
Generalized Label Reduction for Merge-and-Shrink Heuristics

Silvan Sievers and Martin Wehrle and Malte Helmert
Universität Basel

Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Abstract

Label reduction is a technique for simplifying families of
labeled transition systems by dropping distinctions between
certain transition labels. While label reduction is critical to
the efficient computation of merge-and-shrink heuristics, cur-
rent theory only permits reducing labels in a limited num-
ber of cases. We generalize this theory so that labels can
be reduced in every intermediate abstraction of a merge-and-
shrink tree. This is particularly important for efficiently com-
puting merge-and-shrink abstractions based on non-linear
merge strategies. As a case study, we implement a non-
linear merge strategy based on the original work on merge-
and-shrink heuristics in model checking by Dräger et al.

Introduction
State-space search is a fundamental problem in artificial in-
telligence. Many state spaces of interest, including those
that arise in classical planning and in the verification of
safety properties in model checking, can be compactly
specified as a family of labeled transition systems (e. g.,
Helmert, Haslum, and Hoffmann 2008; Dräger, Finkbeiner,
and Podelski 2009).

Label reduction identifies and eliminates semantically
equivalent labels in such transition systems. It was originally
introduced as an efficiency improvement for merge-and-
shrink abstractions (Helmert, Haslum, and Hoffmann 2007).
Later, Nissim, Hoffmann, and Helmert (2011a) showed that
label reduction can (in some cases) exponentially reduce the
representation size of abstractions based on bisimulation.

All implementations of merge-and-shrink abstractions de-
scribed in the planning literature apply label reduction
whenever possible: it has no negative impact on abstrac-
tion quality, is very fast to compute, and significantly re-
duces time and memory required to compute an abstraction.
However, the current theory of merge-and-shrink abstrac-
tions only allows reducing labels in limited cases.

Broadly speaking, the merge-and-shrink approach con-
sists in constructing a set of atomic transition systems, each
corresponding to a single state variable of the problem, and
then iteratively merging two transition systems into a larger

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work has been published at AAAI 2014.

L

L

L

L

L

L

L

v8

v7

v6

v5

v4

v3

v2v1

L

L

L

v1 v2 v3 v4 v5 v6 v7 v8

Figure 1: Two merge trees for a problem with 8 state vari-
ables. Previous theory allows reducing labels in the interme-
diate abstractions marked with an “L” when v1 is the pivot.

one until only one transition system remains, which then in-
duces a heuristic for an overall state-space search algorithm.
Intermediate results can be shrunk to trade off computation
effort against heuristic accuracy. A so-called merge strategy
decides which transition systems to merge in each step of
the algorithm. The merge strategy defines a binary tree over
the atomic transition systems, the so-called merge tree.

Figure 1 shows two possible merge trees for a state space
with 8 atomic transition systems, defined by state variables
v1, . . . , v8. The left part of the figure shows a merge tree
which degenerates to a list; such merge trees correspond
to so-called linear merge strategies (Helmert, Haslum, and
Hoffmann 2007). The right part shows a complete merge
tree, corresponding to a non-linear merge strategy. Ac-
cording to current theory (Nissim, Hoffmann, and Helmert
2011a), when defining a merge strategy, one must select a
single leaf of the merge tree, called a pivot, and may only
reduce labels after merge operations which correspond to
ancestors of the pivot in the merge tree. In general, this
means that with a complete tree over n atomic transition
systems, onlyO(log n) of the merged transition systems can
have their labels reduced.

We introduce a generalized concept of label reduction to
overcome this limitation. The generalization is introduced
in a declarative way, independently of the merge-and-shrink
framework. It is conceptually much easier to understand
than the previous theory, yet more powerful in the sense that
it allows reducing to a smaller set of labels than previous



techniques and in the sense that it can be applied safely to
every intermediate abstraction of a merge tree.

Generalized label reduction is particularly beneficial for
the efficient computation of merge-and-shrink abstractions
with non-linear merge strategies. As a case study, we have
implemented such a merge strategy, based on the origi-
nal work on merge-and-shrink heuristics in model checking
by Dräger, Finkbeiner, and Podelski (2006), which did not
make use of label reduction. We show experimental results
that highlight the usefulness of generalized label reduction
in general and non-linear merge strategies in particular.

Planning Tasks
We present our techniques with the terminology of auto-
mated planning, but note that they are applicable to fac-
tored transition systems in general. We consider planning
tasks in the SAS+ formalism (Bäckström and Nebel 1995)
augmented with action costs. A planning task is a 4-tuple
Π = 〈V,O, s0, s?〉, where V is a finite set of state variables,
O is a finite set of operators, s0 is the initial state and s? is
the goal.

Each variable v ∈ V has a finite domain D(v). A partial
state s is a variable assignment on a subset of V , denoted by
vars(s). We write s[v] for the value assigned to v ∈ vars(s),
which must satisfy s[v] ∈ D(v). We say that s complies with
partial state s′ if s[v] = s′[v] for all v ∈ vars(s) ∩ vars(s′).
A partial state s is a state if vars(s) = V .

Each operator o ∈ O has a precondition pre(o) and effect
eff (o), which are partial states, and a cost c(o) ∈ R+

0 . An
operator o is applicable in a state s if s complies with pre(o),
in which case o can be applied, resulting in the successor
state s′ that complies with eff (o) and satisfies s′[v] = s[v]
for all v /∈ vars(eff (o)).

The initial state s0 is a state; the goal s? is a partial state.
A plan is a sequence o1, . . . , on ∈ O of operators which

are applicable, in order, to the initial state, resulting in a
state that complies with the goal. Such a plan is optimal
if
∑n
i=1 c(oi) is minimal among all plans. The objective of

optimal planning is to find an optimal plan for a planning
task or to prove that no plan exists.

Transition Systems and Merge-and-Shrink
We briefly recap the key ideas behind merge-and-shrink ab-
stractions (e. g., Helmert, Haslum, and Hoffmann 2007).
The central notion in this context is the explicit manipula-
tion of transition systems. We define a transition system as a
4-tuple Θ = 〈S,L, T, S?〉 where S is a finite set of states, L
is a finite set of labels, T ⊆ S × L × S is a set of (labeled)
transitions, and S? ⊆ S is the set of goal states. Each label
l ∈ L has a cost c(l) ∈ R+

0 . Where it simplifies notation, we
write s l−→ s′ to denote a transition 〈s, l, s′〉 from s to s′ with
label l, and we may write s l−→ s′ ∈ Θ for s l−→ s′ ∈ T .

A planning task naturally induces a transition system,
which is usually too large to be represented explicitly. In-
stead, the merge-and-shrink approach works with a set X
of smaller transition systems, which it iteratively transforms
until only one transition system remains. This final transi-
tion system is then used to define a heuristic for solving the

planning task.
The process starts by setting X to the set of atomic tran-

sition systems, which capture the behaviour of a single state
variable. Then X is transformed by repeatedly applying one
of the following two operations:

• Merge: Remove two transition systems Θ = 〈S,L, T, S?〉
and Θ′ = 〈S′, L, T ′, S′?〉 from X and replace them with
their synchronized product Θ⊗Θ′ = 〈S×S′, L, T⊗, S?×
S′?〉, where a synchronized transition 〈s, s′〉 l−→ 〈t, t′〉 ∈
T⊗ exists iff s l−→ t ∈ T and s′ l−→ t′ ∈ T ′.

• Shrink: Remove a transition system Θ = 〈S,L, T, S?〉
from X and replace it with the abstract transition sys-
tem α(Θ) := 〈α(S), L, {〈α(s), l, α(t)〉 | 〈s, l, t〉 ∈
T}, α(S?)〉, where α is an arbitrary function on S.

We remark that it is critical for merge operations (and
hence for the correctness of the overall approach) that all
transition systems work on a common set of labels. In the
“basic” merge-and-shrink approach described in the paper
by Helmert et al. (2007), this is always the set of operators of
the underlying planning task. This changes when we make
use of label reduction, described in the following section.

Before we move to label reduction, it is useful to intro-
duce one more concept: the global transition system rep-
resented by X is the synchronized product (merge) of all
elements in X , which we denote by

⊗
X . (The product

operator is associative and commutative modulo names of
states, which we do not care about, so this is well-defined
without having to specify an order on the individual merges.)
At every stage of the merge-and-shrink algorithm, the cur-
rent set X can be seen as a compact representation of

⊗
X .

In planning, initially
⊗
X equals the global transition sys-

tem of the planning task (shown by Helmert et al., 2007).
Merge steps do not change the represented global system,
and shrink steps apply an abstraction to it.

Label Reduction: State of the Art
Label reduction adds a third class of transformations to
the merge-and-shrink approach. It was first implemented,
but not described, in the original application of merge-and-
shrink abstractions to planning (Helmert, Haslum, and Hoff-
mann 2007). Nissim et al. (2011a) gave the first description;
Helmert et al. (2014) discuss it more thoroughly. The key
idea is to identify transition labels that can be combined into
a single label without losing relevant information. Among
other benefits, this can significantly reduce the representa-
tion size of the transition system because parallel transitions
with different labels can collapse into a single transition.

The existing theory of label reduction is very complicated.
We do not describe it in detail here: this would require much
space, and a full description is not necessary for this paper.
Details can be found in Section 5 of Nissim et al. (2011a)
and Section 5 of Helmert et al. (2014). Here, it suffices to
discuss three weaknesses of the current theory.

Firstly, the current theory largely attempts to define label
reduction as a local concept considering individual transi-
tion systems: the central notion is that of a label-reduced
transition system. This is fundamentally at odds with the



purpose of labels in the merge-and-shrink framework to co-
ordinate the joint behaviour of all transition systems in the
set X . If we change the labels in some, but not all transition
systems in X , synchronization cannot work correctly.

The earlier papers address this difficulty by performing
a kind of “just-in-time label reduction” that makes the la-
bels of two transition systems correspond just before they
are merged (which is the only point at which labels mat-
ter). This works, but the resulting theory is complex to un-
derstand and reason about, as different parts of the merge
tree work with different labels. Consequently, current the-
ory only permits reducing labels in certain cases, with other
cases deemed to be unsafe and hence forbidden. Complica-
tions mainly arise in the case of non-linear merge strategies,
and consequently, these were never correctly implemented.

Secondly, the current theory of label reduction is in a
certain sense syntax-based while the rest of the merge-and-
shrink framework is semantic. Merge operations and shrink
operations are purely semantic: once a planning task (or
other problem) is translated into atomic transition systems,
the task description is not needed any more. Labels are
opaque tokens that do not need to “stand for” anything. This
greatly simplifies the theory of merge-and-shrink abstrac-
tions and makes them very flexible: they work for everything
representable as transition systems.

Unfortunately, the current theory of label reduction needs
to “look inside” the labels in order to decide which labels
can be combined into one. For planning tasks, label reduc-
tion must treat labels as structured pairs of preconditions and
effects, reintroducing and critically depending on the syntac-
tic descriptions we would prefer not to have to reason about.

Thirdly, current theory cannot exploit label reductions
that are enabled by shrinking. The decision how to reduce
labels is completely independent of the shrink steps of the al-
gorithm and hence needs to be correct for all possible shrink
strategies. This severely limits simplification possibilities.

All these issues are addressed in the new theory of label
reduction developed in the following section.

Label Reduction: New Theory
In this section, we introduce the new theory of label reduc-
tion and discuss its properties. Like the merge and shrink
operations described earlier, we define label reduction as a
transformation of the set X of transition systems:

• Reduce labels: Let τ be a label mapping, i. e., a function
defined on the labels L of X , which satisfies c(τ(l)) ≤
c(l) for all l ∈ L. Replace each transition system
Θ = 〈S,L, T, S?〉 ∈ X with the label-reduced system
τ(Θ) := 〈S, τ(L), {〈s, τ(l), t〉 | 〈s, l, t〉 ∈ T}, S?〉.

In words, label reduction means replacing all occurrences
of each label l in all transition systems by the new label τ(l).
(Of course, τ(l) = l is permitted.) When we choose to in-
troduce a new label (i. e., τ(l) /∈ L), its cost can be set ar-
bitrarily as long as it does not exceed c(l). The operation is
called label reduction because it is generally used to reduce
the number of labels by choosing a non-injective function τ .
(Using an injective function τ is possible, but pointless.)

It is worth emphasizing that, unlike previous definitions,
label reduction always affects all transition systems simul-
taneously. As we will see in the following, this is sufficient
to guarantee that label reduction is always “safe” to be ap-
plied. Unlike the previous theory, there is no need for pivot
variables or to restrict label reduction to certain stages of
the merge-and-shrink computation. Also, labels in the new
theory always remain completely opaque objects (without
associated “preconditions” and “effects”).

However, there is a complication: the previous theory of
label reduction reasoned about preconditions and effects to
decide which labels can be combined to obtain exact label
reductions, i. e., ones that do not introduce spurious transi-
tions in

⊗
X . With opaque labels, the question of exact la-

bel reduction must be addressed on the semantic level. For-
tunately, we will see later that this is quite easy to do and
more powerful than the previous syntax-based methods.

Properties of Label Reduction
To be able to use merge-and-shrink abstractions for admissi-
ble heuristics, we must guarantee that whenever a path from
a given state s to some goal state exists in the actual prob-
lem, a corresponding path of at most the same cost exists in
the final transition system computed.

Consider a transformation of a set of transition systemsX
with labels L into a new set X ′ with labels L′ (e. g., merg-
ing, shrinking or reducing labels). We call such a trans-
formation transition-safe if all transitions in

⊗
X have a

corresponding transition in
⊗
X ′ (possibly with a different

label) and goal states are preserved. Formally, the trans-
formation is transition-safe if there exist functions α and τ
mapping the states and labels of

⊗
X to the states and la-

bels of
⊗
X ′ such that τ(L) = L′, s l−→ t ∈

⊗
X implies

α(s) τ(l)−−→ α(t) ∈
⊗
X ′ for all s, l, t, and α(s?) is a goal

state of
⊗
X ′ for all goal states s? of

⊗
X .

We call a transformation transition-exact if addition-
ally it does not give rise to any “new” transitions or goal
states. Formally, the transformation is transition-exact if it
is transition-safe, s′ l′−→ t′ ∈

⊗
X ′ implies s l−→ t ∈

⊗
X

for all s ∈ α−1(s′) and t ∈ α−1(t′) and some l ∈ τ−1(l′),
and for all goal states s′? of

⊗
X ′ all states in the preimage

α−1(s′?) are goal states of
⊗
X .

We call a transformation cost-safe if it cannot increase
label costs and cost-exact if additionally it cannot decrease
label costs. Formally, a transition-safe transformation must
satisfy c(τ(l)) ≤ c(l) for all l ∈ L, and a cost-exact one
must satisfy c(τ(l)) = c(l) for all l ∈ L.

Finally, a transformation is safe if it is transition-safe and
cost-safe and exact if it is transition-exact and cost-exact.

It is easy to verify that if each step in a sequence of trans-
formations has one of these properties (e. g., is transition-
safe), then the overall transformation also has it. (To
prove this, compose the α and τ functions of each step.)
Safe transformations give rise to admissible and consistent
heuristics, and exact transformations give rise to perfect
heuristics. Hence, it is important to verify that all transfor-
mations used in a merge-and-shrink heuristic computation
are safe, and exact transformations are especially desirable.



Previous work on merge-and-shrink (e. g., Helmert et al.
2014) established that merging is always exact, shrinking is
always safe, and shrinking based on perfect bisimulation is
exact. We now establish that in the new theory, label reduc-
tion is always safe.

Consider a label reduction with mapping τ that transforms
X = {Θ1, . . . ,Θn} into X ′ = {τ(Θ1), . . . , τ(Θn)}. We
first show that this label reduction is transition-safe. Here
and in the following, we write states of

⊗
X and

⊗
X ′ as

tuples 〈s1, . . . , sn〉 where each si is a state of Θi. Consider
some transition 〈s1, . . . , sn〉 l−→ 〈t1, . . . , tn〉 ∈

⊗
X . By

the definition of products, we have si l−→ ti ∈ Θi for all
1 ≤ i ≤ n; by the definition of label reduction, we have
si

τ(l)−−→ ti ∈ τ(Θi) for all 1 ≤ i ≤ n; finally, again by defi-
nition of products we have 〈s1, . . . , sn〉 τ(l)−−→ 〈t1, . . . , tn〉 ∈⊗
X ′. With α set to the identity function, this proves that

label reduction is transition-safe. (Label reduction does not
change the set of goal states.) Due to the condition on τ in
the definition of label reduction, the transformation is also
cost-safe. In summary, label reduction is safe.

Exact Label Reduction
Previous papers that study label reduction in the merge-and-
shrink framework (Nissim, Hoffmann, and Helmert 2011a;
Helmert et al. 2014) focus on the question which conditions
are required to make label reduction exact. In particular, ex-
act label reduction is a critical ingredient in the polynomial-
time perfect heuristics obtained in some planning domains
(Nissim, Hoffmann, and Helmert 2011a).

Helmert et al. (2014) discuss conditions for exactness of
label reduction that are sufficient and in a certain sense nec-
essary, thus seemingly closing the topic of exact label re-
duction. However, these results do not directly apply to our
theory, as they rely on the limitations of the previous theory.
We revisit the topic here, proving a sufficient and necessary
condition for exact label reduction that generalizes the pre-
vious result.

It is obvious that a label reduction is cost-exact iff it
only combines labels of the same cost (i. e., τ(l) = τ(l′)
implies c(l) = c(l′)), and of course we must always set
c(τ(l)) := c(l) to be cost-exact. It remains to discuss un-
der which conditions label reduction is transition-exact. We
start by introducing some additional terminology.

Definition 1. LetX be a set of transition systems with labels
L. Let l, l′ ∈ L be labels, and let Θ ∈ X .

Label l is alive inX if all transition systems Θ′ ∈ X have
some transition s l−→ t ∈ Θ′. Otherwise, l is dead.

Label l locally subsumes label l′ in Θ if for all s l′−→ t ∈ Θ
we also have s l−→ t. Label l globally subsumes label l′ in X
if l locally subsumes l′ in all Θ′ ∈ X .

Labels l and l′ are locally equivalent in Θ if they label the
same transitions in Θ, i. e., if l and l′ locally subsume each
other in Θ.

Labels l and l′ are Θ-combinable in X if they are locally
equivalent in all transition systems Θ′ ∈ X \ {Θ}. (It does
not matter whether or not they are locally equivalent in Θ.)

It is easy to see that dead labels induce no transitions in⊗
X . Consequently, it is an exact transformation to remove

all dead labels (and their transitions) from X . Hence, it suf-
fices to consider the case where X has no dead labels.

Moreover, we can restrict attention to label reductions τ
that combine two labels l1 and l2 into some new label l12
(τ(l1) = τ(l2) = l12) while leaving all other labels un-
changed (τ(l′) = l′ for all l′ /∈ {l1, l2}). Other label reduc-
tions can be represented as chains of such “minimal” label
reductions. We are now ready to state our major result.
Theorem 1. Let X be a set of transition systems without
dead labels. Consider a label reduction on X which com-
bines labels l1 and l2 and leaves other labels unchanged.

This label reduction is exact iff c(l1) = c(l2) and

1. l1 globally subsumes l2, or
2. l2 globally subsumes l1, or
3. l1 and l2 are Θ-combinable for some Θ ∈ X .

Proof. Let τ be the described label mapping, let X =
{Θ1, . . . ,Θn} and let X ′ = {τ(Θ1), . . . , τ(Θn)} be the re-
sult of label reduction. Let l12 := τ(l1) = τ(l2).

Clearly, the label reduction is cost-exact iff c(l1) = c(l2).
We need to show that it is transition-exact iff 1., 2., or 3.
holds. We prove this in three parts:

(A) If neither 1. nor 2. nor 3. holds, then the label reduction
is not exact.

(B) If 1. or 2. holds, then the label reduction is exact.
(C) If 3. holds, then the label reduction is exact.

Label reduction is always transition-safe and leaves the set
of goal states unchanged, so we only need to consider the
second condition in the definition of transition-exactness.

On (A): We must show that no function α satisfies the cri-
terion of transition-exactness. It is sufficient to consider the
case where α is a bijection because

⊗
X and

⊗
X ′ have

the same number of states, so non-bijective α cannot pos-
sibly work. Renaming states does not affect the notion of
exactness, so we can further limit attention to α being the
identity function without loss of generality.

We say that a transition system Θ ∈ X has an l1-only
transition if there exists a transition s l1−→ t ∈ Θ with s l2−→
t /∈ Θ. Symmetrically, it has an l2-only transition if there
exists a transition s l2−→ t ∈ Θ with s l1−→ t /∈ Θ.

We try to find two transition systems Θi,Θj ∈ X with
i 6= j such that there is an l1-only transition si l1−→ ti ∈ Θi

and an l2-only transition sj l2−→ tj ∈ Θj . Then Θi⊗Θj does
not contain a transition 〈si, sj〉 l−→ 〈ti, tj〉 for either l = l1
or l = l2, but τ(Θi) ⊗ τ(Θj) does contain the transition
〈si, sj〉 l12−−→ 〈ti, tj〉. By induction over the remaining tran-
sition systems, it is then easy to show that

⊗
X ′ contains a

transition that does not correspond to a transition in
⊗
X ,

proving inexactness. (Here, we use that there are no dead
labels: the argument fails if l1 and l2 are dead.) It remains
to show that l1-only and l2-only transitions in different tran-
sition systems of X exist.

Because 1. does not hold, there exists an l2-only transition
in some transition system Θ ∈ X . Because 2. does not hold,
there exists an l1-only transition in some transition system
Θ′ ∈ X . If Θ and Θ′ are different transition systems, we
have found the required transitions and are done.



So let us assume that Θ = Θ′. Because 3. does not hold,
there exist at least two transition systems where l1 and l2
are not locally equivalent, so there is at least one transition
system Θ′′ 6= Θ where they are not locally equivalent. This
means that Θ′′ must have an l1-only transition or an l2-only
transition. In the former case, we select the l1-only transition
in Θ′′ and the l2-only transition in Θ. Otherwise, we select
the l2-only transition in Θ′′ and the l1-only transition in Θ′

(= Θ).
On (B): Consider Case 1., where l1 globally subsumes l2.

Case 2. is identical with l1 and l2 swapped. As the func-
tion α in the definition of transition-exactness, we choose
the identity mapping. Then the condition for transition-
exactness we need to verify simplifies to: for all s l′−→ t ∈⊗
X ′, there exists a label l ∈ τ−1(l′) with s l−→ t ∈

⊗
X .

For l′ 6= l12, this is trivial because
⊗
X and

⊗
X ′ are ex-

actly identical regarding labels other than l1, l2 and l12. So
consider the case l′ = l12. Let s = 〈s1, . . . , sn〉 and let
t = 〈t1, . . . , tn〉. From s l12−−→ t ∈

⊗
X ′ we get si l12−−→

ti ∈ τ(Θi) for all 1 ≤ i ≤ n, and hence si l1−→ ti ∈ Θi

or si l2−→ ti ∈ Θi for all 1 ≤ i ≤ n. Because l1 globally
subsumes l2, this implies si l1−→ ti ∈ Θi for all 1 ≤ i ≤ n,
and hence s l1−→ t ∈

⊗
X , concluding this part of the proof.

On (C): As in (B), we set α to the identity function and
only need to consider transitions s l12−−→ t ∈

⊗
X ′. Let s =

〈s1, . . . , sn〉 and let t = 〈t1, . . . , tn〉. Again, we obtain that
for all 1 ≤ i ≤ n, si l12−−→ ti and hence si l1−→ ti or si l2−→ ti.
Choose l ∈ {l1, l2} such that sj l−→ tj , where j ∈ {1, . . . , n}
is chosen in such a way that l1 and l2 are Θj-combinable in
X . (Such a transition system Θj exists because we are in
Case 3.) By the definition of Θ-combinable, l1 and l2 are
locally equivalent for all transition systems in X other than
Θj , and hence (si l1−→ ti or si l2−→ ti) implies (si l1−→ ti and
si

l2−→ ti) for all i 6= j. This shows that si l−→ ti ∈ Θi for all
1 ≤ i ≤ n, and hence s l−→ t ∈

⊗
X , concluding the final

part of the proof.

We conclude the section with a brief discussion of the
conditions in Theorem 1. Although all conditions can be
checked in low-order polynomial time, there is a practical
difference in complexity. Finding Θ-combinable labels es-
sentially consists in computing the local equivalence rela-
tions of all Θ ∈ X , which is possible in linear time in the
representation size of X . In contrast, finding globally sub-
sumed labels involves finding subset relationships in a set
family, for which to the best of our knowledge no linear-
time algorithms are known.

A comparison to the results of Helmert et al. (2014) shows
that the Θ-combinability condition strictly generalizes the
previous conditions on exactness. Hence, the new theory
permits a larger number of exact label reductions even if
we only use Θ-combinability and do not consider global
subsumption of labels. For this reason, coupled with ef-
ficiency concerns, we only perform exact label reductions
based on Θ-combinability in our experiments, which we de-
scribe next.

Experiments
As discussed in the preceding sections, the new theory of la-
bel reduction is significantly more general and at the same
time much less complicated than previous work. However,
we have yet to establish that it is useful for practical imple-
mentations of merge-and-shrink heuristics.

Firstly, we need to show that label reduction is actually a
practically useful element of the merge-and-shrink toolbox.
Although previous papers on merge-and-shrink heuristics al-
ready mentioned significant performance improvements due
to label reduction, these are not a central focus of any pre-
vious experiment, and we think it is important to give solid
quantitative evidence in favour of label reduction.

Secondly, while the semantic (rather than syntax-based,
as in previous work) basis for exact label reduction has the
advantage of being much more flexible and easier to im-
plement than previous label reduction theory, it does carry
a nontrivial computational overhead. If this overhead were
so large that implementations based on the new theory per-
formed significantly worse than ones based on the older the-
ory, the usefulness of the new theory would be diminished.

Thirdly, a major drawback of previous label-reduction ap-
proaches are the limitations and difficulties in using them for
non-linear merge strategies. Consequently, we are not aware
of any implementations of non-linear merge strategies in the
planning literature. The new theory removes these weak-
nesses, so it is appropriate to test it with non-linear merging.

In this section, we report on experiments that address
these three aspects.

Experiment Description
Our experiments were conducted with the Fast Downward
planning system (Helmert 2006), which already features the
merge-and-shrink framework including the previous label
reduction approach. We evaluate on all benchmarks from
the International Planning Competitions for optimal plan-
ning (up to 2011) that only use language features supported
by the merge-and-shrink framework (44 domains and 1396
instances in total). The experiments were performed on In-
tel Xeon E5-2660 CPUs running at 2.2 GHz, using a time
bound of 30 minutes and a memory bound of 2 GB per run.

All planning algorithms we evaluate employ an A∗ search
with a merge-and-shrink heuristic, which we varied along
three dimensions: label reduction method, merge strategy
and shrink strategy.

Label Reduction Methods We consider the case without
label reduction (none), the old label reduction method based
on the syntactic descriptions of operators (Nissim, Hoff-
mann, and Helmert 2011a; Helmert et al. 2014) and the new
concept of label reduction described in this paper.

Our implementation of the new method only performs
exact label reduction, combining labels whenever the Θ-
combinability condition in Theorem 1 applies. Specifically,
the computation proceeds as follows: whenever label reduc-
tion makes sense (after each merge or shrink step), we com-
pute the local equivalence relations for labels in each transi-
tion system, then use these to test for Θ-combinable labels
in each transition system Θ. If such labels exist, they are



combined in all transition systems, and the local equivalence
relations are recomputed. The process repeats until no fur-
ther Θ-combinable labels exist for any transition system Θ.
Local equivalence relations are cached so that they are only
recomputed from scratch if the given transition system has
changed since the last computation.

Merge Strategies We consider two merge strategies.
Firstly, in order to represent the state of the art, we re-
port results for the (linear) reverse-level (RL) strategy used
in previous work (Nissim, Hoffmann, and Helmert 2011a;
2011b).

However, to more fully utilize the potential of the new la-
bel reduction approach, we also evaluate it on a non-linear
merge strategy, for which the previous label reduction ap-
proach is comparatively ill-suited and no implementations
were previously available. Therefore, as a case study, we
implemented the originally proposed non-linear strategy by
Dräger, Finkbeiner, and Podelski (2006) from model check-
ing, which we call the DFP merge strategy in the following.

Roughly speaking, the DFP merge strategy is based on the
idea of preferably merging transition systems which must
synchronize on labels that occur close to a goal state. We
refer to the original paper by Dräger et al. (2006) for details.
We remind the reader that the work of Dräger et al. preceded
the concept of label reduction, so the combination of non-
linear merge strategies with label reduction is novel.

Shrink Strategies We report results on shrink strategies
based on bisimulation (Nissim, Hoffmann, and Helmert
2011a; Helmert et al. 2014), which set the current state of
the art. Specifically, we consider a shrink strategy based
on greedy bisimulation with no limit on transition system
size (G-N∞) as well as shrink strategies based on (exact)
bisimulation with different size limits N for the interme-
diate transition system size (B-N10k, B-N50k, B-N100k, B-
N200k, B-N∞). For example, with N = 10000 (strategy B-
N10k), shrinking is performed to guarantee that no interme-
diate transition system has more than 10,000 abstract states,
while with N =∞ (strategy B-N∞) there is no size bound,
so that a perfect heuristic is constructed.

The threshold parameter (Helmert et al. 2014) was set to
N for the strategies with bounded transition system size and
to 1 for the unbounded ones (G-N∞ and B-N∞), following
Nissim, Hoffmann, and Helmert (2011a). This configura-
tion space includes the shrink strategies used in the merge-
and-shrink planner that participated in IPC 2011 (Nissim,
Hoffmann, and Helmert 2011b).

Experimental Results
Table 1 provides a result overview for coverage, i. e., the
number of instances solved by each planner configuration
within our resource bounds. The top half of the table
presents results for the linear merge strategy (RL), the bot-
tom half presents results for the non-linear DFP strategy.

Usefulness of Label Reduction Table 1 shows that plan-
ner configurations with label reduction dramatically outper-
form the corresponding ones without. (For readers less fa-
miliar with optimal planning, we point out that these tasks

merge/shrink strategy none old new
RL-G-N∞ 417 485 465
RL-B-N10k 590 624 617
RL-B-N50k 577 618 634
RL-B-N100k 560 599 639
RL-B-N200k 544 590 630
RL-B-N∞ 257 302 302
DFP-G-N∞ 415 — 465
DFP-B-N10k 597 — 622
DFP-B-N50k 565 — 644
DFP-B-N100k 551 — 632
DFP-B-N200k 522 — 625
DFP-B-N∞ 253 — 302

Table 1: Total coverage for several merge-and-shrink config-
urations, using no label reduction (none), the previous (old)
or the new label reduction. See the text for descriptions of
the merge and shrink strategies. Best results for each merge
strategy in bold.

RL-B-100K DFP-B-50K
none old new none new

mprime (35) 8 +6 +15 6 +17

miconic (150) 60 +13 +13 58 +14

gripper (20) 7 +13 +13 7 +11

freecell (80) 6 −2 +13 9 +11

mystery (30) 8 +1 +8 8 +8

zenotravel (20) 9 +3 +3 10 +2

pipesworld-tankage (50) 8 +2 +3 12 +2

nomystery-opt11-strips (20) 17 +1 +1 16 +2

woodworking-opt08-strips (30) 11 −1 +1 11 +2

blocks (35) 25 −3 −3 25 +2

grid (5) 1 +2 +2 1 +1

floortile-opt11-strips (20) 5 +1 +1 4 +1

rovers (40) 7 +1 +1 7 +1

satellite (36) 5 +1 +1 5 +1

scanalyzer-08-strips (30) 12 +1 +1 12 +1

scanalyzer-opt11-strips (20) 9 +1 +1 9 +1

woodworking-opt11-strips (20) 6 −1 +1 6 +1

pipesworld-notankage (50) 14 ±0 ±0 14 +1

sokoban-opt08-strips (30) 24 ±0 +2 25 ±0
trucks-strips (30) 6 ±0 +2 6 ±0
transport-opt11-strips (20) 6 +1 +1 6 ±0
driverlog (20) 13 −1 −1 12 ±0
Sum (791) 267 +39 +79 269 +79

Remaining domains (605) 293 ±0 ±0 296 ±0
Sum (1396) 560 599 639 565 644

Table 2: Per-domain coverage. Columns 2–4 compare no
(none), old and new label reduction for the linear merge
strategy reverse level (RL) in its best configuration (RL-
B-100K). Columns 5–6 compare no (none) and new label
reduction for the non-linear DFP merge strategy in its best
configuration (DFP-B-50K). For old and new, the columns
show increase/decrease in coverage compared to none. Do-
mains where label reduction showed no increase/decrease in
coverage are omitted. The best results for the given merge
strategy are highlighted in bold.



100 102 104 106
100

102

104

106

unsolved

uns.

DFP-B-N50k, no label reduction

D
FP

-B
-N

50
k,

ne
w

la
be

lr
ed

uc
tio

n

Figure 2: Number of expanded states for DFP-B-N50k: no
label reduction vs. new label reduction.

tend to scale exponentially in difficulty, so that even small
improvements in coverage tend to be very hard to obtain.)

Table 2 shows detailed coverage results for the individ-
ual planning domains in the benchmark set for the best-
performing shrink strategies for each merge strategy. The
table shows that label reduction is very useful across the
board, over a wide range of domains.

For the linear RL merge strategy, the new label reduction
approach increases coverage in 19 domains compared to the
baseline where no labels are reduced, while decreasing cov-
erage in 2 domains. For the non-linear DFP merge strategy,
label reduction increases coverage in 18 domains and de-
creases it in none.

To provide another detailed view, Figure 2 shows the
number of expanded states with the strongest configuration,
DFP-B-N50k, with and without label reduction. The figure
plots the results without label reduction against the results
with our new label reduction approach, over all instances
in the benchmark suite. The figure clearly shows the signifi-
cant impact that label reduction has on performance in many
cases.

Old vs. New Label Reduction Method Focusing on the
comparison between the old and new label reduction method
with a linear merge strategy (top half of Table 1), we see that
despite the larger effort involved in determining reducible la-
bels, the results are in fact quite a bit better with new label
reduction compared to the old technique. In particular, the
best overall result of 639 solved tasks (RL-B-100k) is con-
siderably higher than the best result with the previous state
of the art (624 solved tasks with RL-B-10K and the old label
reduction method).

There are two shrink strategies that show the opposite
trend, namely the ones that tend to compute the simplest
abstractions among the six strategies we consider: greedy
bisimulation (RL-G-N∞) and exact bisimulation with the

100 101 102 103
100

101

102

103

fail

fail

RL-B-N100k, original label reduction

R
L

-B
-N

10
0k

,n
ew

la
be

lr
ed

uc
tio

n

Figure 3: Construction time (in seconds) for RL-B-N100k:
old label reduction vs. new label reduction. Almost all fail-
ures are due to running out of memory.

smallest size bound (RL-B-N10k). One possible explana-
tion for this behaviour is that for the shrink strategies that
compute more complex abstractions, the additional label re-
ductions afforded by the new method are critical for comput-
ing the merge-and-shrink abstraction within the given limits
for time and especially memory. With the shrink strategies
that compute simpler abstractions, on the other hand, mem-
ory for computing the abstraction is less of a concern, and
the new label reduction method suffers from the higher com-
putational cost for determining combinable labels.

This interpretation is supported by Figure 3, which com-
pares the time to construct the abstraction heuristic for the
old and new label reduction method for the strategy RL-B-
N100k. The new strategy tends to construct abstractions
faster and runs out of memory far less frequently. Fig-
ure 4 compares state expansions for the same configurations,
showing that the heuristics are similarly informative in both
cases, and it is mainly the ability to complete the computa-
tion of the abstraction (see Figure 3) that makes the differ-
ence between the old and new label reduction here.

In the case of perfect bisimulations (RL-B-N∞), there
is no difference in coverage between the two label reduc-
tion methods for a different reason: unless the given plan-
ning task exhibits significant amounts of symmetry, unre-
stricted bisimulation tends to exhaust the available memory
very quickly, and hence the perfect abstraction heuristic is
either computed quickly or not at all. In all cases not solved
by the perfect bisimulation approaches, this is due to run-
ning out of memory while computing the abstraction.

Non-Linear Merge Strategy Shifting attention to the re-
sults for the non-linear DFP merge strategy (bottom half of
Table 1), we see that the results with the new label reduction
method are excellent. In particular, the best configuration
(DFP-B-N50k) solves 644 tasks, again setting a new best re-



100 102 104 106
100

102

104

106

unsolved

uns.

RL-B-N100k, original label reduction

R
L

-B
-N

10
0k

,n
ew

la
be

lr
ed

uc
tio

n

Figure 4: Number of expanded states for RL-B-N100k: old
label reduction vs. new label reduction.

sult (compared to 639 solved by RL-B-N100k, also with our
new label reduction method).

Generally speaking, the non-linear merge strategy appears
to benefit even more from label reduction than the linear one
on average. One possible explanation for this observation is
that non-linear merge strategies involve more complex prod-
ucts (merges) than linear ones, and hence benefit more from
label reduction collapsing multiple parallel transitions into
one. In linear merge strategies, at least one of the merged
transition systems is always atomic, and atomic transition
systems tend to have a comparatively low density of transi-
tions. An alternative possibility is that label reduction inter-
acts favourably with the DFP merge strategy, which – unlike
merge strategies previously considered in planning – takes
the labels into account directly in order to decide which tran-
sition systems to merge next.

Figure 5 compares the number of state expansions for the
linear and non-linear merge strategy on an otherwise identi-
cal configuration (shrink strategy B-N50k, new label reduc-
tion). The comparison shows that the two merge strategies
are quite complementary, with both strategies greatly out-
performing each other on a significant number of instances.

Conclusions
We have introduced a general theory of label reduction that
addresses several drawbacks in the previous development of
this topic. Compared to the previous theory, the new theory
of label reduction is easier to understand, easier to reason
about, and more general.

Under the new theory, label reduction can always be
safely applied. Moreover, we have provided efficiently
checkable necessary and sufficient criteria for label reduc-
tion to be exact, i. e., preserve all relevant information. The
new theory allows identifying more cases where exact label
reduction is possible, leading to improved performance of

100 102 104 106
100

102

104

106

unsolved

uns.

RL-B-N50k, new label reduction

D
FP

-B
-N

50
k,

ne
w

la
be

lr
ed

uc
tio

n

Figure 5: Number of expanded states for RL-B-N50k vs.
DFP-B-N50k, both using new label reduction.

merge-and-shrink heuristics based on label reduction.
Unlike the previous theory of label reduction, the new the-

ory allows for a straight-forward application of non-linear
merge strategies. We conducted the first experiments of this
kind by adapting the originally proposed non-linear merge
strategy from model checking to planning. In the future, we
hope that the development of strong non-linear merge strate-
gies can further increase the scalability of merge-and-shrink
heuristics.

Another possible direction for future work is the explo-
ration of inexact label reduction. Inexact label reduction is
a general abstraction method just like shrinking, and similar
intuitions to those that have guided the development of state-
of-the-art shrink strategies could be used to develop useful
inexact label reduction methods. For example, one might try
to abstract a factored transition system by combining labels
that only occur far away from goal states, similarly to the
way that current shrink strategies prefer to combine abstract
states that are far away from the goal.

Acknowledgments
We thank the anonymous reviewers for their comments,
which helped improve the paper. This work was supported
by the Swiss National Science Foundation (SNSF) as part of
the project “Abstraction Heuristics for Planning and Combi-
natorial Search” (AHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN



Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM. In press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In Proceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2008), 1547–1550.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011a. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011b. The
Merge-and-Shrink planner: Bisimulation-based abstraction
for optimal planning. In IPC 2011 planner abstracts, 106–
107.


