
Bounded Intention Planning Revisited: Proof
Silvan Sievers1 and Martin Wehrle1 and Malte Helmert1

We claim that each applicable operator partition induces a strong
semistubborn set such that the applicable operators are the same as
the operators in the partition.

Theorem 1. Let s be a state, X ∈ Ps be an applicable partition.
Then Ts := X ∪ {o | o interferes with o′ ∈ X} is a strong semi-
stubborn set with the same applicable operators as X .

We split the proof for Theorem 1 into three parts, proving the claim
for each possible type of operator partitions separately.

We will use the following notation: an operator o ∈ Ō affects a
variable v ∈ V̄ if and only if v ∈ vars(effo) (and hence also v ∈
vars(preo)).

Proposition 1. First case of Theorem 1. Let s be a state, X ∈ Ps

be an applicable operator partition of type Fireo, for the original
operator o ∈ O. Then the set Ts := X∪{o′ | o′ interferes with o′′ ∈
X} is a strong semistubborn set with the same applicable operators
as X .

Proof. We first note that Fireo contains exactly one operator, namely
Fire(o). Wlog. we assume that o affects v ∈ V , i. e. v ∈ vars(preo)
and v ∈ vars(effo). Furthermore, o possibly has a prevail-condition
on some variable w ∈ V , w 6= v, i. e. w ∈ vars(prvo). By definition
Fire(o) has the following properties:

preFire(o)[v] = preo[v]

effFire(o)[v] = effo[v]

preFire(o)[Ov] = o

effFire(o)[Ov] = free
prvFire(o)[w] = prvo[w] ∀w ∈ vars(prvo)

preFire(o)[Ow] = frozen ∀w ∈ vars(prvo)

effFire(o)[Ow] = free ∀w ∈ vars(prvo)

preFire(o)[Cw] = v ∀w ∈ vars(prvo)

effFire(o)[Cw] = free ∀w ∈ vars(prvo)

Second, note that we know the following about state s, considering
that Fire(o) is applicable in s:

s[v] = preo[v]
s[w] = prvo[w] ∀w ∈ vars(prvo)

s[Ov] = o
s[Ow] = frozen ∀w ∈ vars(prvo)
s[Cw] = v ∀w ∈ vars(prvo)

We show that all operators o′ that interfere with Fire(o) are not
applicable in s. Thus Fire(o) is the only applicable operator in Ts.
Second, we show that for all these operators o′ ∈ Ts (except for
Fire(o)), Ts already contains a necessary enabling set for o′ in s.

1 University of Basel, {silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Let u 6= Fire(o) be an arbitrary operator interfering with Fire(o).
Whenever we mention o′ in the following, we refer to an operator
o′ ∈ O, o′ 6= o.

1. If u disables Fire(o), we must distinguish the following cases.

(a) v ∈ vars(effu) and effu[v] 6= preFire(o)[v]. By definition, only
fire operators can affect variables in V . Let u = Fire(o′). From
the definition of augmented operators, a fire operator affecting
variable v also affects Ov . We conclude preFire(o′)[Ov] = o′ 6=
o = s[Ov]. Therefore Fire(o′) is not applicable in s.
{Fire(o)} is a necessary enabling set for Fire(o′) in s: only
Fire(o) can change Ov from o to free, which is required be-
cause all SetO operators (which can set Ov to o′) require
Ov = free as precondition.

(b) Ov ∈ vars(effu) and effu[Ov] 6= preFire(o)[Ov]. We have to
distinguish three possible types for u:

i. u = Fire(o′). If v ∈ vars(effo′), Case 1(a) applies. If v ∈
vars(prvo′), we have preFire(o′)[Ov] = frozen 6= o = s[Ov].
Thus Fire(o′) is not applicable. {Fire(o)} is a necessary en-
abling set for Fire(o′) for the same reasons as in Case 1(a).

ii. u = SetO(o′). We have preSetO(o′)[Ov] = free 6= o = s[Ov]
and Case 1(a) applies.

iii. u = Freeze(v, x) for x ∈ D(v). We have preFreeze(v,x)[Ov] =
free 6= o = s[Ov] and Case 1(a) applies.

(c) w ∈ vars(effu) for variable w ∈ vars(prvFire(o)) and effu[w] 6=
prvFire(o)[w]. Only fire operators can affect original variables
from V . Let u = Fire(o′). We conclude preFire(o′)[Ow] = o′ 6=
frozen = s[Ow]. Therefore Fire(o′) is not applicable.
We claim that {Fire(o)} is a necessary enabling set for Fire(o′)
in s: we observe that in order to apply Fire(o′), Ow must not
have the value frozen. Consider an operator õ that changes the
value of Ow from frozen to free. Note that only a fire opera-
tor õ := Fire(o′′) with w ∈ vars(prvo′′) can achieve this, be-
cause exactly for such fire operators, we have preFire(o′′)[Ow] =
frozen and effFire(o′′)[Ow] = free. If v ∈ vars(effFire(o′′)), then
preFire(o′′)[Ov] = o′′ 6= o = s[Ov] and thus Fire(o) must be
applied first, as argued in Case 1(a). If v 6∈ vars(effõ), then
for some variable v′, v′ ∈ vars(effFire(o′′)). By definition of
Fire(o′′), preFire(o′′)[Cw] = v′ 6= v = s[Cw]. All operators
that set Cw from v to free also affect v and thus have a pre-
condition on Ov , and thus Fire(o) needs to be applied before
them.

(d) Ow ∈ vars(effu) for variable w ∈ vars(prvFire(o)) and
effu[Ow] 6= preFire(o)[Ow]. We have to distinguish two pos-
sible types for u (freeze operators for variable w do not disable
Fire(o)):



i. u = Fire(o′). If w ∈ vars(effo′), we have w ∈ vars(effFire(o′)
and Case 1(c) applies. If w ∈ vars(prvo′), there must be a
variable v′ ∈ V for which v′ ∈ vars(effo′). If v′ = v, then
preFire(o′)[Ov] = o′ 6= o = s[Ov] and Fire(o′) is not applica-
ble in s. {Fire(o)} is a necessary enabling set in s for Fire(o′)
as argued in Case 1(a). If v′ 6= v, then preFire(o′)[Cw] = v′ 6=
v = s[Cw] and thus Fire(o′) is not applicable in s. {Fire(o)}
is a necessary enabling set for Fire(o′), because all operators
that set Cw from v to free also affect v and thus have a pre-
condition on Ov , and thus Fire(o) needs to be applied before
them, because s[Ov] = o.

ii. u = SetO(o′). We have preSetO(o′)[Ow] = free 6= frozen =

s[Ow] and thus SetO(o′) is not applicable in s. {Fire(o)} is a
necessary enabling set for SetO(o′): Case 1(c) applies.

(e) Cw ∈ vars(effu) for variable w ∈ vars(prvFire(o)) and
effu[Cw] 6= preFire(o)[Cw]. We have to distinguish two possi-
ble types for u:

i. u = Fire(o′). We know that preFire(o′)[Cw] = v′ for some
variable v′ ∈ V . The case reduces to Case 1(d)i, the case “If
w ∈ vars(prvo′)”.

ii. u = SetC(w, c) for some c ∈ CG(w). We have
preSetC(w,c)[Cw] = free 6= v = s[Cw] and thus SetC(w, c) is
not applicable in s. {Fire(o)} is a necessary enabling set for
SetC(w, c), because only fire operators affecting v can change
Cw from v to free and s[Ov] = o (see also Case 1(d)i, second
case “If v′ 6= v”).

2. If Fire(o) disables u, we must distinguish the following cases.

(a) v ∈ vars(preu) and preu[v] 6= effFire(o)[v]. Only fire opera-
tors u = Fire(o′) can have original variables from V as a pre-
condition. From the definition of fire operators, we conclude
preFire(o′)[Ov] = o′ 6= o = s[Ov]. Hence Fire(o′) is not appli-
cable in s.
{Fire(o)} is a necessary enabling set for Fire(o′) because only
Fire(o) can change Ov from o to free, which is precondition for
all SetO operators, which are in turn needed to set Ov to o′ (see
also Case 1(a)).

(b) v ∈ vars(prvu) and prvu[v] 6= effFire(o)[v]. We must distin-
guish three possible types for u:

i. u = Fire(o′). From v ∈ vars(prvo′), we know that
preo′ [Ov] = frozen 6= o = s[Ov]. Hence Fire(o′) is not ap-
plicable in s. Furthermore, {Fire(o)} is a necessary enabling
set for Fire(o′) because only Fire(o) can change Ov from o
to free, which is required because all Freeze operators (which
can set Ov to frozen) require Ov = free as precondition.

ii. u = SetO(o′). From the definition of SetO operators, we
know that preSetO(o′)[Ov] = free 6= o = s[Ov]. Hence
Fire(o′) is not applicable in s. Furthermore, {Fire(o)} is a
necessary enabling set for Fire(o′) because only Fire(o) can
change Ov from o to free, which is the condition for SetO(o′)
to become applicable.

iii. u = Freeze(v, x) for some x ∈ D(v). We have
preFreeze(v,x)[Ov] = free 6= o = s[Ov] and thus Case 2(b)ii
applies.

(c) Ov ∈ vars(preu) and preu[Ov] 6= effFire(o)[Ov]. As
effFire(o)[Ov] = free, only fire operators u = Fire(o′) can be
disabled (and not operators of type SetO or Freeze, as these

could only have preconditions Ov = free). If v ∈ vars(effo′),
Case 2(a) applies. If v 6∈ vars(effo′), v ∈ vars(prvo′) and Case
2(b)i applies.

(d) Ow ∈ vars(preu) for some w ∈ vars(prvFire(o)) and
preu[Ow] 6= effFire(o)[Ow]. As effFire(o)[Ow] = free, only fire
operators u = Fire(o′) can be disabled (and not operators
of type SetO or Freeze, as these could only have precondi-
tions Ow = free). If w ∈ vars(effo′), Case 2(a) applies. If
w 6∈ vars(effo′), w ∈ vars(prvo′) and Case 2(b)i applies.

(e) Cw ∈ vars(preu) for some w ∈ vars(prvFire(o)) and
preu[Cw] 6= effFire(o)[Cw]. Only a fire operator u = Fire(o′)
can be disabled by Cw = free (and no SetC operator, because
they have free as precondition). Let preFire(o′)[Cw] := v′. If
v′ = v, then we have v ∈ vars(preFire(o′)) and thus Case 2(a)
applies. If v′ 6= v, then preFire(o′)[Cw] = v′ 6= v = s[Cw] and
hence Fire(o′) is not applicable. Furthermore, {Fire(o)} is a
necessary enabling set for Fire(o′), because any (fire) operator
that can change Cw from v to free (which is required for SetC
operators to set Cw to v′) must also affect v and thus Ov . As
s[Ov] = o, Fire(o) must necessarily be applied before Fire(o′).

3. If Fire(o) and u have conflicting effects, we must distinguish the
following cases.

(a) v ∈ vars(effu) and effu[v] 6= effFire(o)[v]. This case mirrors
Case 1(a).

(b) Ov ∈ vars(effu) and effu[Ov] 6= effFire(O)[Ov]. This case
mirrors Case 1(b), with the exclusion of sub-case i., because
Fire(o) and Fire(o′) cannot disable each other via (intention)
variables, as both set such variables to free.

(c) Ow ∈ vars(effu) for some variable w ∈ vars(prvFire(o)) and
effu[Ov] 6= effFire(o)[Ov]. Same case as the previous one, i. e.
Case 3(b).

(d) Cw ∈ vars(effu) for some variable w ∈ vars(prvFire(o)) and
effu[Ov] 6= effFire(o)[Ov]. This case mirrors Case 1(e), with the
exclusion of sub-case i., because Fire(o) and Fire(o′) cannot
disable each other via (intention) variables, as both set such
variables to free.

Proposition 2. Second case of Theorem 1. Let s be a state, X ∈ Ps

be an applicable operator partition of type SetOv=x for a variable
v ∈ V . Then the set Ts := X ∪ {o′ | o′ interferes with o′′ ∈ X} is a
strong semistubborn set with the same applicable operators as X .

Proof. We first note that SetOv=x contains operators SetO(o) for
operators o ∈ O with preo[v] = x and one operator Freeze(v, x).
By definition, we have:

preSetO(o)/Freeze(v,x)[Ov] = free
prvSetO(o)/Freeze(v,x)[v] = x

effSetO(o)[Ov] = o

effFreeze(v,x)[Ov] = frozen

Second, note that we know the following about state s, consider-
ing that SetO(o) and Freeze(v, x) are applicable in s:

s[v] = x
s[Ov] = free



We show that all operators o′ that interfere with the operators from
the partition X are not applicable in s. Thus the operators from X
are the only applicable operators in Ts. Second, we show that for all
these operators o′ ∈ Ts, Ts already contains a necessary enabling set
for o′ in s.

Let u 6= SetO(o),Freeze(v, x) be an arbitrary operator interfering
with SetO(o) or Freeze(v, x).

1. If u disables SetO(o) and Freeze(v, x), we only have one case:
Ov ∈ vars(effu) and effu[Ov] 6= preSetO(o)/Freeze(v,x)[Ov]. Note
that the case v ∈ vars(effu) and effu[v] 6= prvSetO(o)/Freeze(v,x)[v]
can be reduced to the same case, because only fire operators can
affect variables v ∈ V and if they affect variable v, they also affect
Ov .
We must distinguish three possible types for u.

(a) u = Fire(o′). We have preFire(o′)[Ov] = o′ 6= free = s[Ov]

and hence Fire(o′) is not applicable in s. Furthermore, SetO(o′)
must be applied before Fire(o′) can be applied. We claim that
X is a necessary enabling set for Fire(o′): either SetO(o′) ∈ X
in which case we are done or prvSetO(o′)[v] = x′ for x′ 6= x and
thus any operator SetO(o) from X must be applied in order to
allow to change the value of v through the intended operator
o. Note that it is possible that Freeze(v, x) is required to allow
the application of an operator which in turn fulfills a prevail-
condition of Fire(o′). It is therefore not enough to choose the
subset SetO(o) ⊆ X as a necessary enabling set for Fire(o′) in
s, but the set X is.

(b) u = SetO(o′). We know prvSetO(o′)[v] = x′. If x′ = x,
SetO(o′) is applicable in s and SetO(o′) ∈ X . If x′ 6= x,
prvSetO(o′)[v] = x′ 6= x = s[v] and hence SetO(o′) is not
applicable in s. In the latter case, X is a necessary enabling
set for SetO(o′) in s for the same arguments as shown in the
previous Case 1(a).

(c) u = Freeze(v, x′) (By assumption u 6= Freeze(v, x) and hence
x′ 6= x). We have prvFreeze(v,x′)[v] = x′ 6= x = s[v] and thus
Freeze(v,′ ) is not applicable in s. X is a necessary enabling set
for Freeze(v, x′) in s for the same reasons shown in Case 1(a).

2. If SetO(o) disables u, we only have one case: Ov ∈ vars(preu)
and preu[Ov] 6= effSetO(o)[Ov]. We must distinguish three possible
types for u.

(a) u = Fire(o′). If v ∈ vars(effo′), Case 1(a) applies. If v 6∈
vars(effo′), v ∈ vars(prvo′) and we have preFire(o′)[Ov] =

frozen 6= free = s[Ov] and thus Fire(o′) is not applicable. We
claim that X is a necessary enabling set for Fire(o′) in s. We
observe that Freeze(v, x′) for x′ = prvo′ [v] must be applied
before Fire(o′) can be applied. If x′ = x, Freeze(v, x′) ∈ X
and we are done. If x′ 6= x, we must first apply SetO operators
in X to enable other operators to change v to x′ eventually,
which is prevail-condition for applying Freeze(v, x′), in turn
requirement for application of Fire(o′).

(b) u = SetO(o′). We have prvSetO(o′)[v] = x′ and thus Case 1(b)
applies.

(c) u = Freeze(v, x′). We have prvFreeze(v,x′)[v] = x′ and Case
1(c) applies.

3. If Freeze(v, x) disables u, we only have one case: Ov ∈
vars(preu) and preu[Ov] 6= effSetO(o)[Ov]. We must distinguish
three possible types for u.

(a) u = Fire(o′). If v ∈ vars(effo′), Case 1(a) applies. If v 6∈
vars(effo′), v ∈ vars(prvo′) and we have prvFire(o′)[v] = x′.
If x′ = x, Freeze(v, x) does not disable Fire(o′). If x′ 6= x,
we have prvFire(o′)[v] = x′ 6= x = s[v] and hence Fire(o′) is
not applicable in s. For Fire(o′) to become applicable, v must
change its value from x to x′. The remaining argumentation
mirrors the one of Case 2(a).

(b) u = SetO(o′). We have prvSetO(o′)[v] = x′ and thus Case 1b)
applies.

(c) u = Freeze(v, x′). We have prvFreeze(v,x′)[v] = x′ and Case
1(c) applies.

4. If SetO(o) and u have conflicting effects, we only have one case:
Ov ∈ vars(effu) and effu[Ov] 6= effSetO(o)[Ov]. We must distin-
guish three possible types for u.

(a) u = Fire(o′). We have preFire(o′)[Ov] = o′. This case mirrors
Case 1(a).

(b) u = SetO(o′). We have prvSetO(o′)[v] = x′. This case mirrors
Case 1(b).

(c) u = Freeze(v, x′). We have preFreeze(v,x′)[v] = x′. This case
mirrors Case 1(c).

5. If Freeze(v, x) and u have conflicting effects, we only have one
case: Ov ∈ vars(effu) and effu[Ov] 6= effFreeze(v,x)[Ov]. We must
distinguish two possible types for u (there is only one Freeze oper-
ator per variable and Freeze operators for different variables can-
not interfere).

(a) u = Fire(o′). We have preFire(o′)[Ov] = o′. This case mirrors
Case 1(a).

(b) u = SetO(o′). We have prvSetO(o′)[v] = x′. This case mirrors
Case 1b).

Proposition 3. Third case of Theorem 1. Let s be a state, X ∈ Ps be
an applicable operator partition of type SetCv for a variable v ∈ V .
Then the set Ts := X ∪ {o′ | o′ interferes with o′′ ∈ X} is a strong
semistubborn set with the same applicable operators as X .

Proof. We first note that SetCv contains operators SetC(v, c) for
c ∈ CG(v). By definition, we have:

preSetC(v,c)[Cv] = free
effSetC(v,c)[Cv] = c

Second, note that we know the following about state s, consider-
ing that SetC(v, c) is applicable in s:

s[Cc] = free

We show that all operators o′ that interfere with the operators from
the partition X are not applicable in s. Thus the operators from X
are the only applicable operators in Ts. Second, we show that for all
these operators o′ ∈ Ts, Ts already contains a necessary enabling set
for o′ in s.

We first observe that for an operator SetC(v, c) ∈ X , only other
SetC operators for the same variable v and Fire operators may
share the variable Cv with SetC(v, c). Furthermore, all operators



SetC(v, c′) for all c′ ∈ CG(v) are already included in X (and ap-
plicable). We thus only need to consider Fire operators for possible
interference in the following.

Let Fire(o′) be an arbitrary operator interfering with SetC(v, c).
We observe that Fire(o′) cannot disable SetC(v, c) because it could
only set Cv to free. There are two remaining cases.

1. If SetC(v, c) disables Fire(o′), we have only one case: Cv ∈
vars(preFire(o′)) and preFire(o′)[Cv] 6= effSetC(v,c). We have
preFire(o′)[Cv] = c′ for a variable c′ ∈ vars(prvo′). If c′ =

c, SetC(v, c) does not disable Fire(o′). If c′ 6= c, we have
preFire(o′)[Cv] = c′ 6= free = s[Cv] and hence Fire(o′) is not
applicable in s. We observe that SetC(v, c′) must be applied be-
fore Fire(o′) can be applied, and because SetC(v, c′) ∈ X , X is a
necessary enabling set for Fire(o′) in s.

2. If SetC(v, c) and Fire(o′) have conflicting effects, we know
preFire(o′)[Cv] = c′ for a variable c′ ∈ vars(prvo′). Hence Case 1
applies.

We have shown for all operators o′ that interfere with the operators
of an operator partition X applicable in s that they are not applicable
in s. Furthermore, X is a necessary enabling set for all such o′ in
s. The criteria for Ts = X ∪ {o | o interferes with o′ ∈ X} to be
a strong semistubborn set in s are thus met. The overall proof for
Theorem 1 follows from Propositions 1, 2, and 3.


