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Abstract

Fast Downward Merge-and-Shrink uses the optimized, ef-
ficient implementation of the merge-and-shrink framework
available in the Fast Downward planning system. We describe
the techniques used in this implementation. To further push
the performance of single-heuristic merge-and-shrink plan-
ners, we additionally discuss and evaluate partial merge-and-
shrink abstractions, which we obtain through imposing a sim-
ple time limit to the merge-and-shrink computation.

Classical Planning

In this planner abstract, we discuss most of the concepts in-
formally. We consider planning tasks in the SAS™ represen-
tation (Backstrom and Nebel 1995), which are defined over
a finite set of finite-domain variables. States are assignments
over these variables. The planning task comes with a set of
operators that have preconditions, effects, and a cost, and
which allow to transform a state which satisfies the precon-
dition into another state that satisfies the effect and remains
unchanged otherwise. The task also specifies an initial state
and a goal condition. The semantics of a planning task can
naturally be described in terms of the labeled transition sys-
tem it induces.

A labeled transition system, or transition system for short,
has a set of states, a set of labels with associated costs, a tran-
sition relation that specifies the transitions which are triples
of predecessor state, label, and successor state, an initial
state from the set of states, and a set of goal states which
is a subset of the set of states. Paths are sequences of labels
that lead from a given state to some goal state. Their cost is
the sum of the label costs of the sequence.

The transition system induced by a planning task consists
of the states of the planning task and has transitions induced
by the operators of the task, respecting the applicability of
operators. Planning is the task of finding a path from the ini-
tial state to some goal state, called a plan. Optimal planning,
which we are concerned with, deals with finding plans of
minimal cost or proving that no plan exists.

Merge-and-Shrink

Merge-and-shrink (Driger, Finkbeiner, and Podelski 2009;
Helmert et al. 2014) is an algorithm framework to com-
pute abstractions of transition systems. While it has very

successfully been used to compute heuristics for planning
tasks (e.g., Sievers, Wehrle, and Helmert 2014; Fan, Miiller,
and Holte 2014; Sievers et al. 2015; Sievers, Wehrle, and
Helmert 2016; Fan, Miiller, and Holte 2017; Fan, Holte, and
Miiller 2018), it can in principle be used for any problem that
can be represented as a state space which exhibits a factored
representation. Using such compact factored representations
of both transition systems and abstraction mappings is a key
aspect of merge-and-shrink that allows computing arbitrary
abstractions of transition systems of interest which are gen-
erally too large to be explicitly represented.

Factored transition systems are tuples of labeled transi-
tion systems, also called factors, with the same label set
that serve as a compact representation of their synchronized
product. The synchronized product is the transition system
consisting of the Cartesian product of states, where labels
are used to synchronize the factors of the factored transition
system via the labeled transitions: there is a transition be-
tween two states in the product system iff all factors have
a transition between the corresponding component states la-
beled with the same label. A state is an initial/goal state in
the product if all its components are initial/goal states in the
respective factors.

To represent state mappings, merge-and-shrink uses fac-
tored mappings (Sievers 2017), which have previously also
been called cascading tables (Helmert et al. 2014; Tor-
ralba 2015) and merge-and-shrink representations (Helmert,
Roger, and Sievers 2015). Factored mappings are tree-like
data structures where each leaf node is associated with a
variable and a table that maps values of the variable to some
values, and each inner node has two children factored map-
pings and a table that maps pairs of values computed by
the children to some values. Factored mappings represent
a function defined on assignments over the associated vari-
ables of all leaf nodes to some value set. To represent state
mappings between factored transition systems, merge-and-
shrink uses a tuple of factored mappings, called F2F map-
ping, that each correspond to one factor of the target fac-
tored transition system, i.e., each factored mapping com-
putes the state mapping from states of the source factored
transition system to the corresponding factor of the target
factored transition system.

With the addition of generalized label reduction (Sievers,
Wehrle, and Helmert 2014), the merge-and-shrink algorithm



can be understood as a framework that repeatedly applies
transformations of a factored transition system, which es-
sentially need to specify the transformed factored transition
system and the F2F mapping that maps from the given fac-
tored transition system to the transformed one. In the con-
text of planning, the algorithm first computes the induced
factored transition system of the given task that consists of
atomic factors which each represent a single variable of the
task. It further initializes the F2F mapping to the identity
mapping of the factored transition system.

In the main loop, the algorithm then repeatedly selects
a transformation of the current factored transition system,
choosing from the four available types of merge-and-shrink
transformations: merge transformations replace two factors
by their synchronized product, shrink transformations apply
an abstraction to a single factor, prune transformations dis-
card unreachable or irrelevant states, i.e., states from which
no goal state can be reached, of a single factor, and label re-
ductions map the common label set of the factored transition
system to a smaller one. Applying the selected transforma-
tion means to replace the previous factored transition system
by the transformed one, and to compose the previous F2F
mapping with the one of the transformation. The main loop
terminates if the maintained factored transition system only
contains a single factor. Together with the factored mapping,
this factor induces the merge-and-shrink heuristic.

Concrete instantiations of the algorithm framework need
to decide on a general strategy that decides on which type of
transformation to apply in each iteration of the main loop,
and it needs to provide transformation strategies that spec-
ify how to compute the individual transformations. For ex-
ample, shrink strategies compute a state equivalence relation
for a given transition system, reducing the size of the transi-
tion system below a given limit, and merge strategies decide
which two factors to replace by their synchronized product.

Since our efficient implementation of the merge-and-
shrink relies on label equivalence relations, we briefly dis-
cuss this concept in the context of label reductions. Sievers,
Wehrle, and Helmert (2014) showed that label reductions are
exact, i.e., preserve the perfect heuristic, if they only com-
bine labels of the same cost that are ©-combinable for some
factor © of a given factored transition system F'. Labels are
©-combinable if they are locally equivalent in all factors
©' #£ O of F, i.e., if they label exactly the same transitions
in all other factors than ©.

For more details and a formal presentation of the trans-
formation framework and the merge-and-shrink transforma-
tions, we refer to the work by Sievers (2017).

Implementation

In this section, we briefly mention some of the techniques
used in the efficient implementation of the merge-and-shrink
framework in Fast Downward (Helmert 2006). More details
can be found in the work by Sievers (2017).

To represent transition systems, we do not store transi-
tions as an adjacency list as it is commonly done to repre-
sent graphs, but rather store all transitions grouped by labels.
This allows an efficient application of all merge-and-shrink
transformations, as we will see below. Furthermore, we store

label groups of locally equivalent labels for each factor, dis-
regarding their cost (the cost of a label group is the mini-
mum cost of any participating label). This allows storing the
transitions of locally equivalent labels once rather than sep-
arately for each label.

Depending on the chosen transformation strategies, we
need to compute g- and h-values of individual factors al-
ready during the merge-and-shrink computation. (Of course,
we need to compute h-values in the end to compute the
heuristic.) These are computed using Dijkstra’s algorithm
(Dijkstra 1959). This is the only place where we need an
explicit adjacency list representation of transition systems.

We now turn our attention to the different merge-and-
shrink transformations. When applying a shrink transforma-
tion, the shrink strategy computes a state equivalence rela-
tion for the given factor. We first compute the explicit state
mapping from this equivalence relation, assigning a consec-
utive number to each equivalence class to allow a compact
representation. Then we use this state mapping for an in-
place modification of the factor by going over all transitions
and updating their source and target states (compared to an
adjacency list, this avoids the need to move transitions of
different states), and for an in-place modification of the cor-
responding factored mapping by applying the state mapping
to its table. From the equivalence relation on states, we get
the set of new goal states.

When applying a merge transformation to the factored
transition system, merging two transition systems ©; and
O5, we do not compute the full product of states and their
transitions because this would require to compute the local
equivalence relation on labels from scratch after comput-
ing the product. Instead, we use a more efficient, bucket-
based approach to directly compute the refinement of the lo-
cal equivalence relations on labels of ©; and O, collecting
their transitions accordingly. Computing the factored map-
ping that maps states to the product factor is straightforward
and merely a composition of the two component factored
mappings.

When applying a prune transformation, we first deter-
mine the set of to-be-pruned states using g- and/or h-values.
We prune them by entirely removing them and their transi-
tions from the factor. The table of the corresponding factored
mapping is updated to map removed states to a special sym-
bol which is evaluated to co by the heuristic.

For an efficient computation of exact label reductions
based on ©-combinability, we need to be able to efficiently
refine the local equivalence relations of all (but one) fac-
tors of a factored transition system. This is possible using
linked lists, which we therefore use to store label equiva-
lence classes, i.e., label groups, for each factor. Applying
the label reduction, i.e., the label mapping, is simple for all
factors ©’ # O for which we know that the reduced labels
are locally equivalent: all we need to do is to relabel the set
of transitions of the reduced labels, remove the labels from
their group and add the new label to it. For the factor ©, we
need to collect all transitions of all reduced labels and com-
bine them to form the transitions of the new label. We update
the local equivalence on labels by removing reduced labels
from their (different) groups and the groups themselves if



they become empty, and by adding a new singleton group
for the new label.

Partial Merge-and-Shrink Abstractions

To the best of our knowledge, the literature on merge-
and-shrink so far always considered computing merge-and-
shrink abstractions over all variables of a given planning
task. That is, the main loop of the algorithm is stopped only
if the factored transition system contains a single factor.
However, there is no conceptual or technical reason to not
stop the algorithm early, ending up with several factors and
factored mappings that represent so-called partial abstrac-
tions because they do not cover all variables of the given
planning task. The set of partial abstractions in turn induces
a set of factor heuristics in the same way as usually the sin-
gle factor and factored mapping does.

Additionally, we observed that state-of-the-art merge-
and-shrink planners fail to finish computing the abstraction
in the given time and memory limits in a non-negligible
number of cases (152—-272 out of 1667 tasks for state-of-the-
art-configurations'). As a simple stop-gap measure for this
phenomenon, we suggest adding a time limit to the merge-
and-shrink algorithm, allowing to terminate the computation
even before having computed all atomic factors. As a conse-
quence, we obtain a set of partial merge-and-shrink heuris-
tics as described above whenever the time limit stops the
merge-and-shrink computation early.

Whenever this happens, we face the decision of comput-
ing a heuristic from the set of factor heuristics induced by
the remaining factors and factored mappings. A straight-
forward way is to compute the max-factor heuristic (h™)
that maximizes over all factor heuristics. The second, pre-
sumably less expensive alternative is to choose a single fac-
tor heuristic (h%) and use it as the merge-and-shrink heuris-
tic. We use the following simple rule of thumb in the latter
case: we prefer the factor heuristic with the largest estimate
for the initial state (rationale: better informed heuristic),
breaking ties in favor of larger factors (rationale: more fine-
grained abstraction), and choose a random heuristic among
all remaining candidates of equal preference.

A recent paper that was published after the IPC describes
and evaluates this technique in more detail (Sievers 2018).

Competition Planner

In the following, we describe the two variants of the plan-
ner submitted to the IPC 2018. To decide how to compute
partial merge-and-shrink abstractions, we also evaluate dif-
ferent choices experimentally. To do so, we ran our plan-
ner on the (optimal) benchmarks of all IPCs up to 2014,
a set comprised of 1667 planning tasks distributed across
57 domains,? using A* search in conjunction with differ-
ent merge-and-shrink heuristics. We limit time to 30 min-
utes and memory to 3.5 GiB per task, using Downward-Lab

'See rows “# constr” of column “base” of Table 1.

2From the collection at https://bitbucket.org/
aibasel/downward-benchmarks, we use the “optimal
strips” benchmark suite.

e hmf

base 450s 900s 1350s 450s 900s 1350s

Coverage 802 835 836 836 836 836 835
# constr 1395 1637 1629 1615 1636 1629 1614
Constr time  241.90 13599 197.57 230.70 135.73 196.58 229.45 %
Constr oom 21 21 21 21 21 21 21 E
Constr oot 251 9 17 31 10 17 32

E75thperc 1342k 1368k 1342k 1342k 1368k 1342k 1342k

Coverage 814 844 844 842 844 844 841
# constr 1505 1622 1620 1611 1622 1621 1611
Constrtime 9793  61.62 80.59 91.17 61.29 79.82 89.84 g
Constr oom 21 21 21 21 21 21 21 E
Constr oot 141 24 26 35 24 25 35

E75thperc 1860k 1860k 1860k 1860k 1860k 1860k 1860k

Table 1: Comparison of the baseline against two versions of
partial merge-and-shrink, using different time limits.

(Seipp et al. 2017) for conducting the experiments on a clus-
ter of machines with Intel Xeon Silver 4114 CPUs running
at 2.2 GHz.

Both variants of our planner, FDMS1 and FDMS2, use
the state-of-the-art shrink strategy based on bisimulation
(Nissim, Hoffmann, and Helmert 2011) with a size limit
of 50000, always allowing (perfect) shrinking. We use full
pruning, i.e., we always prune both unreachable and irrel-
evant states, and we perform exact label reductions based
on O-combinability with a fixed point algorithm using a
random order on factors. FDMS1 uses the state-of-the-art
merge strategy based on strongly connected components
of the causal graph (Sievers, Wehrle, and Helmert 2016),
which uses DFP (Sievers, Wehrle, and Helmert 2014) for
internal merging (SCCdfp). FDMS2 uses the merge strat-
egy score-based MIASM (sbMIASM, previously also called
DYN-MIASM), which is a simple variant of the entirely pre-
computed merge strategy maximum intermediate abstrac-
tion size minimizing (Fan, Miiller, and Holte 2014).

Table 1 shows the number of solved tasks (coverage), the
number of tasks for which the heuristic construction com-
pleted (# constr), the runtime of the heuristic construction
(constr time), the number of failures of the heuristic con-
struction due to running out of time (constr oot) or memory
(constr oom), and the number of expansions until the last f-
layer. The table compares the baseline (base) with the two
variants of computing a single merge-and-shrink heuristic
(k¢ and h™) using time limits of 450s, 900s, and 1350s.

As expected, adding a time limit is a very effective mea-
sure for greatly increasing the number of successful heuristic
constructions, which also directly transfers to a significant
increase in coverage of all configurations, with 900s being
a sweet spot for both planners. Stopping the computation
early does not affect the heuristic quality as one might have
expected. The likely reason is that with limiting the time, we
catch precisely those tasks for which the construction other-
wise does not terminate or terminate too late for a successful
search. Tasks which we can already solve without imposing
a time limit (base) usually require a rather short construction



Compl. FDMS PP Scor

1 2 1 2

Sum previous IPCs (1667) 1026 1056 939 936 1065 1150

Sum IPC 2018 (200) 125 125 101 104 123 108

Sum (1867) 1151 1181 1040 1040 1188 1258

Table 2: Overall coverage of the top IPC 2018 planners on all
IPC domains, split in the set prior to IPC 2018 and the set
used in IPC 2018. Compl: Complementary, PP: Planning-
PDBs, Scor: Scorpion.

time, and therefore limiting the time to 900s or more does
not stop the heuristic computation early and hence does not
reduce heuristic quality in these cases.

We also observe that there is no significant difference be-
tween h™ and h*¢. While h™ theoretically dominates any
single factor heuristic by definition, evaluating the former
can be slightly more expensive. Furthermore, in scenarios
where at the end, there is one (large) factor that covers many
variables and many smaller factors that cover few variables
(e.g., atomic factors), the large one likely dominates the oth-
ers, and thus /°¢ is equally informed as A™.

For the competition, we decided to use a time limit of 900s
and to compute h™ in both planner variants FDMS1 and
FDMS2. In addition to pure A* search with the described
merge-and-shrink heuristics, they use pruning based on par-
tial order reduction by using strong stubborn sets (Alkhazraji
et al. 2012; Wehrle and Helmert 2014). We extended the im-
plementation in Fast Downward with support for conditional
effects and with a mechanism that disables pruning if, after
the first 1000 expansions, only 1% or fewer states have been
pruned. Both planners further use pruning based on struc-
tural symmetries (Shleyfman et al. 2015) by using the DKS
algorithm (Domshlak, Katz, and Shleyfman 2012). Finally,
after translating PDDL with the translator of Fast Downward
(Helmert 2009), we also post-process the resulting SAS™
representation using the implementation of h? mutexes by
Alcazar and Torralba (2015).

Post-IPC Discussion

Our merge-and-shrink planners finished seventh and eighth
out of 16 entries. The winning planner, Delfi 1, and the sixth
placed Delfi 2, both are portfolios that contain both merge-
and-shrink planners of this submission. Furthermore, the
post-IPC analysis of Delfi shows that FDMS2 is necessary
to be included to achieve oracle performance over all com-
ponent planners (Katz et al. 2018). Leaving these portfolios
aside, the other entries above FDMS are three PDB-based
planners (Complementary1 by Franco et al., 2018, Comple-
mentary2 by Franco, Lelis, and Barley, 2018, and Planning-
PDBs by Martinez et al., 2018) and a planner based on
Cartesian abstractions and PDBs (Scorpion by Seipp, 2018).
For the following analysis, we ran these planners under IPC
conditions.

Table 2 shows coverage of all mentioned planners, aggre-
gating domains of all previous IPCs and domains of IPC

Compl. FDMS PP Scor

1 2 1 2

Previous IPCs (57) 22 27 17 17 28 41

IPC 2018 (10) 2 4 2 3 4 6

Sum ()

Table 3: Overall coverage of the top IPC 2018 planners on all
IPC domains, split in the set prior to IPC 2018 and the set
used in IPC 2018. Compl: Complementary, PP: Planning-
PDBs, Scor: Scorpion.

2018. Tables 4 and 5 show the full domain-wise results. It
is clear that Scorpion was the state of the art planner prior
to the competition, leaving both the three PDB-based and
the two merge-and-shrink-based planners behind by a large
margin. The more notable are the results of the IPC 2018,
where the PDB-based planners are clearly ahead of Scor-
pion, which is very closely followed by our two merge-and-
shrink planners. The main reason is that Scorpion struggles
on AGRICOLA and PETRI-NET-ALIGNMENT, where the for-
mer seems well-suited for merge-and-shrink planners, and
the latter for planners using symbolic heuristics or search
(the baseline planner using symbolic search finishes above
Scorpion).

Furthermore, while absolute coverage is certainly a use-
ful performance indicator, it is problematic for the domains
of older IPCs because they contain a largely varying num-
ber of tasks. In more recent editions of IPCs, domains have
the same number of tasks and hence only comparing total
coverage makes more sense in these cases. For complete-
ness and as an alternative performance indicator, we there-
fore also count the number of domains where each planner
achieves the highest coverage. Table 3 shows that Scorpion
is the winner in that category for both the previous and the
new domains, however the distance to the competitors is less
pointed out for the [PC 2018 domains.
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FDMS PP Scor

1 2 1 2
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Table 5: Domain-wise coverage on the IPC 2018 domains.
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