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o Contribution of this work:

e Quantitative analysis of symmetries in planning benchmarks
e Empirical comparison of different symmetry-based techniques
(adapted to planning)



Background

Outline

@ Background



Background

Classical Planning

@ SAS™ planning task I:

o Finite-domain state
variables

o Initial state: complete
variable assignment

e Goal description: partial
variable assignment

o Operators: preconditions,
effects, cost



Background

Classical Planning

@ SAS™ planning task I:

o Finite-domain state
variables

o Initial state: complete
variable assignment

e Goal description: partial
variable assignment

o Operators: preconditions,
effects, cost

@ State transition graph Tn:




Background

Structural Symmetries (Shleyfman et al. 2015)

@ Structural symmetry of a planning task I:

o Maps facts (variable/value pairs) to facts and operators to
operators
o Induced symmetry o on the state transition graph 7Tn = (V, E)
is a goal-stable automorphism:
o (s,0,s') € Eiff (6(s),0(0),0(s') € E
o s goal state iff o(s) goal state



Background

Structural Symmetries (Shleyfman et al. 2015)

@ Structural symmetry of a planning task I:

o Maps facts (variable/value pairs) to facts and operators to
operators
o Induced symmetry o on the state transition graph 7Tn = (V, E)
is a goal-stable automorphism:
o (s,0,s') € Eiff (6(s),0(0),0(s') € E
o s goal state iff o(s) goal state
o Example symmetry:
o(0s) = op
o(op) = 0,
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Symmetrical Lookups for Planning

@ (For heuristic search: Felner et al. 2005, Zahavi et al. 2008)

o Before search: find (some) generators of the automorphism
group

@ During search, for a given state s and heuristic h:

o Compute (a subset of) the orbit containing s:
S:={ss',...s"}
o Compute heuristic as h(s) := max{h(s’) | s’ € S}

@ Properties:

o S can be chosen arbitrarily
o h(s) is still admissible (if h is)
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Bidirectional Pathmax for Planning

o (For heuristic search: Felner et al. 2011)
@ Symmetrical lookups usually render heuristics inconsistent

e Consistency: h(s) < cost(o) + h(s') for a transition from s to
s’ with operator o

@ Bidirectional pathmax (BPMX) rule:
h(s") = max(h(s"), h(s) — cost(0))



Background

Merge-and-Shrink Heuristic (Helmert et al. 2014)

@ Represent state space as set 7 of small finite transition
systems, with a shared label set L

@ State space corresponds to product of transition systems

@ Transform transition systems to obtain distance heuristic for
state space
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o Goal states must be preserved
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Factored Symmetries (Sievers et al. 2015)

@ Work on a set T of transition systems as encountered during
the merge-and-shrink computation

@ Locally map abstract states to abstract states within elemets
of 7 and globally map transition labels to transition labels in L

o Goal states must be preserved

o Example:
o(01) = o1
(o) =02 0201 oloz
0(03) = 03 03 A 6. o3

@ Usage: improve merging strategies
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Quantitative Analysis

o Benchmark set: 44 domains with 1396 tasks
@ Amount of symmetries:

Only 3 domains with no symmetries

1103 tasks contain symmetries

In 38 domains, more than 50% of tasks contain symmetries

In most of the 38 domains, almost all tasks contain symmetries

@ Influence of the representation and the symmetry tool?
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Bidirectional Pathmax

Merge-and-Shrink base sl sl-bpmx

Coverage 652 658 658
Expansions sum 607602428 471769190 471769236

@ Marginal reduction in expansions, no increase in coverage

@ Explanation: pathmax corrections only in 2% of the tasks for
which the merge-and-shrink heuristic was constructed
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Combinations of Techniques

Merge-and-Shrink ‘ base ‘ oss sl fs

Coverage 652 696 658 654
Expansions sum 5.16e+8 | 2.68e+8 4.0le+8 3.65e+38

@ All techniques improve performance
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Combinations of Techniques

Merge-and-Shrink ‘ base ‘ oss sl fs

652 696 658 654
5.16e+8 | 2.68e+8 4.0le+8 3.65e+48

Coverage
Expansions sum

@ All techniques improve performance

Merge-and-Shrink |  oss-sl oss-fs sk-fs | all

Coverage 691 698 655 ‘ 692

Expansions sum 2.54e+8 2.39e+8 3.44e+8 | 2.32e+8

@ Including orbit space search always helpful

@ Including symmetrical lookups not very helpful (for coverage)
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More Results . ..
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Conclusions

@ Planning benchmarks contain lots of symmetries

@ Symmetry-based techniques improve state-of-the-art planning
techniques

@ Orbit space search achieves best performance

@ BMPX does not help as much as in heuristic search problems
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