
Counterexample-guided Cartesian Abstraction
Refinement and Saturated Cost Partitioning for
Optimal Classical Planning

Jendrik Seipp
February 28, 2018

University of Basel



Planning

Find a sequence of actions that achieves a goal.

1/35



Optimal Classical Planning

drive drive drive

load-in-A

unload-in-B

unload-in-A

load-in-B

2/35



Optimal Classical Planning: Example Abstraction

drivedrive drive
load-in-A

unload-in-A

unload-in-B

load-in-B
3/35



Abstraction Heuristics

• abstraction heuristics never overestimate→ admissible
• A∗ + admissible heuristic→ optimal plan
• higher accuracy→ better guidance

• how to create abstractions?

4/35



Abstraction Heuristics

• abstraction heuristics never overestimate→ admissible
• A∗ + admissible heuristic→ optimal plan
• higher accuracy→ better guidance
• how to create abstractions?

4/35



Counterexample-guided
Cartesian Abstraction Refinement



Counterexample-guided Abstraction Refinement (CEGAR)

CEGAR Algorithm

• start with coarse abstraction
• until finding concrete solution or running out of time:

• find abstract solution
• check if and why it fails in the real world
• refine abstraction

5/35



Example Refinement

drive, (un)load-in-A, (un)load-in-B

6/35



Example Refinement

drive, (un)load-in-A drive
unload-in-B

load-in-B
6/35



Example Refinement

drivedrive drive
load-in-A

unload-in-A

unload-in-B

load-in-B
6/35



Classes of Abstractions

Cartesian Abstractions
• relation to other classes of abstractions?

7/35



Projection (PDB)

drivedrive drive
load-in-A

unload-in-A

unload-in-B

load-in-B
8/35



Cartesian Abstraction

drivedrive

(un)load-in-A

(un)load-in-B

drive

8/35



Merge-and-shrink Abstraction

(un)load-in-B

drive

drivedrive

(un)load-in-A

8/35



Classes of Abstractions

• Projections (PDBs)
refinement at least doubles number of states

• Cartesian Abstractions
allow efficient and fine-grained refinement

• Merge-and-shrink Abstractions
refinement complicated and expensive

9/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR 706

10/35



CEGAR Drawbacks

Diminishing Returns
• finding solutions takes longer
• heuristic values only increase logarithmically

→ multiple smaller abstractions

11/35



CEGAR Drawbacks

Diminishing Returns
• finding solutions takes longer
• heuristic values only increase logarithmically

→ multiple smaller abstractions

11/35



Task Decomposition by Goals

• build abstraction for each goal fact

• problem: tasks with single goal fact

12/35



Task Decomposition by Goals

• build abstraction for each goal fact
• problem: tasks with single goal fact

12/35



Task Decomposition by Landmarks

• build abstraction for each fact landmark

drive drive drive

load-in-A

unload-in-B

unload-in-A

load-in-B

13/35



Task Decomposition by Landmarks

• build abstraction for each fact landmark

drive drive drive

load-in-A

unload-in-B

unload-in-A

load-in-B

13/35



Multiple Heuristics

how to combine multiple heuristics?

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h1(s2) = 5 h2(s2) = 4

maximize over estimates:

• h(s2) = 5
• only selects best heuristic
• does not combine heuristics

14/35



Multiple Heuristics

how to combine multiple heuristics?

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h1(s2) = 5 h2(s2) = 4

maximize over estimates:

• h(s2) = 5
• only selects best heuristic
• does not combine heuristics

14/35



Multiple Heuristics

how to combine multiple heuristics?

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h1(s2) = 5 h2(s2) = 4

maximize over estimates:

• h(s2) = 5
• only selects best heuristic
• does not combine heuristics

14/35



Multiple Heuristics

how to combine multiple heuristics?

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h1(s2) = 5 h2(s2) = 4

maximize over estimates:

• h(s2) = 5

• only selects best heuristic
• does not combine heuristics

14/35



Multiple Heuristics

how to combine multiple heuristics?

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h1(s2) = 5 h2(s2) = 4

maximize over estimates:

• h(s2) = 5
• only selects best heuristic
• does not combine heuristics

14/35



Multiple Heuristics: Cost Partitioning

Cost Partitioning

• split operator costs among heuristics
• sum of costs must not exceed original cost

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h(s2) = 3+ 3 = 6

15/35



Multiple Heuristics: Cost Partitioning

Cost Partitioning

• split operator costs among heuristics
• sum of costs must not exceed original cost

s1,s2 s3 s4,s5

2 1

0 1

s1 s2,s3,s4 s5

1 3

1 0

h(s2) = 3+ 3 = 6

15/35



Multiple Heuristics: Cost Partitioning

Cost Partitioning

• split operator costs among heuristics
• sum of costs must not exceed original cost

s1,s2 s3 s4,s5

2 1

0 1

s1 s2,s3,s4 s5

1 3

1 0

h(s2) = 3+ 3 = 6

15/35



Saturated Cost Partitioning



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

h(s2) = 5+ 3 = 8

16/35



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

h(s2) = 5+ 3 = 8

16/35



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

h(s2) = 5+ 3 = 8

16/35



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

1 0

h(s2) = 5+ 3 = 8

16/35



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

0 0

h(s2) = 5+ 3 = 8

16/35



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

0 0
h(s2) = 5+ 3 = 8

16/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR 706

17/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

706
774

17/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks

706
774
785

17/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

706
774
785
798

17/35



Order of Heuristics Is Important

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

hSCP→ (s2) = 5+ 3 = 8

hSCP← (s2) = 3+ 4 = 7

18/35



Order of Heuristics Is Important

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

0 0

hSCP→ (s2) = 5+ 3 = 8

hSCP← (s2) = 3+ 4 = 7

18/35



Order of Heuristics Is Important

s1,s2 s3 s4,s5

3 0

0 0

s1 s2,s3,s4 s5

1 4

1 0

hSCP→ (s2) = 5+ 3 = 8

hSCP← (s2) = 3+ 4 = 7

18/35



Finding a Good Order

• n heuristics→ n! orders

→ search for good order: greedy initial order + optimization

19/35



Finding a Good Order

• n heuristics→ n! orders
→ search for good order: greedy initial order + optimization

19/35



Greedy Orders

Goal: high estimates and low costs

→ order by heuristic/costs ratio

20/35



Greedy Orders

Goal: high estimates and low costs
→ order by heuristic/costs ratio

20/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

706
774
785
798

21/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy

706
774
785
798

866

21/35



Optimized Orders

Optimization: finding initial order usually only first step

Hill-climbing Search

• start with initial order
• until no better successor found:

• switch positions of two heuristics
• commit to first improving successor

22/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy

706
774
785
798

866

23/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized

706
774
785
798

866
881

23/35



One Order Is Not Enough

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

hSCP→ (s2) = 8
hSCP← (s2) = 7

hSCP→ (s4) = 3
hSCP← (s4) = 4

24/35



Multiple Orders

Approach:
• compute saturated cost partitioning for multiple orders
• maximize over heuristic estimates

25/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized

706
774
785
798

866
881

26/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized
multiple

706
774
785
798

866
881

982

26/35



Multiple Orders

Problems:
• many useless orders
• slow evaluation

27/35



Diverse Orders

Diversification Algorithm

• sample 1000 states
• start with empty set of orders
• until time limit is reached:

• generate an optimized order
• if a sample profits from it, keep it
• otherwise, discard it

28/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized
multiple

706
774
785
798

866
881

982

29/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized
multiple
diverse

706
774
785
798

866
881

982
994

29/35



Comparison of Cost Partitioning Algorithms



Theoretical Comparison

UCP

Uniform Cost Partitioning
distribute costs evenly among relevant heuristics

30/35



Theoretical Comparison

GZOCP

UCP

Greedy Zero-one Cost Partitioning
order heuristics and give full cost to first relevant heuristic

31/35



Theoretical Comparison

GZOCP

PhO

UCP

Post-hoc Optimization
compute weight for each heuristic and return weighted sum

31/35



Theoretical Comparison

GZOCP

PhO CAN

UCP

Canonical Heuristic
maximum over sums of independent heuristic subsets

31/35



Theoretical Comparison

GZOCP

PhO CAN

UCP

≻≻≻

Pommerening et al. 2013

31/35



Theoretical Comparison

GZOCP

PhO CAN

UCP

≻≻≻

≻≻≻

31/35



Theoretical Comparison

SCP GZOCP

PhO CAN

UCP

≻≻≻

≻≻≻

31/35



Theoretical Comparison

SCP GZOCP

PhO CAN

UCP

≻≻≻

≻≻≻

≻≻≻

31/35



Theoretical Comparison

SCP GZOCP

PhO CAN

OUCP UCP

≻≻≻

≻≻≻

≻≻≻

31/35



Theoretical Comparison

SCP GZOCP

PhO CAN

OUCP UCP

≻≻≻

≻≻≻

≻≻≻

≻≻≻

31/35



Theoretical Comparison

SCP GZOCP

PhO CAN

OUCP UCP

≻≻≻

≻≻≻

≻≻≻

≻≻≻

31/35



Experimental Comparison

• Heuristics: Cartesian abstraction heuristics + PDBs

32/35



Experimental Comparison

SCP GZOCP

PhO CAN

OUCP UCP

≻≻≻

≻≻≻

≻≻≻

≻≻≻

33/35



Experimental Comparison

SCP GZOCP

PhO CAN

OUCP

≻≻≻

≻≻≻

≻≻≻

33/35



Experimental Comparison

SCP

PhO CAN

OUCP

≻≻≻

33/35



Experimental Comparison

SCP

PhO CAN≻≻≻

33/35



Experimental Comparison

SCP

33/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized
multiple
diverse

706
774
785
798

866
881

982
994

34/35



Solved Tasks

700 800 900 1,000 1,100

PhO-Sys2
M&S
iPDB

737
808

881

700 800 900 1,000 1,100

CEGAR
goals

landmarks
LMs+goals

greedy
optimized
multiple
diverse

Cart.+PDBs

706
774
785
798

866
881

982
994

1,063

34/35



Conclusion

Counterexample-guided Cartesian Abstraction Refinement
• refines abstraction only where needed
• decompositions yield complementary heuristics

Saturated Cost Partitioning
• assigns each heuristic only the costs it needs
• best results for diverse optimized orders

Comparison of Cost Partitioning Algorithms
• dominances and non-dominances
• saturated cost partitioning preferable in all settings

35/35



Conclusion

Counterexample-guided Cartesian Abstraction Refinement
• refines abstraction only where needed
• decompositions yield complementary heuristics

Saturated Cost Partitioning
• assigns each heuristic only the costs it needs
• best results for diverse optimized orders

Comparison of Cost Partitioning Algorithms
• dominances and non-dominances
• saturated cost partitioning preferable in all settings

35/35



Conclusion

Counterexample-guided Cartesian Abstraction Refinement
• refines abstraction only where needed
• decompositions yield complementary heuristics

Saturated Cost Partitioning
• assigns each heuristic only the costs it needs
• best results for diverse optimized orders

Comparison of Cost Partitioning Algorithms
• dominances and non-dominances
• saturated cost partitioning preferable in all settings

35/35


	Counterexample-guided Cartesian Abstraction Refinement
	Saturated Cost Partitioning
	Comparison of Cost Partitioning Algorithms

