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Abstract

We transfer the notion of structural symmetries to lifted plan-
ning task representations, based on abstract structures which
we define to model planning tasks. We show that symme-
tries are preserved by common grounding methods and we
shed some light on the relation to previous symmetry con-
cepts used in planning. Using a suitable graph representation
of lifted tasks, our experimental analysis of common planning
benchmarks reveals that symmetries occur in the lifted repre-
sentation of many domains. Our work establishes the theoret-
ical ground for exploiting symmetries beyond their previous
scope, such as for faster grounding and mutex generation, as
well as for state space transformations and reductions.

Introduction
In domain-independent classical planning, symmetries have
been intensively investigated to increase the scalability of
planning systems (Fox and Long 1999; 2002; Rintanen
2003; Pochter, Zohar, and Rosenschein 2011; Rintanen and
Gretton 2013; Domshlak, Katz, and Shleyfman 2012; 2013;
2015; Abdulaziz, Norrish, and Gretton 2015; Sievers et al.
2015b; Wehrle et al. 2015). In particular, Shleyfman et
al. (2015) introduced structural symmetries as a declara-
tive notion over the representation of propositional STRIPS
tasks. These symmetries subsume some earlier symmetry
definitions for classical planning, many of which focus on
object symmetries (Fox and Long 1999; 2002; Riddle et al.
2016). They also generalize further types of symmetries con-
sidered for other state-space search problems, e. g. rotation
and reflection (Huber et al. 1986) or scalarset permutations
(Ip and Dill 1996).

In practice, planning tasks are usually given in a com-
pact lifted PDDL description, which is, however, not directly
supported by most planning techniques. Instead, they first
transform it into a much larger ground representation. Also
most of the recent symmetry-based approaches operate only
on this ground representation, including techniques based
on structural symmetries. However, reasoning about sym-
metries for applications that work directly on the lifted rep-
resentation requires a general concept of symmetries of the
lifted representation.
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In this work, we transfer the notion of structural symme-
tries to the lifted representation. Our aim is to build the theo-
retical basis for many promising future applications of such
symmetries. While these symmetries could be grounded to
be used for existing symmetry-based approaches that oper-
ate on the ground representation, this is not our intended ap-
plication, and we will show that there is no theoretical gain
in doing so. Instead, structural symmetries of the lifted rep-
resentation can be used for all purposes operating on lifted
representations. In particular, we see potential benefit for
state space transformations and reductions on that level.

For transferring the concept of structural symmetries to
the lifted representation, we model planning tasks based on
a very general concept of abstract structures, unlike previ-
ous work also covering axioms and conditional effects. We
show that lifted structural symmetries are preserved by com-
mon grounding methods and how they are related to previ-
ous symmetry concepts. We also introduce a graph repre-
sentation of abstract structures that allows to compute struc-
tural symmetries of the abstract structures and thus the plan-
ning tasks they represent. A quantitative analysis of planning
benchmarks from the International Planning Competitions
(IPC) reveals a large number of symmetries in these bench-
marks. We conclude the paper with a discussion of initial
existing and potential future applications of lifted structural
symmetries.

Structural Symmetries
To separate the concept of structural symmetries from the
specific application to planning, we first introduce abstract
structures, which we will later use for representing planning
tasks.

Definition 1. Let S be a set of symbols, where each s ∈ S
is associated with a symbol type t(s). The set of abstract
structures over S is inductively defined as follows:

• each symbol s ∈ S is an abstract structure, and
• for abstract structures A1, . . . , An, the set {A1, . . . , An}

and the tuple 〈A1, . . . , An〉 are abstract structures.

For an example, consider the set S = {a, b, c, . . . , j},
where a, b, c have type t1 and d, . . . , j have type t2. A =
{〈a, {d, e}〉, 〈b, {f, g}〉, 〈d, {h}〉, 〈f, {h}〉, 〈{i}, c, j〉} is a
possible abstract structure over S.



Informally speaking, a structural symmetry for an abstract
structure is a permutation of the symbols that preserves the
structure as well as the types of the symbols.

Definition 2. A symbol mapping σ over a set of symbols S is
a permutation of S such that for all s ∈ S : t(σ(s)) = t(s).

In the example, permutation σ1 that swaps awith b, dwith
f and ewith g and maps all other symbols onto themselves is
a symbol mapping over S. Any permutation that maps a on
d is not a symbol mapping because t(a) = t1 6= t2 = t(d).

Definition 3. For an abstract structureA over S and a sym-
bol mapping σ over S, the abstract structure mapping σ̃(A)
is defined as follows:

σ̃(A) :=


σ(A) if A ∈ S
{σ̃(A1), . . . , σ̃(An)} if A = {A1, . . . , An}
〈σ̃(A1), . . . , σ̃(An)〉 if A = 〈A1, . . . , An〉

We call σ a structural symmetry for A if σ̃(A) = A.

The identity function on S is a trivial structural sym-
metry. In the example, also the earlier symbol mapping
σ1 is a structural symmetry for A because σ̃1(A) =
{〈b, {f, g}〉, 〈a, {d, e}〉, 〈f, {h}〉, 〈d, {h}〉, 〈{i}, c, j〉} =
A. In contrast, symbol mapping σ2 that swaps a with b, d
with g and e with f (and keeps all other symbols stable) is
not a structural symmetry for A: while its application pre-
serves some parts of A, it does not preserve all of them. For
example, σ̃2(〈a, {d, e}〉) = 〈b, {g, f}〉 and vice versa and
both are in set A but σ̃2(〈d, {h}〉) = 〈g, {h}〉 6∈ A.

We establish that the set of all structural symmetries for an
abstract structure A forms a group under function composi-
tion. We will not only exploit this property in later theorems
but it will also provide the basis for the actual computation
of such symmetries.

Lemma 1. Given an abstract structure A over a finite set of
symbols S, let Γ(A) be the set of all structural symmetries
for A. Then Γ(A) is a group.

Proof. To show that a set of permutations of a finite set
forms a group under composition, it is sufficient to show
that it is nonempty and closed under composition. It is easy
to verify that the identity symbol mapping always is a struc-
tural symmetry, and for σ1, σ2 ∈ Γ(A) also σ := σ1 ◦ σ2 ∈
Γ(A) because σ̃(A) = σ̃1(σ̃2(A)) = σ̃1(A) = A.

Planning Tasks as Abstract Structures
To apply the general notion of structural symmetries to plan-
ning, we define planning tasks as abstract structures.

Definition 4. We call a finite set of symbols S a set of sym-
bols for planning if the associated symbol types are from
{Object , Variable , FluentPredicate, DerivedPredicate,
Function , Negation} ∪ N and there is at most one symbol
of type Negation .

We also refer to symbols of type T as T symbols. Let S
be a set of symbols for planning. For convenience, we define
some notions for abstract structures over S:

• An atom is a tuple 〈P, x1, . . . , xn〉 of symbols with
t(P ) ∈ {FluentPredicate,DerivedPredicate}, and for
i ∈ {1 . . . , n}, t(xi) ∈ {Object ,Variable}. The atom is
fluent if t(P ) = FluentPredicate, otherwise it is derived.

• A literal is either an atom or an abstract structure 〈¬, A〉
where t(¬) = Negation and A is an atom.

• A function term is a tuple 〈f, x1, . . . , xn〉 of symbols
with t(f) = Function , and for i ∈ {1 . . . , n}, t(xi) ∈
{Object ,Variable}.

• A function assignment is a tuple 〈F, v〉 where F is a func-
tion term and v is a symbol with t(v) ∈ N.

Structures without Variable symbols are called ground.

Definition 5. A planning task is an abstract structure Π =
〈O,A, s0, s?〉 over a set of symbols S for planning, where

• O is a set of operators, each of the form o =
〈params, pre, eff , cost〉 where
– params is a set of Variable symbols,
– pre is a set of literals where all occurring variables are

from params ,
– eff is a set of universally quantified conditional effects,

each of the form 〈vars, cond , lit〉, where vars is a set
of Variable symbols, cond is a set of literals and lit
is a literal of a fluent atom. All variables occurring in
cond and lit are from params ∪ vars .

– cost is a symbol v with t(v) ∈ N or a function term
where all occurring variables are from params;

• A is a set of axioms, each of the form a =
〈params, pre, eff 〉 where params and pre are defined as
for operators above and eff is a derived atom where all
occurring variables are from params . The set of axioms
must be stratifiable.1

• s0 is a set of fluent ground atoms and consistent ground
function assignments, i. e. assignments with identical
function term are identical;

• s? is a set of ground literals.

W.l.o.g. all occurring sets of Variable symbols are disjoint.

We assume syntactically unique elements, such as opera-
tors, axioms, etc., and thus there is no need for naming the
elements, which can be identified by their structure.

This definition of planning tasks corresponds to normal-
ized PDDL planning tasks as used by Helmert (2009), ex-
tended with support for action costs. We refer to such a plan-
ning task as lifted task or as lifted representation of a task.

Figure 1 shows an operator (from the SPANNER domain)
in PDDL representation and as abstract structure. The oper-
ator picks up a spanner at a location. Since it does not have
all-quantified effects or (non-trivial) effect conditions, the
first two elements of each effect are empty.

A ground planning task (or ground representation of a
task) contains no Variable symbols. The semantics of a
(lifted) planning task is defined via its induced ground plan-
ning task, which we define in the following.

1Stratifiability (Thiébaux, Hoffmann, and Nebel 2005) ensures
that the result of axiom evaluation is well-defined.



(:action pick-up
:parameters (?s ?l)
:precondition

(and (LOCATION ?l)
(SPANNER ?s)
(bob-at ?l)
(spanner-at ?s ?l))

:effect
(and (not (spanner-at ?s ?l))

(carrying ?s)
(increase (total-cost) 1)))

〈{s, l},
{〈location, l〉, 〈spanner, s〉, 〈bob-at, l〉, 〈spanner-at, s, l〉},
{〈∅, ∅, 〈¬, 〈spanner-at, s, l〉〉, 〈∅, ∅, 〈carrying, s〉}, 1〉

Figure 1: Operator from the SPANNER domain in PDDL rep-
resentation and as abstract structure.

For a set S of symbols for planning, we define Objs(S) =
{s ∈ S | t(s) = Object}. For sets X and Y , we denote the
set of all functions f : X → Y by XY . We call a function
m that maps from the Variable symbols in S to Objs(S)
a variable mapping and write m̃(S) for the natural exten-
sion of m to abstract structures, where symbols outside the
domain of m are mapped to themselves.

Grounding instantiates operators and axioms with all pos-
sible variable assignments and expands universal effects.
Definition 6. For a (lifted) planning task Π=〈O,A, s0, s?〉
over S, the induced ground planning task is defined as
ground(Π) = 〈ground(O), ground(A), s0, s?〉 over S with
• ground(O) =

⋃
o∈O opground(o), where

opground(〈params, pre, eff , cost〉)
= {〈∅, m̃(pre), m̃(expand(eff )), m̃(cost)〉 |
m ∈ paramsObjs(S)}, with

expand(eff )

= {〈∅, ñ(cond), ñ(lit)〉 |
〈vars, cond , lit〉 ∈ eff , n ∈ varsObjs(S)}

• ground(A) =
⋃

a∈A axground(a), where

axground(〈params, pre, eff 〉)
= {〈∅, m̃(pre), m̃(eff )〉 | m ∈ paramsObjs(S)}.

A state of a ground planning task Π = 〈O,A, s0, s?〉 over
S is a set of ground atoms. A fluent state s is a subset of
the fluent ground atoms. The associated derived state JsK re-
sults from s by evaluating the axioms as in stratified logic
programming. A state s satisfies a set C of ground literals
if all atoms in C are also in s, no negated atom from C
occurs (positively) in s and C is consistent. A ground op-
erator o = 〈∅, pre, eff , cost〉 is applicable in a fluent state
s if JsK satisfies pre and s0 contains a function assignment
for cost if it is a function term. The (fluent) successor state
s[o] contains a fluent ground atom a if there is an effect
〈∅, cond , a〉 ∈ eff such that JsK satisfies cond or if a ∈ s

BOB

SHED MIDDLE GATE

Figure 2: Exemplary initial state of a SPANNER task.

and there is no 〈∅, cond , 〈¬, a〉〉 ∈ eff where JsK satisfies
cond . The (fluent) initial state consists of the atoms in s0.

The semantics of Π can naturally be represented via its
induced transition graph, which is the labeled transition sys-
tem TΠ = 〈D,L, T, Js0K, G〉 where D is the set of de-
rived states of Π, L corresponds to O, and whenever o =
〈∅, pre, eff , cost〉 ∈ O is applicable in fluent state s, there is
a transition 〈JsK, o, Js[o]K〉 ∈ T labeled with o. The cost of
the transition is the value assigned to cost in s0 if it is a func-
tion term and its (natural number) type otherwise. The set of
goal states G consists of all s ∈ D that satisfy s?. A plan
for Π is a sequence of labels (thus operators) along a path in
TΠ from Js[o]K to a state from G. Its cost is the accumulated
label costs of the sequence. Satisficing planning deals with
finding plans of any cost whereas optimal planning is only
interested in plans with minimal cost among all plans. For
a lifted planning task, its transition graph is defined as the
transition graph of the induced ground task.

As a running example, consider a planning task of the
IPC domain SPANNER with the initial state shown in Fig-
ure 2. The goal of BOB, initially at the location SHED, is
to tighten the two nuts NUT1 and NUT2 located at the GATE,
using the spanners SP1 and SP2, initially at the location MID-
DLE. It does not matter which spanner is used for which nut,
but spanners can only be used once. Operators MOVE(X, Y)
move BOB from X to Y, however there are only one-way con-
nections from the SHED to the MIDDLE and from the MID-
DLE to the GATE. Operators PICK-UP(X, Y) let BOB pick up
the spanner X at location Y, and once picked up, spanners
cannot be dropped again.

In the lifted representation of the task, there are two struc-
tural symmetries: the two spanners are symmetric to each
other, and so are the two nuts, because both the spanners
and the nuts are at the same location initially, the nuts both
need to be tightened in the goal, and the same operators work
with the spanners and the nuts, respectively. In the abstract
structure modeling the planning task, both the spanners and
the nuts are modeled as symbols (because they are PDDL
objects), and hence the two mentioned structural symme-
tries permute the corresponding symbols and all abstract
(sub)structures of the planning tasks where the spanners or
nuts are mentioned.

Note that our symmetries stabilize both the initial state
and the goal, i. e. parts of a planning task can only be con-
sidered symmetric if they are symmetric in the initial state
and the goal. This differs from structural symmetries of a
ground representation in previous work; e. g. Shleyfman et
al. (2015) do not stabilize the initial state because it is not
necessary for symmetry-based pruning in a forward search.
With a lifted representation, not stabilizing the initial state
causes some difficulties due to the specification of PDDL:
function assignments and all “static” information (e.g. hard-



coded connectivity information) are specified in the initial
state, and this information would be lost. However, all appli-
cations we have in mind are based on a reachability analysis,
for which stabilizing the initial state is essential. In contrast,
for most applications we do not need to stabilize the goal,
which we can achieve by simply dropping it from the ab-
stract structure.

Structural Symmetries and Grounding
To ensure that our symmetries can also be applied to ground
representations and hence are also symmetries in the sense
of previous work, we will first establish that structural sym-
metries of the lifted representation are also structural sym-
metries of the induced ground representation, and then dis-
cuss this issue in the light of optimized grounding.
Theorem 1. Let σ be a symbol mapping over S. If σ is a
structural symmetry for a planning task Π = 〈O,A, s0, s?〉
over S, then σ is a structural symmetry for ground(Π).

Proof. For better readability, in the following we use sub-
scripts ↓ to denote ground abstract structures in con-
trast to lifted ones. We have to show that ground(Π) =
σ̃(ground(Π)) and start with ground(A) = σ̃(ground(A)).
Consider a↓ = 〈∅, pre↓, eff ↓〉 ∈ ground(A). Since
a↓ is in ground(A) there must be an axiom a =
〈params, pre, eff 〉 ∈ A and a variable mapping m such
that a↓ ∈ axground(a). Since σ is a structural symmetry
of A, also σ̃(a) ∈ A. Consider m′ := σ ◦ m ◦ σ−1 ∈
σ̃(params)Objs(S). Variable mapping m′ grounds σ̃(a) to
a′ := 〈∅, m̃′(σ̃(pre)), m̃′(σ̃(eff ))〉 ∈ axground(σ̃(a)). It
holds that m̃′(σ̃(pre)) = {m̃′ ◦ σ̃(p) | p ∈ pre} =
{σ̃ ◦ m̃(p) | p ∈ pre} = σ̃({m̃(p) | p ∈ pre}) = σ̃(pre↓)
(*). Analogously, we can show that m̃′(σ̃(eff )) = σ̃(eff ↓),
so overall a′ = σ̃(a↓). Therefore, for each a ∈ ground(A),
also σ̃(a) is in ground(A), and, since σ̃ is a permutation on
Π, σ̃(ground(A)) = ground(A).

Establishing ground(O) = σ̃(ground(O)) technically
works analogously, with the addition that we also have to
use argument (*) for the effect condition of operators.

As s0 and s? of the induced ground task are the same as in
the lifted task, we immediately get σ̃(s0) = s0 and σ̃(s?) =
s?, and hence overall ground(Π) = σ̃(ground(Π)).

In practice, the induced ground task is typically too large
to be represented and computed in reasonable time (e. g.,
Helmert 2009). We say that a grounding algorithm is op-
timized if it removes (some, not necessarily all) irrelevant
parts of the task representation (e. g., Köhler and Hoffmann
2000). Such grounding is correct if the reachable part of the
transition graph is not affected. We write groundopt(Π) for
a correct optimized grounding of Π.
Observation 1. A structural symmetry for a planning task Π
is not necessarily a structural symmetry for groundopt(Π).

As an example for this observation, consider again the
SPANNER task in Figure 2. As we have seen before, in the
lifted representation, the spanners are symmetric to each
other, and so are the nuts. However, consider the ground rep-
resentation groundopt(Π) in which only the ground operator

PICK-UP(SP1, SHED) has been been removed, and all other
(inapplicable) instantiations of PICK-UP are still present.2
Then the structural symmetry swapping the spanners in Π is
not a structural symmetry of groundopt(Π), because PICK-
UP(SP2, SHED) has no symmetric counterpart.

However, this exploits that the grounding algorithm re-
moves one unreachable operator but retains a symmetric
one. This would be a very atypical behavior of a rational
grounding algorithm. We say that a grounding algorithm is
rational if it never removes a component (such as an op-
erator or an atom) and at the same time keeps its sym-
metric component. We denote the resulting ground task by
ground rat(Π). Note that in particular the induced ground
representation corresponds to a trivial rational grounding.
Theorem 2. If σ is a structural symmetry for a planning
task Π, then it is a structural symmetry for ground rat(Π).

Proof sketch. In Theorem 1, we have shown that every
structural symmetry of Π is a structural symmetry of the in-
duced ground representation. Rational grounding can omit
some components that occur in the induced ground repre-
sentation but it always either removes all or none of the sym-
metric components. Hence any structural symmetry must be
preserved through rational grounding.

We conclude that with any rational grounding approach,
our symmetries correspond to symmetries of the grounded
representation, and hence we can safely exploit symmetries
of the lifted representation for any application.

We find this result more relevant in practice than Obser-
vation 1 because we are not aware of any non-hypothetical
non-rational grounding algorithm. In particular, approaches
based on a reachability analysis, such as the one used in Fast
Downward (Helmert 2009), are naturally rational.

Symmetries of the lifted representation define mappings
of predicates and objects of a planning task, and as such
induce a mapping of ground atoms as used in (proposi-
tional) ground representations of planning tasks.3 However,
according to the above theorem, such grounding of lifted
symmetries with rational grounding algorithms cannot result
in finding more symmetries compared to directly comput-
ing structural symmetries of the ground representation, and
hence such an application of our symmetries is fruitless.

Relation to Previous Notions of Symmetry
Fox and Long (1999) consider object symmetries from the
lifted task representation, where objects are symmetric if
they cannot be distinguished in the initial state and the goal,
i. e. permuting them does not affect these parts of the task
description. This requires that objects do not occur in oper-
ators. For tasks that mention objects in operators, Fox and

2While this might not necessarily be the result of a any existing
implementation of a grounding algorithm, it could be the result of
some correct optimized grounding algorithm.

3A further transformation of a symmetry into finite domain rep-
resentation (FDR) (Helmert 2009) is not as straight-forward in gen-
eral but it is trivial in the common case of a rational transformation,
i. e. if the transformation treats symmetric ground atoms symmet-
rically when grouping ground atoms into FDR variables.



Long use a task reformulation that identifies these objects in
the initial state with the help of additional unary predicates.
Operators then require these predicates to be true instead of
the specific objects. This prevents such objects to be sym-
metric with any other object.

The detected object symmetries are structural symmetries
in the sense of our definition, where all non-objects sym-
bols are mapped to themselves. However, due to the different
treatment of operators, we can find additional such symme-
tries that the method by Fox and Long cannot detect.

Shleyfman et al. (2015) already introduced structural
symmetries for STRIPS planning tasks. These symmetries
are also structural symmetries in the sense of our definition,
but representing planning tasks as different abstract struc-
tures. In the following, we denote this other representation
the propositional task representation. The main difference is
that the set of symbols consists of the ground atoms. Ground
atoms are therefore not represented as tuples but as symbols.

The different symbol set already gives rise to symmetries
that are not symmetries of our task representation: consider
a task in propositional representation that has a symmetry
σ′ with σ′(P (a)) = P (a) and σ′(P (b)) = Q(b). In our
abstract structure representation this task cannot have an
analogous symmetry σ because σ̃(〈P, a〉) = 〈P, a〉 implies
σ(P ) = P , so σ̃(〈P, b〉) = 〈P, σ̃(b)〉 6= 〈Q, b〉.

Vice versa, for ground planning tasks, each structural
symmetry σ of our task representation corresponds to
a structural symmetry σ′ of the propositional represen-
tation. The key idea of the proof is to define σ′ as
σ′(P (c1, . . . , cn)) = σ(P )(σ(c1), . . . , σ(cn)). A full proof
requires a definition of task equivalence bridging the for-
malisms and an extension of Shleyfman et al.’s definition to
axioms and conditional effects. As both are straight-forward
but lengthy, we refrain from including them in this paper.

Together with Theorem 2, this observation emphasizes the
lack of theoretical gain in grounding structural symmetries
of the lifted representation. Instead, structural symmetries of
the lifted representation can be utilized for applications that
work on this lifted representation, and these symmetries are
symmetries in the same sense as in previous work.

A second aspect where our symmetries are similar to
those of Shleyfman et al. is that they are transition graph
symmetries. Since Shleyfman et al. did not cover axioms and
conditional effects, we discuss transition graph symmetries
independently. A transition graph symmetry of a planning
task is a goal-stable automorphism of the induced transition
graph of the task, i. e. a mapping of derived states and oper-
ators, preserving transitions with costs as well as goal states.

Theorem 3. Let Π = 〈O,A, s0, s?〉 be a ground planning
task over S and let σ be a structural symmetry for Π. Then
σ̃ (viewed as a function on the states and operators) is a
transition graph symmetry of TΠ.

Proof. We have to show that σ̃ preserves transitions and
their cost as well as goal states of TΠ. We begin with show-
ing the former. Let 〈JsK, o, Js[o]K〉 be a transition of TΠ

where s is a fluent state and o = 〈∅, pre, eff , cost〉 ∈ O
an operator such that JsK satisfies pre. Then σ̃(JsK) satis-
fies the precondition of σ̃(o) and σ̃(s)[σ̃(o)] = σ̃(s[o]).

The (stratified) evaluation of the axioms deriving Js[o]K
from s[o] directly translates to a symmetric axiom eval-
uation deriving Jσ̃(s[o])K from σ̃(s[o]). So overall, also
〈σ̃(JsK), σ̃(o), σ̃(Js[o]K)〉 is a transition of TΠ. The other di-
rection follows directly from the same argument and the fact
that σ−1 is a structural symmetry for Π (because the set of
symmetries of Π form a group, c. f. Lemma 1).

To show that costs are preserved, let F be the function
term specifying the cost of operator o. Let s0 contain a func-
tion assignment 〈F, c〉 for some numeric value c. Then all
transitions induced by o have the same cost c. As σ(c) = c
and σ̃(s0) = s0, this implies that s0 contains a function as-
signment 〈σ̃(F ), c〉, so that all transitions induced by σ̃(o)
have the same cost c. As σ̃(s?) = s? implies that JsK sat-
isfies s? iff σ̃(JsK) satisfies s?, σ̃ preserves the set of goal
states.

Computation
Pochter, Zohar, and Rosenschein (2011) already established
that symmetries can be computed as automorphisms of the
so-called problem description graph (PDG). Later on, Sh-
leyfman et al. (2015) showed that PDG symmetries corre-
spond to structural symmetries under the assumption that the
task specification does not contain redundant propositions.
In the following we introduce a suitable graph representa-
tion for general abstract structures.

Definition 7. Let A be an abstract structure over S. The
abstract structure graph (ASG) ASGA is the colored digraph
〈N,E〉, that contains the following nodes and edges:

• N contains a node A for the abstract structure A. If
N contains a node for A′ = {A1, . . . , An} or A′ =
〈A1, . . . , An〉, it also contains the nodes for A1, . . . , An.

• For every set (sub-)structure A′ = {A1, . . . , An} there
are edges A′ → Ai for i ∈ {1, . . . , n}.

• For every tuple (sub-)structure A′ = 〈A1, . . . , An〉, the
graph contains auxiliary nodes nA

′

1 , . . . , nA′

n , edge A′ →
nA

′

1 and for 1 < i ≤ n edges nA
′

i−1 → nA
′

i . For each
component Ai, there is an edge nA

′

i → Ai.
• For each node A′, if A′ ∈ S then color(A′) = t(A′).

If A′ = {A1, . . . , An}, then color(A′) = set , and if
A′ = 〈A1, . . . , An〉, then color(A′) = tuple . All other
(auxiliary) nodes have color aux .

Figure 3 shows an example of an abstract structure graph.

Theorem 4. LetA be an abstract structure over S. Then ev-
ery colored graph automorphism of ASGA induces a struc-
tural symmetry of A.

Proof sketch. Let α be a colored graph automorphism of
ASGA. Then α|S is a symbol mapping over S because for
all nodes A′ ∈ S we have color(A′) = t(A′) and no other
node has a type color.

We can show by induction over the structure of A
that for every sub-structure A′ = {A′1, . . . , A′n} and
A′′ = {A′′1 , . . . A′′n} of A it holds that α(A′) =
{α(A′1), . . . , α(A′n)} and α(A′′) = 〈α(A′′1), . . . , α(A′′n)〉.
Thus, α restricted to the non-auxiliary nodes is an abstract



{a, b}

b a

〈c, d〉

c

d

Figure 3: Abstract structure graph for {〈a, 〈c, d〉〉,
〈b, 〈c, d〉〉, 〈〈c, d〉, {a, b}〉}, where a, b, c have type t1
and d type t2. Set nodes are yellow, tuple nodes green,
nodes from the set of symbols orange (t1) and red (t2),
and auxiliary nodes gray. Labels next to some nodes are
not part of the graph but should help the reader to match
the components. Note that several occurrences of the same
sub-structure (e. g. 〈c, d〉) are only represented once.

structure mapping for A with underlying symbol mapping
α|S . As A is the only node with no incoming edges, it holds
that α(A) = A, so α|S is a structural symmetry of A.

An immediate consequence is that we can use any graph
automorphism tool to compute structural symmetries of a
planning task Π: construct ASGΠ and let the tool compute
a set of automorphisms which generate a subgroup of the
automorphism group Γ(ASGΠ).4 This subgroup corresponds
to a symmetry group of Π. This procedure is complete in the
sense that it can find all structural symmetries of A.

Theorem 5. Let σ be a structural symmetry for abstract
structure A. Then σ can be extended to a colored graph au-
tomorphism of the abstract structure graph ASGA.

Proof sketch. We can extend σ to a suitable permutation α
of the nodes of ASGA as follows: on the non-auxiliary nodes,
α is identical to σ̃. For the auxiliary nodes, it maps the node
n′i that was introduced for the i-th component of a tuple A′
to the auxiliary node that was introduced for the i-th com-
ponent of tuple σ̃(A′). Then α is a permutation of the nodes
of ASGA that only maps nodes to nodes of the same color.
For showing that there is an edge n→ n′ iff there is an edge
α(n) → α(n′), the full proof makes a case distinction for
the different cases where edges are introduced in Definition
7. For example, for every edgeA′ → A′i that was introduced
for set A′ = {A′1, . . . , A′n}, there is edge α(A′) → α(A′i)
because α(A′) = {α(A′1), . . . , α(A′n)} is again a set, induc-
ing the required edge in ASGA.

Quantitative Analysis of Lifted Symmetries
Previous work established that propositional structural sym-
metries arise across nearly all common STRIPS planning

4While no polynomial-time algorithms are known for comput-
ing the set of generators of the automorphism group of a graph,
graph automorphism tools can efficiently compute the generators
of a subgroup thereof even for large graphs.

regular representation: FDR vs lifted lifted: regular vs bagged

total FDR lifted + - total regular bagged

2518 1807 1352 70 (6) 455 (19) 1764 918 782

Table 1: Left block: number of tasks (total), out of which
with symmetries (FDR/lifted), and number of tasks (do-
mains) with lifted but no FDR symmetries (+) and vice versa
(-). Right block: analogously number of tasks with and with-
out lifted symmetries on regular and bagged benchmarks.

benchmarks (Domshlak, Katz, and Shleyfman 2013; Sievers
et al. 2015a). As we saw that we might find fewer structural
symmetries on the lifted representation, we report quanti-
tative results on all benchmarks (including those with ax-
ioms and conditional effects) from the sequential tracks of
all IPCs up to 2014 (including identical domains used in dif-
ferent IPCs only once), consisting of 77 domains with a to-
tal of 2518 tasks. We implemented the ASG in the translator
component of Fast Downward (Helmert 2006) and used the
graph automorphism tool Bliss (Junttila and Kaski 2007) to
compute generators of symmetry groups. Furthermore, even
though our intended application of lifted symmetries is not
for any applications on ground tasks, for completeness, we
also include a comparison to propositional structural sym-
metries in our analysis. To compute these, we use the PDG
described by Shleyfman et al. (2015) (extended to axioms
and conditional effects), implemented for the FDR represen-
tation used in Fast Downward. To allow a fair comparison,
we not only stabilize the goal, but also the initial state, and
additionally include symmetries that only act on operators
(which is not useful respectively necessary for the applica-
tion of symmetry-based pruning as in previous work). To
further relate our approach to the task transformation into the
so-called bagged representation (Riddle et al. 2016), which
aims at eliminating symmetries, we also compute lifted sym-
metries on these reformulated tasks. Each task is run on Intel
Xeon E5-2660 CPUs with 2.2 GHz, using a memory limit of
3.5 GiB and a time limit of 300 seconds.5

Table 1 shows aggregated quantitative results. First con-
sider the comparison of computing FDR and lifted symme-
tries on regular IPC benchmarks, shown in the left block. We
observe that in total, more than half of the tasks (1352/2518)
exhibit lifted symmetries, distributed across 63 out of 77 do-
mains, compared to 1807 tasks with FDR symmetries, dis-
tributed across the same 63 domains plus 3 additional do-
mains. While this already establishes that there are lots of
lifted symmetries, we further observed that in 6 domains,
there are more tasks with lifted symmetries than with FDR
symmetries (the converse is true in 19 domains). A closer
examination of this surprising fact revealed that these lifted
symmetries are irrelevant in the reachable state space and
hence get removed during the grounding process so that
previous notions of structural symmetries could not cap-
ture them. For example, in ASSEMBLY, the normalization of

5Implementation: https://doi.org/10.5281/zenodo.2621897,
dataset with benchmarks: https://doi.org/10.5281/zenodo.2621424.
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Figure 4: Left: order of lifted vs FDR symmetry groups. Right: number of nodes in ASGs vs PDGs.

PDDL in the translator introduces symmetric axioms, which
we detect on the lifted representation, but which get removed
again when grounding. The overall much lower number of
tasks with lifted symmetries mainly originates from some
domains without lifted symmetries containing many more
tasks than other domains (e.g., MICONIC, SCHEDULE). For
the large majority of domains where both FDR and lifted
symmetries arise, the number of tasks with symmetries is
the same or similar. Besides the comparison to FDR symme-
tries, we also analyzed the type of lifted symmetries found
in each domain: there are 5 domains with tasks that have
only symmetries mapping predicates, 54 domains have sym-
metries only mapping objects, and the remaining 4 domains
contain mixed symmetries.

To further quantify the differences of lifted and FDR
structural symmetries, we do not report statistics on the
group generators as it was done in previous work, but instead
we compute the order (= cardinality) of the resulting group
using the Python library SymPy6 with the same memory and
time limits, as suggested recently by Shleyfman (2018). Al-
though the equivalence in group order is not a guarantee of
group isomorphism (or vice versa), it is indeed a better indi-
cator than the size or the order of a generating set. The left
plot in Figure 4 shows the comparison of group orders. Note
that we clamp values larger than 1015 to 1015 for readabil-
ity. As expected, for many of the domains where there are
both lifted and FDR symmetries, the order of FDR symme-
try groups is larger than that of lifted groups.

We also analyzed the graphs used to compute FDR and
lifted symmetries. The right plot in Figure 4 compares the
number of nodes of ASGs and PDGs, highlighting domains
with tasks where these numbers are at least a factor 20 apart.
For some domains that specify full ground tasks in PDDL,
ASGs are larger than PDGs by a constant factor. Further-
more, for small planning tasks, the overhead of having nodes
for parameters of actions and literals in the ASGs results
in mildly larger graphs compared to PDGs. For most other
cases, however, the plot indicates that the size of ASGs

6www.sympy.org

grows significantly slower than that of PDGs. An analysis
of the runtime to compute symmetries confirms this result:
computing lifted symmetries, there are only 25 tasks for
which the computation takes more than 2s. In these tasks,
the maximum computation time is 8.23s. In contrast, com-
puting FDR symmetries takes more than 2s in 53 tasks and
up to 224.113s.

Finally, consider now the right block of Table 1. It com-
pares computing lifted symmetries on regular and bagged
domains, restricting the comparison to tasks where the re-
formulation was possible (1764 tasks across 60 domains).
Even though the bagged representation aims at eliminating
symmetries, of the 918 tasks across 51 domains with lifted
symmetries in the original representation, 782 tasks across
45 domains still exhibit lifted structural symmetries after the
reformulation. Furthermore, we also analyzed the orders of
the symmetries and found them to be identical in 38 of the
45 domains. This means that many structural symmetries are
preserved throughout the reformulation into a bagged repre-
sentation, thus showing that they capture a stronger concept
of symmetry.

Discussion and Future Work
The exploitation of symmetries is not only interesting in
the context of planning but for many areas working on
some form of transition system or model-finding. For ex-
ample, there is a large body of work on symmetries avail-
able in the model checking community (Clarke et al. 1996,
tutorial-style survey by Wahl and Donaldson 2010), which
already introduced most concepts later adopted by the plan-
ning community. Symmetries get likewise exploited in SMT
(Déharbe et al. 2011), propositional satisfiability (Craw-
ford et al. 1996) or SAT representations of transition sys-
tems (Rintanen 2003). Other areas also aready investigated
structural symmetries on lifted representations and how they
carry over to the state space (e. g. Starke 1991 for petri nets).
We did an analgous analysis for the semantics of planning.

Generally, one is interested in symmetries leading to se-
mantically equivalent theories or tasks, where symmetries



are often defined as permutations of symbols of the under-
lying language. As semantic equivalence is typically too ex-
pensive to decide, it is common to use syntactical equiva-
lence instead. For instance, Crawford et al. consider syntac-
tical equivalence in a normal form and Déharbe et al. use
rewriting, which can for example reorder parts in a logic
conjunction. We also use syntactical equivalence, where the
abstract structures serve as an alternative to such normal
forms, e. g. by representing parts of a planning task for
which the order does not matter as sets.

Crawford et al. also relate symmetries to graph iso-
morphisms. This is nowadays the dominant approach for
symmetry detection (Emerson and Sistla 1996; Donaldson,
Miller, and Calder 2005; Pochter, Zohar, and Rosenschein
2011) but requires to define a new graph for each new appli-
cation. We contribute the graph for abstract structures.

Independent from symmetries, this graph representation
has already proven to be useful within Delfi1, the planning
system that won the classical optimal track of the IPC 2018
(Katz et al. 2018). Delfi1 is an online portfolio, selecting a
planner for a given task using a convolutional neural net-
work. For the representation of the task, Delfi1 uses a fixed-
sized image constructed from the ASGs defined in this work.

While it is quite obvious that structural symmetries com-
puted on the lifted representation of planning tasks carry
over to the induced ground task, we pointed out that one
needs to be careful when applying optimized grounding,
which can potentially eliminate symmetries. However, with
rational grounding, symmetries of the lifted representation
are guaranteed to be symmetries of the grounded task. Fur-
thermore, we established that with such grounding, each
lifted structural symmetry is a transition graph symmetry of
the grounded task and can thus be exploited the same way,
e. g. for symmetry breaking in forward search (Pochter, Zo-
har, and Rosenschein 2011; Domshlak, Katz, and Shleyfman
2012) or orbit space search (Domshlak, Katz, and Shleyf-
man 2015). However, we saw that – already due to represen-
tational limitations – this approach would find fewer sym-
metries than the approach by Shleyfman et al. (2015) for
finding structural symmetries of STRIPS representations.

While these theoretical results are important to clarify the
relation of our work to previous notions of symmetry, we
see the potential for practical applications of lifted structural
symmetries in areas where the earlier notions are inapplica-
ble, namely applications that operate directly on the lifted
representation or at the transition point between the lifted
and the ground task representation.

One such application is the generation of invariants,
which are used for strengthening other techniques, e. g. in
constrained PDBs (Haslum, Bonet, and Geffner 2005), dead-
end detection (Lipovetzky, Muise, and Geffner 2016) or for
computing upper bounds on plan length (Rintanen and Gret-
ton 2013). Invariants are also crucial for the transformation
of the task into finite-domain representation (Helmert 2009),
which many planning heuristics rely on (Edelkamp 2001;
Helmert et al. 2014; Seipp and Helmert 2013; Helmert
2006). Traditionally, invariant generation methods fall into
two groups: those that operate only on the ground rep-
resentation (Blum and Furst 1997; Rintanen 1998; 2008)

and those that work directly on the lifted representation
(Gerevini and Schubert 1998; Edelkamp and Helmert 1999;
Rintanen 2000; Lin 2004; Helmert 2009). The latter usu-
ally scale better with the size of the task but require a cer-
tain amount of first-order reasoning that suffers from com-
plicated operator specifications.

Recent work on invariants (Li, Fan, and Liu 2013; Rin-
tanen 2017) shows that it is often feasible to only consider
a subset of objects for the verification of lifted invariants.
An extension of this line of work already exploits structural
symmetries as described in this paper, using a symmetry-
based task reduction for speeding up the relaxed reachability
analysis for grounding and mutex computation (Röger, Siev-
ers, and Katz 2018). The analysis is performed on a smaller
task and the full (non-reduced) result gets recovered in a sub-
sequent expansion. While Rintanen considers regression and
Röger, Sievers, and Katz a forward analysis, they have iden-
tified similar bounds for the number of objects that need to
be preserved. We therefore expect that this work can be gen-
eralized to cover further invariant synthesis methods.

Our structural symmetries could also be applicable in
lifted planning. For example, Ridder (2013) uses symmetry
breaking of object symmetries in a lifted relaxed planning
graph heuristic, also considering so-called almost symmetry.
It would be interesting to compare the approaches to analyse
whether his or our concepts could be further generalized.

Another interesting direction is task reformulation. It can
be beneficial to reformulate a planning task so that for some
objects only the number of objects with specific properties
is represented but not the exact objects (Riddle et al. 2016;
Fuentetaja and de la Rosa 2016). This reformulation is re-
lated to symmetry-based counter abstraction (Emerson and
Wahl 2003) used in model checking, and many of the criteria
Riddle et al. use for detecting suitable objects are naturally
subsumed by our symmetries. We therefore expect that we
can exploit structural symmetries to apply similar state space
transformations to a wider range of planning domains.

In this paper, we laid the theoretical foundation for a
sound exploitation of symmetries in all above existing and
potential applications. Our experiments show that a large
number of planning benchmarks exhibits structural symme-
tries in the lifted representation, so a further investigation of
this line of research appears indeed promising.
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