Cost-Partitioned Merge-and-Shrink Heuristics for Optimal Classical Planning

Silvan Sievers

Florian Pommerening
Malte Helmert

Thomas Keller

University of Basel, Switzerland

IJCAI 2020, January 2021

Setting

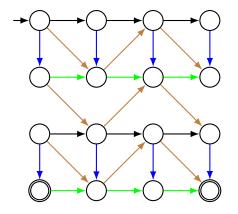
- optimal classical planning
- ► A* search & admissible heuristic

Classical Planning

planning tasks $\Pi = \langle V, O, s_l, S_G \rangle$

- V: finite-domain state variables
- ▶ O: operators o with cost cost(o)
- ▶ s₁: initial state
- S_G: goal condition

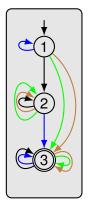
Example Transition System

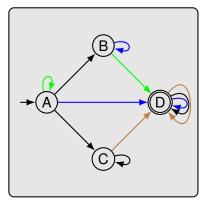


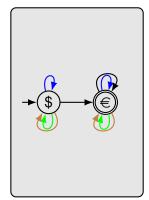
Merge-and-Shrink (M&S) Framework

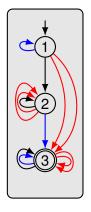
```
procedure MergeAndShrink(Planning Task Π)
    F \leftarrow factored transition system of \Pi
    while not TERMINATE() do
        apply label reduction to F
        select two factors \Theta_i, \Theta_i from F
        optionally shrink \Theta_i and/or \Theta_i
        replace \Theta_i and \Theta_i by their product in F
    end while
    return h^{M\&S} = \max_{\Theta \in F} h_{\Theta}^*
end procedure
```

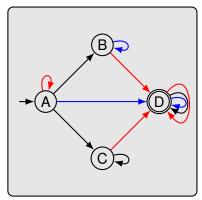
Atomic Factored Transition System

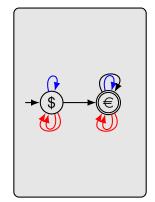




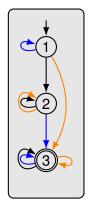


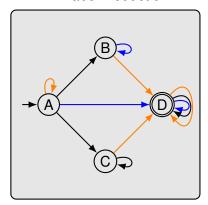


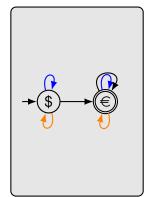




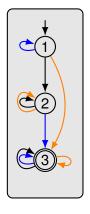
Label Reduction

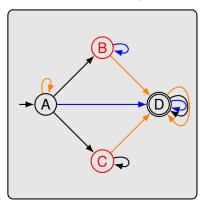


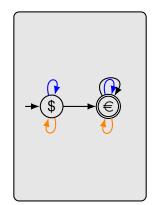




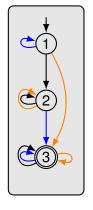
Shrinking

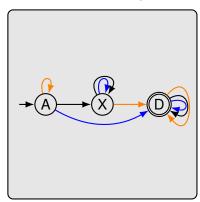


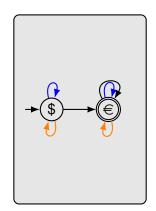




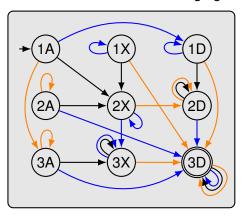
Shrinking

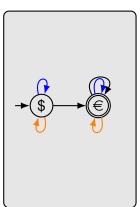






Merging





Operator Cost Partitioning

- **>** given: set of admissible heuristics $\mathcal{H} = \langle h_1, \dots, h_n \rangle$ for Π
- ▶ distribute the operator costs of Π among the heuristics: cost partition $C = \langle cost_1, \ldots, cost_n \rangle$ with $\sum_{i=1}^{n} cost_i(o) \leq cost(o)$ for all operators o
- ▶ summing the cost-partitioned heuristic values is admissible: $h_{\mathcal{H},\mathcal{C}}(s) = \sum_{i=1}^{n} h_i(s,cost_i)$
- here: consider optimal and saturated cost partitioning (OCP and SCP)

Contribution: (Extended) Label Cost Partitioning

▶ partition label costs rather than operator costs: $\sum_{i=1}^{n} cost_i(\ell) \leq cost(\ell)$ for all labels ℓ

Contribution: (Extended) Label Cost Partitioning

- ▶ partition label costs rather than operator costs: $\sum_{i=1}^{n} cost_i(\ell) \leq cost(\ell)$ for all labels ℓ
- extended label cost partitioning:
 - ▶ use factors from different factored transition systems
 → different labels
 - partition label costs of the original task and translate to labels of all factors:
 - $\sum_{i=1}^{n} cost_i(\lambda_i(\ell)) \leq cost(\ell)$ for all labels ℓ

Contribution: Interaction of M&S and Cost Partitioning

transformation	OCP	SCP	
exact label reduction h-preserving shrinking	preserved not increased	preserved preserved	
merging	not decreased	incomparable	

Contribution: Merge-and-Shrink with SCP added

```
procedure MergeAndShrink(Planning Task Π)
    F \leftarrow factored transition system of \Pi
    \mathcal{H} \leftarrow \emptyset
    while not TERMINATE() do
         apply label reduction to F
         \mathcal{H} \leftarrow \mathcal{H} \cup \{\mathsf{COMPUTESCP}(F)\}
         select two factors \Theta_i, \Theta_i from F
         optionally shrink \Theta_i and/or \Theta_i
         replace \Theta_i and \Theta_i by their product in F
    end while
    \mathcal{H} \leftarrow \mathcal{H} \cup \{\mathsf{COMPUTESCP}(F)\}
    return h^{M\&S} = \max_{\Theta \in F} h_{\Theta}^*
                                                                return h^{M\&S+SCP} = \max_{h \in \mathcal{H}}
                                                                 ▶ M&S + SCP
end procedure
```

evaluate impact of how many SCPs to compute:

$$\frac{i = 1 \quad i = 2 \quad i = 5 \quad i = 10}{\text{coverage} \quad 933 \quad 930 \quad 926 \quad 917}$$

evaluate impact of how many SCPs to compute:

$$\frac{i = 1 \quad i = 2 \quad i = 5 \quad i = 10}{\text{coverage} \quad 933 \quad 930 \quad 926 \quad 917}$$

evaluate alternatives of when to compute SCP in an iteration:

	<i>i</i> = 1
after label redution	933
after shrinking	933
after merging	925

evaluate different orders for computing SCPs:

	rnd	otn	nto	mhsc	mh	msc
h_{int}^{SCP}	933	932	928	928	927	930

evaluate different orders for computing SCPs:

	rnd	otn	nto	mhsc	mh	msc
h ^{SCP}	933	932	928	928	927	930

evaluate an offline alternative to compute SCPs after M&S instead of interleaved as before:

	rnd	otn	nto	mhsc	mh	msc
h ^{SCP}	915	841	904	887	907	838

Summary

- label cost partitioning for M&S
- impact of M&S transformations on cost-partitioned heuristics
- practical combination of M&S and SCP