
Additive Pattern Databases for Decoupled Search

Silvan Sievers1 Daniel Gnad2 Álvaro Torralba3

1University of Basel, Switzerland

2Linköping University, Sweden

3Aalborg University, Denmark

SoCS, 22nd July 2022



Setting & Motivation

I optimal classical planning as heuristic search
I state of the art: abstraction heuristics
I successful alternative to explicit search: decoupled search

I goal: abstraction heuristics for decoupled search

1 / 14



Setting & Motivation

I optimal classical planning as heuristic search
I state of the art: abstraction heuristics
I successful alternative to explicit search: decoupled search
I goal: abstraction heuristics for decoupled search

1 / 14



Background

I planning tasks: finite-domain state variables for representing states

I pattern database (PDB) heuristics:
I project variables to a subset
I store perfect heuristic values of abstraction

2 / 14



Background

I planning tasks: finite-domain state variables for representing states
I pattern database (PDB) heuristics:

I project variables to a subset
I store perfect heuristic values of abstraction

2 / 14



Decoupled Search in a Nutshell

I partition state variables to decompose the task: center factor and leaf factors
I branch over center states and actions, handle leaves separately

I decoupled state sF :
I center state
I pricing function: cost of reachable leaf states
I → represents exponentially many (explicit) member states

3 / 14



Decoupled Search in a Nutshell

I partition state variables to decompose the task: center factor and leaf factors
I branch over center states and actions, handle leaves separately
I decoupled state sF :

I center state
I pricing function: cost of reachable leaf states

I → represents exponentially many (explicit) member states

3 / 14



Decoupled Search in a Nutshell

I partition state variables to decompose the task: center factor and leaf factors
I branch over center states and actions, handle leaves separately
I decoupled state sF :

I center state
I pricing function: cost of reachable leaf states
I → represents exponentially many (explicit) member states

3 / 14



Heuristics for Decoupled Search So Far

I given: explicit heuristic h
I given: decoupled state sF

I question: how to use h?

buy-leaves compilation
I compile prices of sF into new task
I evaluate h on compiled task

I problems:
I impractical for abstraction-based heuristics
I pattern selection based on original task

4 / 14



Heuristics for Decoupled Search So Far

I given: explicit heuristic h
I given: decoupled state sF

I question: how to use h?

buy-leaves compilation
I compile prices of sF into new task
I evaluate h on compiled task

I problems:
I impractical for abstraction-based heuristics
I pattern selection based on original task

4 / 14



Heuristics for Decoupled Search So Far

I given: explicit heuristic h
I given: decoupled state sF

I question: how to use h?

buy-leaves compilation
I compile prices of sF into new task
I evaluate h on compiled task

I problems:
I impractical for abstraction-based heuristics
I pattern selection based on original task

4 / 14



Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

I “best” use of given explicit heuristic
I problem: exponentially many member states

5 / 14



Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

I “best” use of given explicit heuristic
I problem: exponentially many member states

5 / 14



Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

contribution: decoupled PDB

dPDB(hP , sF ) = min
sP∈SP

price(sF , sP) + hP(sP)

6 / 14



Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

contribution: decoupled PDB

dPDB(hP , sF ) = min
sP∈SP

price(sF , sP) + hP(sP)

6 / 14



Combining Multiple PDBs

explicit search
I given: H = {H1, . . . ,Hn} with Hi additive set of (PDB) heuristics

(e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
I canonical combination:

hH(s) = max
H∈H

∑
h∈H

h(s)

I how to transfer to decoupled search?

7 / 14



Combining Multiple PDBs

explicit search
I given: H = {H1, . . . ,Hn} with Hi additive set of (PDB) heuristics

(e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
I canonical combination:

hH(s) = max
H∈H

∑
h∈H

h(s)

I how to transfer to decoupled search?

7 / 14



Naïve Combination

reminder: canonical heuristic

hH(s) = max
H∈H

∑
h∈H

h(s)

I evaluate PDBs individually (use dPDB to compute hF ,ex(sF )):

hH
F ,naïve(s

F ) = max
H∈H

∑
h∈H

hF ,ex(sF )

properties
I information-lossy: use different minimizing member state for each PDB
I inadmissible: may count prices of leaves multiple times in different heuristics

8 / 14



Naïve Combination

reminder: canonical heuristic

hH(s) = max
H∈H

∑
h∈H

h(s)

I evaluate PDBs individually (use dPDB to compute hF ,ex(sF )):

hH
F ,naïve(s

F ) = max
H∈H

∑
h∈H

hF ,ex(sF )

properties
I information-lossy: use different minimizing member state for each PDB
I inadmissible: may count prices of leaves multiple times in different heuristics

8 / 14



Naïve Combination

reminder: canonical heuristic

hH(s) = max
H∈H

∑
h∈H

h(s)

I evaluate PDBs individually (use dPDB to compute hF ,ex(sF )):

hH
F ,naïve(s

F ) = max
H∈H

∑
h∈H

hF ,ex(sF )

properties
I information-lossy: use different minimizing member state for each PDB
I inadmissible: may count prices of leaves multiple times in different heuristics

8 / 14



Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

I now: h(s) = hH(s) = maxH∈H
∑

h∈H h(s)

contribution: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

9 / 14



Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

I now: h(s) = hH(s) = maxH∈H
∑

h∈H h(s)

contribution: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

9 / 14



Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

hF ,ex(sF ) = min
s∈[sF ]

price(sF , s) + h(s)

I now: h(s) = hH(s) = maxH∈H
∑

h∈H h(s)

contribution: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

9 / 14



Explicit Decoupled Canonical Heuristic (2)

complexity
computing hH

F ,ex is NP-complete

I practical implementation via branch-and-bound
I incremental computation of member states allows pruning
I worst case: enumeration of all exponentially many member states

10 / 14



Explicit Decoupled Canonical Heuristic (2)

complexity
computing hH

F ,ex is NP-complete

I practical implementation via branch-and-bound
I incremental computation of member states allows pruning
I worst case: enumeration of all exponentially many member states

10 / 14



Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

I alternative: consider each H ∈ H independently, i.e., move max outward:

max
H∈H

min
s∈[sF ]

price(sF , s) +
∑
h∈H

h(s)

I admissible, but lossy approximation

11 / 14



Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

I alternative: consider each H ∈ H independently, i.e., move max outward:

max
H∈H

min
s∈[sF ]

price(sF , s) +
∑
h∈H

h(s)

I admissible, but lossy approximation

11 / 14



Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

hH
F ,ex(s

F ) = min
s∈[sF ]

price(sF , s) + max
H∈H

∑
h∈H

h(s)

I alternative: consider each H ∈ H independently, i.e., move max outward:

max
H∈H

min
s∈[sF ]

price(sF , s) +
∑
h∈H

h(s)

I admissible, but lossy approximation

11 / 14



Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs
each PDB affects at most one leaf

I minimize sum of prices and heuristic separately for each set of affected leaves
I heuristic value equals hH

F ,ex

12 / 14



Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs
each PDB affects at most one leaf

I minimize sum of prices and heuristic separately for each set of affected leaves
I heuristic value equals hH

F ,ex

12 / 14



Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs
additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs
each PDB affects at most one leaf

I minimize sum of prices and heuristic separately for each set of affected leaves
I heuristic value equals hH

F ,ex

12 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning

I coverage:

explicit search decoupled search

LD SL expl. dec. heur. LD SL

F

284 206 293 212 210 304

MM

749 662 743 628 607 707

13 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning
I coverage:

explicit search decoupled search

LD SL expl. dec. heur. LD SL

F

284 206 293 212 210 304

MM

749 662 743 628 607 707

13 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning
I coverage:

explicit search

decoupled search

LD SL

expl. dec. heur. LD SL

F 284 206 293

212 210 304

MM 749 662 743

628 607 707

13 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning
I coverage:

explicit search decoupled search

LD SL expl. dec. heur.

LD SL

F 284 206 293 212

210 304

MM 749 662 743 628

607 707

13 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning
I coverage:

explicit search decoupled search

LD SL expl. dec. heur. LD

SL

F 284 206 293 212 210

304

MM 749 662 743 628 607

707

13 / 14



Experiments

I PDBs computed with hill climbing and CEGAR
I additivity obtained through saturated cost partitioning
I coverage:

explicit search decoupled search

LD SL expl. dec. heur. LD SL

F 284 206 293 212 210 304
MM 749 662 743 628 607 707

13 / 14



Conclusions

I summary:
I alternative way of computing explicit heuristics for decoupled search
I efficient computation of PDBs for decoupled search
I admissible combination of sets of additive PDBs NP-complete
I practical implementation and polynomial-time approximations

I future work:
I many results independent of type of heuristic: use different abstractions
I integrate cost partitioning into decoupled search: leaf price partitioning

14 / 14



Conclusions

I summary:
I alternative way of computing explicit heuristics for decoupled search
I efficient computation of PDBs for decoupled search
I admissible combination of sets of additive PDBs NP-complete
I practical implementation and polynomial-time approximations

I future work:
I many results independent of type of heuristic: use different abstractions
I integrate cost partitioning into decoupled search: leaf price partitioning

14 / 14


