Silvan Sievers¹

Gabriele Röger¹ Michael Katz²

Martin Wehrle¹

¹University of Basel, Switzerland ²IBM Watson Health, Haifa, Israel

June 20, 2017

Motivation

- Recent interest in symmetries for planning:
 - Structural symmetries for ground (STRIPS) planning tasks
 - E.g. symmetry-based pruning in forward search

Motivation

- Recent interest in symmetries for planning:
 - Structural symmetries for ground (STRIPS) planning tasks
 - E.g. symmetry-based pruning in forward search
- In this work:
 - Reason about symmetries on lifted planning tasks
 - Provide the foundation for using structural symmetries for applications prior grounding

Outline

- Structural Symmetries
- 2 Grounding
- Relation to STRIPS
- Quantitative Analysis

Abstract Structures

Structural Symmetries

- S: set of symbols s with type t(s)
- Inductive definition of abstract structures:
 - $s \in S$ abstract structure
 - If A_1, \ldots, A_n abstract structures, then also $\langle A_1, \ldots, A_n \rangle$ and $\{A_1, \ldots, A_n\}$ abstract structures

Structural Symmetries

- Symbol mapping σ : permutation of S with $t(\sigma(s)) = t(s)$
- Induced abstract structure mapping $\tilde{\sigma}$:

$$\tilde{\sigma}(A) := \begin{cases} \sigma(A) & \text{if } A \in S \\ \{\tilde{\sigma}(A_1), \dots, \tilde{\sigma}(A_n)\} & \text{if } A = \{A_1, \dots, A_n\} \\ \langle \tilde{\sigma}(A_1), \dots, \tilde{\sigma}(A_n) \rangle & \text{if } A = \langle A_1, \dots, A_n \rangle \end{cases}$$

• σ structural symmetry for abstract structure A if $\tilde{\sigma}(A) = A$

Lifted Planning Tasks as Abstract Structures

- Lifted representation: normalized PDDL with action costs
- Lifted planning task Π as abstract structure:
 - Components such as objects, variables, predicates etc: symbols
 - Atoms, literals, function terms, operators, axioms etc: composed abstract structures

Example Planning Task

Example Planning Task

Two symmetries on the lifted representation: nuts/spanners

Outline

- Structural Symmetries
- 2 Grounding
- Relation to STRIPS
- Quantitative Analysis

Full Grounding

ground(Π): fully grounded planning task Π

Full Grounding

ground(Π): fully grounded planning task Π

Theorem

If σ is a structural symmetry for planning task Π , then σ is a structural symmetry for ground(Π).

Optimized Grounding

- Full grounding infeasible in practice
- Optimized grounding (ground_{opt}(Π)): remove some irrelevant part of the task representation

Optimized Grounding

- Full grounding infeasible in practice
- Optimized grounding (ground_{opt}(Π)): remove some irrelevant part of the task representation

Observation

If σ is a structural symmetry for planning task Π , then σ is not necessarily a structural symmetry for ground $_{opt}(\Pi)$.

Optimized Grounding

- Full grounding infeasible in practice
- Optimized grounding (ground_{opt}(Π)): remove some irrelevant part of the task representation

Observation

If σ is a structural symmetry for planning task Π , then σ is not necessarily a structural symmetry for ground $_{opt}(\Pi)$.

Rational Grounding

- Optimized grounding unreasonable assumption
- Rational grounding (ground_{rat}(Π)): remove all or no symmetric irrelevant parts

Rational Grounding

- Optimized grounding unreasonable assumption
- Rational grounding (ground_{rat}(Π)): remove all or no symmetric irrelevant parts

Theorem

If σ is a structural symmetry for planning task Π , then σ is a structural symmetry for ground_{rat}(Π).

Outline

- Structural Symmetries
- 2 Grounding
- Relation to STRIPS
- Quantitative Analysis

Relation to STRIPS Representations

 Propositional STRIPS tasks: set of symbols contains atoms

Relation to STRIPS Representations

- Propositional STRIPS tasks: set of symbols contains atoms
- Representational differences:
 - Example symmetry of STRIPS task Π: $\sigma(P(a)) = P(a)$ and $\sigma(P(b)) = Q(b)$
 - No analogous symmetry for A_{Π} : cannot map predicate P to both Q and P

Relation to STRIPS Representations

- Propositional STRIPS tasks: set of symbols contains atoms
- Representational differences:
 - Example symmetry of STRIPS task Π: $\sigma(P(a)) = P(a)$ and $\sigma(P(b)) = Q(b)$
 - No analogous symmetry for A_{Π} : cannot map predicate P to both Q and P
- Other direction:
 - If σ symmetry of ground task Π (in our definition), then σ also symmetry of Π (in STRIPS)
 - If σ symmetry of lifted task Π , then σ also transition graph symmetry

Outline

- Structural Symmetries
- 2 Grounding
- Relation to STRIPS
- Quantitative Analysis

Summarized Results

- Computation of symmetries as graph automorphisms
- 2518 in 77 domains (all sequential track IPC benchmarks)
- Only 9 domains without symmetries and 26 domains with majority of no symmetries
- 1430 of 2518 with symmetries
- Cheap to compute with one exception (ground task)

Dicussion

- Summary:
 - Structural symmetries of the lifted representation
 - Lifted symmetries also symmetries of ground representations
 - Benchmarks: many symmetries of the lifted representation

Dicussion

• Summary:

- Structural symmetries of the lifted representation
- Lifted symmetries also symmetries of ground representations
- Benchmarks: many symmetries of the lifted representation

• Future work:

- Accelerated computation of invariants/grounding: consider only subset of (symmetric) objects
- State space reformulations