 4 2 1152.0
ops-up 11 12 12 11 11 – 6 1166.0
cg-down 12 10 12 10 9 6 – 1168.0

Table 2: Per-domain coverage comparison of different orders for
patterns of the same size. The entry in row r and column c shows
the number of domains in which order r solves more tasks than order
c. For each order pair we highlight the maximum of the entries (r, c)
and (c, r) in bold. Right: Total number of solved tasks. The results
for random are averaged over 10 runs (standard deviation: 3.36).

ration from Table 1, coverage decreases from 1168 to 1153
tasks if we ignore the dead ends. Therefore, we use dead
ends for pruning unsolvable states in all other experiments.

4.3 Pattern Orders
Table 2 compares the different methods for ordering patterns
of the same size. For all of states, ops and cg, at least one
ordering direction (up or down) is preferable to using ran-
dom orders. The ops-up method is preferable to ops-down for
11 domains, but there are also 7 domains where the opposite
is the case. The relation between states-down and states-up
is similar. The only ordering method where one direction is
clearly preferable to the other is cg: cg-down solves more
tasks than cg-up in 12 domains, while the opposite is the case
in only 3 domains. Since cg-down also has the highest overall
coverage, we use it in all other experiments.

4.4 Using Pattern Sequences for Diversification
Instead of discarding the computed pattern sequences when
SYS-SCP finishes, we can turn each pattern sequence σ into
a full pattern order by randomly appending all SYS-SCP pat-
terns missing from σ to σ and pass the resulting order to the
diversification procedure.

Feeding the diversification exclusively with such orders
leads to solving 1130 tasks, while using only greedy orders
for sample states [Seipp, 2017] solves 1156 tasks. We obtain
the best results by diversifying both types of orders, solving
1168 tasks, and we use this variant in all other experiments.

4.5 Systematic Patterns With Limits
In the next experiment, we evaluate the obvious baseline for
SYS-SCP: selecting all (interesting) patterns up to a fixed
size. Table 3 holds coverage results of SYS-NAIVE-X and
SYS-X for 1 ≤ X ≤ 5. We also include variants (*-LIM)
that use at most 100 seconds, no more than 2M states in each
projection and at most 20M states per collection. For the *-
LIM variants, we sort the patterns in the cg-down order.
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Max pattern size 1 2 3 4 5

SYS-NAIVE 840 937 914 752 571
SYS-NAIVE-LIM 840 968 1004 912 878
SYS 840 986 1057 922 731
SYS-LIM 840 985 1088 1050 1035

Table 3: Number of solved tasks for naive (SYS-NAIVE) and inter-
esting patterns (SYS). We evaluate both versions without and with
time and memory limits and using different maximum pattern sizes.
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HC – 8 10 8 3 966
SYS-3-LIM 19 – 14 10 2 1088
CPC 20 15 – 12 3 1055
CEGAR 22 14 16 – 3 1098
SYS-SCP 28 23 21 21 – 1168

Table 4: Per-domain coverage comparison of pattern selection algo-
rithms. For an explanation of the data see the caption of Table 2.

The results show that interesting patterns are always prefer-
able to naive patterns, both with and without limits, which is
why we only consider interesting patterns in SYS-SCP. Im-
posing limits is not important for SYS-1 and SYS-2, but leads
to solving many more tasks for X ≥ 3. Overall, SYS-3-LIM
has the highest total coverage (1088 tasks).

4.6 Comparison of Pattern Selection Algorithms
In Table 4 we compare SYS-SCP to the strongest pattern se-
lection algorithms from the literature: HC, SYS-3-LIM, CPC
and CEGAR. We run each algorithm with its preferred pa-
rameter values, which implies using at most 900s for HC and
CPC and 100s for the other algorithms.

HC is outperformed by all other algorithms. Interestingly,
already the simple SYS-3-LIM approach is competitive with
CPC and CEGAR. However, we obtain the best results with
SYS-SCP. It is preferable to all other pattern selection algo-
rithms in per-domain comparisons: no algorithm has higher
coverage than SYS-SCP in more than three domains, while
SYS-SCP solves more tasks than each of the other algorithms
in at least 21 domains. SYS-SCP also has the highest to-
tal coverage of 1168 tasks, solving 70 more tasks than the
strongest contender. This is a considerable improvement in
the setting of optimal classical planning, where task difficulty
tends to scale exponentially.

4.7 Comparison to IPC Planners
In our final experiment, we evaluate whether Scorpion [Seipp,
2018], one of the strongest optimal planners in IPC 2018,
benefits from using SYS-SCP patterns. Scorpion com-
putes diverse saturated cost partitioning heuristics over HC
and SYS-2 PDB heuristics and Cartesian abstraction heuris-
tics (CART) [Seipp and Helmert, 2018]. We abbreviate
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Complementary 1 – 7 4 12 9 9 9 1030
Complementary 2 24 – 7 12 10 9 8 1093
Delfi 1 35 28 – 16 15 13 13 1236

Sc
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COMB 28 27 19 – 7 5 2 1205
SYS-SCP 29 25 21 15 – 4 4 1217
SYS-SCP+CART 29 26 22 16 10 – 4 1265
SYS-SCP+COMB 30 27 23 13 13 5 – 1261

Table 5: Comparison of IPC 2018 planners and Scorpion variants.

this combination with COMB=HC+SYS-2+CART. In Ta-
ble 5 we compare the original Scorpion planner, three Scor-
pion variants that use different sets of heuristics and the
top three optimal planners from IPC 2018, Delfi 1 [Sievers
et al., 2019], Complementary 1 [Franco et al., 2018] and
Complementary 2 [Franco et al., 2017]. In contrast to the
configurations we evaluated above, all planners in Table 5
prune irrelevant operators in a preprocessing step [Alcázar
and Torralba, 2015].

The results show that all Scorpion variants outperform the
top three IPC 2018 planners in per-domain comparisons. We
also see that Scorpion benefits from using SYS-SCP PDBs
instead of the COMB heuristics in many domains. Using the
union of both sets is clearly preferable to using either COMB
or SYS-SCP alone, since it raises the total coverage to 1261
by 56 and 44 tasks, respectively. For maximum coverage
(1265 tasks), Scorpion only needs SYS-SCP PDBs and Carte-
sian abstraction heuristics.

5 Conclusion

We introduced a new pattern selection algorithm based on sat-
urated cost partitioning and showed that it outperforms all
other pattern selection algorithms from the literature. The al-
gorithm selects a pattern if it is useful for any state in the state
space. In future work, we would like to evaluate whether it
is beneficial to restrict this criterion to a subset of states, such
as all reachable states or a set of sample states.
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