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@ (General) Domain-independent planning
@ Problem: no single best planner for all domains

@ Combine planners in portfolios
[Gerevini et al. 2011, Helmert et al. 2011, Vallati 2012, Seipp et al.
2012/2015, Seipp et al. 2014, Nunez et al. 2015, Cenamor et al. 2016]

@ Most prominent in satisficing planning/learning settings
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Problem

@ Can we construct a good portfolio for optimal planning?

@ Online portfolios: solve classification task for (single)
planner selection

@ Good technique for classifcation tasks: deep learning

Contributions:

@ Representation of planning tasks consumable by deep
learning

@ Proper evaluation of techniques used in Delfi1, winner of
last optimal IPC

@ Discussion of encountered issues
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Planning Tasks

Given in a logic-based description (PDDL):

(raction pick-up
:parameters (?x)
:precondition
(and (clear ?x) (ontable ?x) (handempty))
reffect
(and (not (ontable 7x))
(not (clear ?x))
(not (handempty))
(holding ?x))
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Representing Planning Tasks

Use image convolution for classification.

How to obtain representative images?

@ SAT/CSP: convert textual problem description into images
@ Here: focus on structure of planning tasks
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Representative Graphs

Abstract structure graph: compact encoding

@ Nodes for components of the PDDL description
(predicates, objects, parameters, etc.)

@ Edges to connect components if one is part of another
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Representative Graphs

Abstract structure graph: compact encoding

@ Nodes for components of the PDDL description
(predicates, objects, parameters, etc.)

@ Edges to connect components if one is part of another

D= 2

Q.oo
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Conversion of graphs into images:
@ Encode adjacency matrix as black&white image
@ Turn into grayscale by clustering pixels
@ Resize to fixed size
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Multilabel regression: predict . ..
@ Raw runtime
@ Normalized runtime
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Performance Representation

Multilabel classification:
@ Binary: predict whether planners solve given task

@ Discretized runtime (3 intervals): predict in which interval
planners belong

Multilabel regression: predict . ..
@ Raw runtime
@ Normalized runtime

Delfi1: binary
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Planner Collections

@ Fast Downward-based planners from Delfi1
@ Those from Delfi1 + additional planners from IPC 2018
@ Minimal subset of above to cover training data
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Benchmarks

@ Training set: domains from IPCs prior 2018
@ Test set: domains from IPC 2018
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@ Two training data splits: random vs. domain-preserving
random split

@ Validation vs. no validation
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Training Data Separation

@ Two training data splits: random vs. domain-preserving
random split

@ Validation vs. no validation

Choices of Delfi1:
@ Hand-crafted domain-preserving split

@ No validation for final training (only for hyper parameter
optimization)
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Results

48 settings, train 10 models for each

Comparison of Different Settings

@ No domination of any setting over all others
@ Delfi1 planner collection significantly better than other two

Further Observations:
@ Mostly consistent planner selection within domains
@ Not as strong as Delfi1 itself
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Issues

@ Somewhat large variance across different models
@ Data is not independently identically distributed (i.i.d.)
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Potential Future Work

@ More sophisticated networks, graph conversion
@ Use graphs convolution

@ Automatically generate tasks with a certain structure:
— i.i.d. distribution of tasks?



The End

Thank you for listening!

Poster tonight 7:00 — 8:30 pm: PRS 5097
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