Additive Pattern Databases for Decoupled Search

Silvan Sievers! Daniel Gnad? Alvaro Torralba3

"University of Basel, Switzerland
2Linképing University, Sweden

3Aalborg University, Denmark

SoCS, 22nd July 2022

Setting & Motivation

» optimal classical planning as heuristic search
» state of the art: abstraction heuristics
» successful alternative to explicit search: decoupled search

1/14

Setting & Motivation

» optimal classical planning as heuristic search

» state of the art: abstraction heuristics

» successful alternative to explicit search: decoupled search
» goal: abstraction heuristics for decoupled search

1/14

Background

» planning tasks: finite-domain state variables for representing states

2/14

Background

» planning tasks: finite-domain state variables for representing states
» pattern database (PDB) heuristics:

> project variables to a subset
» store perfect heuristic values of abstraction

2/14

Decoupled Search in a Nutshell

> partition state variables to decompose the task: center factor and leaf factors
» branch over center states and actions, handle leaves separately

3/14

Decoupled Search in a Nutshell

> partition state variables to decompose the task: center factor and leaf factors

» branch over center states and actions, handle leaves separately
» decoupled state s7:

» center state
» pricing function: cost of reachable leaf states

3/14

Decoupled Search in a Nutshell

> partition state variables to decompose the task: center factor and leaf factors
» branch over center states and actions, handle leaves separately

» decoupled state s7:

» center state
» pricing function: cost of reachable leaf states
» — represents exponentially many (explicit) member states

3/14

Heuristics for Decoupled Search So Far

» given: explicit heuristic h
» given: decoupled state s”
» question: how to use h?

4/14

Heuristics for Decoupled Search So Far

» given: explicit heuristic h
» given: decoupled state s”
» question: how to use h?

buy-leaves compilation
» compile prices of s7 into new task
> evaluate h on compiled task

4/14

Heuristics for Decoupled Search So Far

» given: explicit heuristic h
» given: decoupled state s”
» question: how to use h?

buy-leaves compilation
» compile prices of s7 into new task
> evaluate h on compiled task

» problems:

» impractical for abstraction-based heuristics
> pattern selection based on original task

4/14

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

hrex(s7) = sem[isr}] price(s”, s) + h(s)

5/14

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

hrex(s7) = sem[isr}] price(s”, s) + h(s)

> “best” use of given explicit heuristic
» problem: exponentially many member states

5/14

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

hrex(s) = 521[2}] price(s”, s) + h(s)

6/14

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

hrex(s) = Sren[isr;] price(s”, s) + h(s)

contribution: decoupled PDB
dPDB(h”,s") = min price(s”, s”) + hP(s")

sPeSP

6/14

Combining Multiple PDBs

explicit search

» given: H = {H,,..., Hy} with H; additive set of (PDB) heuristics
(e.g., disjoint PDBs, cost-partitioned PDBs, etc.)

= e 2 o)

heH

» canonical combination:

7/14

Combining Multiple PDBs

explicit search

» given: H = {H,,..., Hy} with H; additive set of (PDB) heuristics
(e.g., disjoint PDBs, cost-partitioned PDBs, etc.)

= e 2 o)

heH

» canonical combination:

» how to transfer to decoupled search?

7/14

Naive Combination

reminder: canonical heuristic

h*(s) = max Y h(s)
HeH
heH

8/14

Naive Combination

reminder: canonical heuristic

h*(s) = max Y h(s)
HeH
heH

> evaluate PDBs individually (use dPDB to compute hz ex(s7)):

f
h% naive(= max E : hr.ex(
HeH
heH

8/14

Naive Combination

reminder: canonical heuristic

h*(s) = max Y h(s)
HeH
heH

> evaluate PDBs individually (use dPDB to compute hz ex(s7)):

h’t = max Z hr ex(
F, nalve Het

heH

properties
» information-lossy: use different minimizing member state for each PDB
» inadmissible: may count prices of leaves multiple times in different heuristics

8/14

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hr ex(s7) = qu[isr}] price(s”, s) + h(s)

9/14

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hr ex(s7) = qu[isr}] price(s”, s) + h(s)

> now: h(s) = h*(s) = maxpen > pep h(S)

9/14

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hr ex(s7) = sgn[lsn] price(s”, s) + h(s)

> now: h(s) = h*(s) = maxpen > pep h(S)
contribution: explicit decoupled canonical heuristic

h;ex()_Sgn[lsn]prlces S+maxf;h

9/14

Explicit Decoupled Canonical Heuristic (2)

complexity
computing h% . is NP-complete

10/14

Explicit Decoupled Canonical Heuristic (2)

complexity
computing h% . is NP-complete

» practical implementation via branch-and-bound
» incremental computation of member states allows pruning
» worst case: enumeration of all exponentially many member states

10/14

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

h]_-ex(]:)—Sem[fsn]prlce (s7,s) +maxh€ZHh

11/14

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

h]_-ex(]:)—sem[fsn]prlce (s7,s) +maxh€ZHh

» alternative: consider each H € ‘H independently, i.e., move max outward:

max min price(s”, s +Zh(s
HeH se[sF] heH

11/14

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

h]_-ex(]:)—sem[fsn]prlce (s7,s) +maxh€ZHh

» alternative: consider each H € ‘H independently, i.e., move max outward:

max min price(s”, s +Zh(s
HeH se[sF] heH

» admissible, but lossy approximation

11/14

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs J

12/14

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs
each PDB affects at most one leaf

12/14

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs J

single-leaf (SL) PDBs
each PDB affects at most one leaf J

» minimize sum of prices and heuristic separately for each set of affected leaves
> heuristic value equals h%

12/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning

13/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning
> coverage:

13/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning
> coverage:
explicit search
LD SL

F 284 206 293
MM 749 662 743

13/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning

> coverage:
explicit search decoupled search
LD SL expl. dec. heur.
F 284 206 293 212
MM 749 662 743 628

13/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning

> coverage:
explicit search decoupled search
LD SL expl.dec. heur. LD
F 284 206 293 212 210
MM 749 662 743 628 607

13/14

Experiments

» PDBs computed with hill climbing and CEGAR
» additivity obtained through saturated cost partitioning

> coverage:
explicit search decoupled search
LD SL expl.dec.heur. LD SL
F 284 206 293 212 210 304

MM 749 662 743 628 607 707

13/14

Conclusions

> summary:

> alternative way of computing explicit heuristics for decoupled search
» efficient computation of PDBs for decoupled search

» admissible combination of sets of additive PDBs NP-complete

» practical implementation and polynomial-time approximations

14/14

Conclusions

> summary:
> alternative way of computing explicit heuristics for decoupled search
» efficient computation of PDBs for decoupled search
» admissible combination of sets of additive PDBs NP-complete
» practical implementation and polynomial-time approximations
» future work:

» many results independent of type of heuristic: use different abstractions
» integrate cost partitioning into decoupled search: leaf price partitioning

14/14

