
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Arbeitsgruppe Grundlagen der künstlichen Intelligenz

Implementation of the UCT Algorithm for Doppelkopf

Silvan Sievers
Freiburg, April 10, 2012
(revised April 24, 2012)

Supervisors:

Prof. Dr. Malte Helmert Prof. Dr. Bernhard Nebel
Universität Basel Universität Freiburg
Departement Mathematik Institut für Informatik
und Informatik Arbeitsgruppe Grundlagen
Arti�cial Intelligence der künstlichen Intelligenz

Abstract

Doppelkopf is a German trick-taking card game with imperfect informa-
tion. Its most interesting aspect certainly is the fact that teams are not �xed
over a session of games and that teams are even not known at the beginning
of most of the games, but only determined or revealed to the players during
the course of playing. It further has a huge state space and a large strategic
depth, making it infeasible to be solved by exhaustive search. UCT is an al-
gorithm based on Monte Carlo tree search with an improved action selection
policy. It has shown to be successful when applied to other (card) games.
This work's contribution consists of the implementation of a doppelkopf

player using the UCT algorithm. Furthermore, an algorithm that generates
consistent card assignments is presented. It can be used by the UCT al-
gorithm to generate samples that complete the missing information about
the other players. Experimental results show that the resulting UCT player
attains a decent playing strength compared to a baseline approach.

Zusammenfassung

Doppelkopf ist ein Stichspiel mit unvollständiger Information. Der in-
teressanteste Aspekt des Spiels ist mit Sicherheit die Tatsache, dass Teams
im Laufe einer Doppelkopfsitzung immer wieder wechseln und den Spiel-
ern meistens sogar nicht einmal zu Spielbeginn bekannt sind, sondern erst
während des Spiels festgelegt bzw. o�enbart werden. Weiterhin hat das Spiel
einen sehr groÿen Zustandsraum und eine groÿe strategische Tiefe, weshalb
es ungmölich ist, das Spiel durch vollständige Suche zu lösen. UCT ist ein auf
Monte Carlo Suche basierender Algorithmus, welcher eine verbesserte Srate-
gie zur Aktionswahl verwendet. Der Algorithmus wurde bereits mit Erfolg
auf andere (Karten-) Spiele angewendet.
Diese Arbeit stellt die Implementierung eines Doppelkopfspielers vor, welcher

den UCT Algorithmus verwendet. Auÿerdem wird ein Algorithmus zur
Erzeugung von konsistenten Kartenzuteilungen präsentiert. Dieser kann
vom UCT Algorithmus verwendet werden, um Samples zu erzeugen, welche
die fehlenden Informationen über die anderen Spieler vervollständigen. Ex-
perimentelle Ergebnisse zeigen, dass der resultierende UCT-Spieler eine or-
dentliche Spielstärke im Vergleich zu einem Basisansatz erreicht.

I

Acknowledgements

In the �rst place, I want to thank my mentor Prof. Dr. Malte Helmert for enabling me
to write this thesis about one of my favorite card games. He always found time to help
me a lot by giving feedback both for the implementation and the written part. His pool
of ideas and hints on how to improve things seems to be inexhaustible. I'd further like
to thank Prof. Dr. Bernhard Nebel for accepting to be the second auditor of my thesis.
This work was proofread by Lam Tran and Marius Greitschus and I want to thank both
of them a lot for taking the time to search for spelling and grammar mistakes. Last but
not least I want to thank my friends for their understanding especially during the two
weeks before the submission deadline.

Declaration

I hereby declare, that I am the sole author and composer of my Thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore, I
declare that I have acknowledged the work of others by providing detailed references of
said work.
I hereby also declare, that my Thesis has not been prepared for another examination or
assignment, either wholly or excerpts thereof.

Place, date Signature

II

Contents

1 Introduction 1

2 Doppelkopf 3

2.1 History . 3
2.2 Rules . 3

2.2.1 Preliminaries . 4
2.2.2 Game types . 5
2.2.3 Doppelkopf session and compulsory solos 6
2.2.4 Game type determination . 8
2.2.5 Card play . 9
2.2.6 Announcements . 9
2.2.7 Game evaluation . 11

2.3 Doppelkopf and AI games research . 14

3 UCT 16

3.1 Monte Carlo tree search methods . 16
3.2 Multi-armed bandit problems and UCB1 17
3.3 The UCT algorithm . 19

4 Card Assignment Problem 22

4.1 Consistency of card assignments . 22
4.2 Related problems . 23
4.3 Card assignment algorithm . 24
4.4 Analysis of the card assignment algorithm 28

5 Implementation 30

5.1 Doppelkopf framework . 30
5.1.1 General design and structure . 31
5.1.2 Game module and game process 31

5.2 UCT algorithm . 34
5.3 Summary of program options . 37

6 Experiments 41

6.1 Tuning parameters to obtain a good baseline UCT player 42
6.1.1 First announcement style version 43
6.1.2 Second announcement style version 50
6.1.3 Chosen baseline con�guration . 57

III

6.2 Comparing the two UCT versions . 59
6.3 Testing single player options . 61

6.3.1 Using team points as a bias for the UCT rewards 61
6.3.2 Changing the announcement rule 62
6.3.3 Using the correct UCT formula 64
6.3.4 Not using an MC simulation . 66
6.3.5 Changing the action selection version 67

6.4 Combining several player options . 70
6.4.1 Comparing action selection versions with no MC simulation . . . 71
6.4.2 Combining good options for the �rst UCT version 73
6.4.3 Combining good options for the second UCT version 75
6.4.4 Chosen best con�gurations for both UCT versions 78

6.5 Increasing the number of rollouts and the number of games 81
6.6 Human player against best UCT player 84

7 Conclusion 88

7.1 Summary . 88
7.2 Outlook . 89

Bibliography 90

IV

1 Introduction

Playing all kind of di�erent games has always been an amusement for mankind and thus
with the arising knowledge in computer science and arti�cial intelligence, games have
also become the focus of research. A primary goal often consists in analyzing games
with respect to the question if they can be �solved� or not, where solving means that a
program is able to perfectly play the game in the sense that it has a best response to
all possible moves an opponent makes. Solving is not possible in many cases because
the game is too complex and the state space is too large. Thus, many approaches of
game research strive to �nd good approximations for playing a game. Such algorithms
are commonly based on heuristic search methods or other tools that allow to restrict the
problem's size or to abstract the original problem to a smaller version which can then be
solved and the solution can be used to generate an approximate solution for the original
problem.
This thesis investigates the German card game doppelkopf. Doppelkopf is a trick-

taking game of incomplete information for four players, played with 48 cards. The main
�feature� of doppelkopf is that there are no �xed teams, every player tries to collect as
many points as possible over a session of games. During most of the games, there are two
teams consisting of two players each, but the teams are usually not known in advance!
This enables the strategic depth of the game, being a challenge even for human players.
Additionally, the game play can be separated into a game type determination phase and
an actual card play phase, during which also announcements (or bids) can be made. The
game thus shows some similarities to the well studied games of bridge and skat, but has
not been matter of games research so far, to my best knowledge.
As doppelkopf also has a large state space, it is unfeasible to solve it by complete

exploration of the game tree. This is the reason and the motivation for this thesis to
investigate the application of Upper Con�dence Bounds applied to Trees (UCT) [12] to
doppelkopf. The UCT algorithm was developed in 2006 and since then had a growing
success in the application for other games like go [10, 9], skat [17] and Klondike solitaire
[3]. It uses classic Monte Carlo tree search combined with sampling of worlds for the
estimation of values of game moves. The main goal is to show that UCT can be used
for a game with incomplete information like doppelkopf and further to show that this
approach yields reasonable results when comparing it to a baseline approach, which is the
only satisfying comparison method due to the lack of previous research. Furthermore,
this thesis also describes several possible extensions that slightly modify the original
UCT algorithm in order to test if they can improve the resulting player further.
In order to be able to apply the UCT algorithm to a game of incomplete information,

either this missing information must be provided to the UCT algorithm or the UCT
algorithm can directly be operated on the belief state space rather than on the abstract

1

state space. The choice was made in favor of the �rst approach and thus a way of
sampling complete information worlds for the UCT algorithm needs to be found. The
solution proposed by this thesis is an algorithm that generates consistent and mostly
uniformly random card assignments that can be used as samples for the UCT algorithm.
The outline of this work is as follows: this introduction being the �rst chapter, the sec-

ond chapter is dedicated to the introduction of the game doppelkopf with all the rules
and background information necessary for the further understanding. The follow-up
chapter describes Monte Carlo tree search methods and based on these, the original ver-
sion of the UCT algorithm is explained. The fourth chapter presents the card assignment
algorithm and analyzes the degree of randomness of the generated card assignments. In
chapter �ve, the program implemented for this thesis is presented. This includes the
description of the implementation of doppelkopf itself, the explanations of the two im-
plemented di�erent versions of the UCT algorithm and the presentation of the di�erent
options that can be used to modify certain characteristics of the UCT algorithm. The
sixth chapter �nally presents a lot of experiments done with the program written for
this thesis. First, di�erent parameter con�gurations are tested with the goal of �nding a
suitable baseline player which is then used for comparison experiments including other
con�gurations that use one or more of the di�erent options possibly enhancing the UCT
algorithm. The �nal best UCT version found is tested in playing against a human player.
The �nal chapter draws a conclusion of the thesis and gives an outlook for future work.

2

2 Doppelkopf

This chapter introduces the game of Doppelkopf, a card game well known in Germany
but not so much in other regions of the world. There will be a very brief overview of the
history and the origins of doppelkopf, followed by a explanation of the game rules and
concluding with a motivation of why doppelkopf is of interest for games research and
how the game has to be classi�ed.

2.1 History

Doppelkopf, often abbreviated �Doko�, literally means �double-head� when translated
into English. There is not much known about the history of doppelkopf, but it is
generally assumed that it has originated from the game Schafkopf (literally sheeps-
head), which is a very popular game in Bavaria and which has �o�cial� rules since 1895
[19]. At least, doppelkopf is a trick-taking card game like schafkopf and it is played
with a double deck of schafkopf cards, hence explaining the name doppelkopf: double
(schaf)kopf. Furthermore, it has many similarities with the card game Skat, which also
probably originated from schafkopf.
Doppelkopf is mostly common in the northern regions of Germany, where it is nearly

as popular as skat, but less known outside of Germany. In Bavaria, schafkopf is still the
prevailing variant. One �problem� with doppelkopf is that there are regional di�erences
with many variants of the game rules; players that do not know each other often need
to discuss a lot in order to agree on a set of rules before they can actually start playing.
One of the main goals of the Deutscher Doppelkopf Verband1 (DDV, German Doppelkopf
Association), which was founded on March 27, 1982, is to settle some �o�cial� rules. It
also organizes national championships, maintains a league (�Bundesliga�) and publishes
a ranking of players.

2.2 Rules

As stated above, doppelkopf exists in numerous variations, di�ering from region to re-
gion. For the rest of this thesis, I will stick to the o�cial rules designed by the DDV
� the game is already su�ciently complicated without adding and allowing all special
rules that may exist. The rules can be found on the site of the DDV2 (only in German)
or, in a less formal way, but still described correctly, on the English Wikipedia article

1http://www.doko-verband.de
2http://www.doko-verband.de/download/turnierspielregeln.pdf

3

about doppelkopf.3 Some of the examples below are taken (and sometimes modi�ed)
from the Wikipedia article. When searching the Internet for more English information
about doppelkopf, one may �nd several websites, but many of them do not explain the
o�cial rules correctly (for gaining a general understanding of the game, this may be
su�cient, though).

2.2.1 Preliminaries

Doppelkopf is a trick-taking card game for four players. One game of doppelkopf always
consists of two teams, the Re-team (short: re, �a player is re�) and the Kontra-team.
One of the main features of the game is the fact that the actual teams are most of the
time not known in advance but only determined during the game, which makes it very
interesting from a strategic point of view. Normally, the goal for re is to achieve at least
121 points; kontra wins when re fails to do so.
Doppelkopf is played with a double (shortened French) deck of cards, each consisting

of 24 cards divided into the four suits clubs (♣), spades (♠), hearts (♥) and diamonds
(♦). Each suit contains the following cards: ace (A), ten (10), king (K), queen (Q), jack
(J) and nine (9). In the future, a speci�c card will be described by a symbol for its suit
followed by the abbreviation for its name, e.g. ♥K stands for the king of hearts. Card
values are depicted in Table 2.1, thus totaling 240 points for the whole deck of 48 cards.

Card Value
Ace 11
Ten 10
King 4
Queen 3
Jack 2
Nine 0

Table 2.1: Card values

One of the players starts being the dealer and deals each player twelve cards (starting
with the player positioned on the left to him, dealing each player three cards in a
clockwise order until all cards are dealt) face down. Players are only allowed to view
their own cards (the so-called hand). They are not allowed to show their cards or to
communicate any information about their hands to the other players except by the
means intended by the game rules, such as announcing (see later). The player left of
the dealer starts the game (with some exceptions explained later), normally by playing
a card, face up, so that all players can see it. Card play will be described more in detail
later (Subsection 2.2.5). For the next game, the player who started will be the dealer
and so on. There is no limit in how many rounds (a round consists of four games, i.e.
each player is dealer once) are played, but in an o�cial tournament, 24 games will be

3http://en.wikipedia.org/wiki/doppelkopf

4

played and each player is dealer six times (and thus also starts playing six times, which
is important because it generally signi�es an advantage for that player).

2.2.2 Game types

There are di�erent game types. For each game, a type needs to be determined. How
game type determination works is described in the next subsection. The di�erent game
types mainly vary trump and non-trump suits and sometimes also the playing teams
may be pre-determined or determined in another than the usual way.
The default game type is the normal or regular game, in which the players holding a
♣Q, called �Die Alten� (the elders), constitute the re-team and the other two players are
the kontra-party (assuming for now that no player holds both ♣Q). As players do not
know the other players' cards, they also do not know which player is part of which team
as long as not both ♣Q have been played (or announcements are made, see later). In a
regular game, the ♥10, all queens, jacks and the remaining cards from the ♦-suit form
the trump suit; all other cards form the three non-trump suits. An overview including
the ranks of the cards is depicted in Table 2.2.

Trumps in descending order
♥10, ♣Q, ♠Q, ♥Q, ♦Q, ♣J, ♠J, ♥J, ♦J, ♦A, ♦10, ♦K, ♦9

Non-trumps in descending order per suit
Clubs Spades Hearts

♣A, ♣10, ♣K, ♣9 ♠A, ♠10, ♠K, ♠9 ♥A, ♥K, ♥9

Table 2.2: Suits in a regular game

A very similar game type is the so-called �Hochzeit� (marriage), where one player has
both ♣Q. In this case he4 may play alone without announcing anything (resulting in a
�stilles Solo�, translated into silent solo, which is the same as a diamonds solo, see later)
or he announces a marriage (unless another player wants to play a solo which then would
have higher priority, see later) and plays with the �rst other player to win a trick. If
the marriage player wins the �rst three tricks himself, he is forced to play a diamonds
solo. The marriage player himself is always part of the re-team, and depending on if
he marries another player, this other player joins him, otherwise the other three players
form the kontra-team. This means that the teams are determined and known by all
players at the latest after the three �rst tricks have been completed. Most important
for now is that the trump suits in a marriage game are exactly the same as in a regular
game.
All remaining types of game are solo games. In any solo game, the re-team is only

constituted by the solo player, the other three players are kontra. The �rst category
4A player naturally may be female or male; to avoid the trouble of writing he/she, his/her/their always,
I'll state right now that whenever I write about a player and use a male pronoun, I also want to
include female players.

5

of solo games is a color or trump solo, where the only di�erence to the trumps of the
regular game is that the diamonds suits (possibly) gets substituted by another suit of
the solo player's choice. Note that the hearts tens, the queens and the jacks will always
remain the top trumps, just the lowest cards (i.e. diamonds ace to nine) get replaced
by their equivalent of the other suit. Consequently in a diamonds solo, the trump and
non-trump suits are exactly the same as in a regular game. Due to the hearts tens being
always the highest trumps, there are two trump cards less in a hearts solo (because
only aces, kings and nines of hearts join the trump suit). Table 2.3 depicts trump and
non-trump suits in a hearts solo.

Trumps in descending order
♥10, ♣Q, ♠Q, ♥Q, ♦Q, ♣J, ♠J, ♥J, ♦J, ♥A, ♥K, ♥9

Non-trumps in descending order per suit
Clubs Spades Diamonds

♣A, ♣10, ♣K, ♣9 ♠A, ♠10, ♠K, ♠9 ♦A, ♦10, ♦K, ♦9

Table 2.3: Suits in a hearts solo

The next category of solo games are the queens and jacks solos. In these games, only
the queens (or the jacks respectively) form the trump suit (in the same order from clubs
to diamonds as always) and each �normal� suit forms its own suit, where the jacks (or
the queens) are ordered below the kings and above the nines. Table 2.4 exemplarily
shows the suits for a queens solo.

Trumps in descending order
♣Q, ♠Q, ♥Q, ♦Q

Non-trumps in descending order per suit
Clubs Spades Hearts Diamonds
♣A, ♣10, ♣K,
♣J, ♣9

♠A, ♠10, ♠K,
♠J, ♠9

♥A, ♥10, ♥K,
♥J, ♥9

♦A, ♦10, ♦K,
♦J, ♦9

Table 2.4: Suits in a queens solo

The last game type is a �Fleischlos� or �Asse Solo� (�eshless or aces solo) with no
trump suit at all; every suit is ordered as usual with the queens under the kings but
above the jacks which are higher than the nines. The suits are shown in Table 2.5.

2.2.3 Doppelkopf session and compulsory solos

According to the o�cial rules, a doppelkopf session for four players consists of six rounds
with four games each, totaling 24 games. (There are some variants for �ve players where
one player always needs to sit out.) Within these games, each player must play at least

6

Suits in descending order per suit
Clubs Spades Hearts Diamonds
♣A, ♣10, ♣K,
♣Q, ♣J, ♣9

♠A, ♠10, ♠K,
♠Q, ♠J, ♠9

♥A, ♥10, ♥K,
♥Q, ♥J, ♥9

♦A, ♦10, ♦K,
♦Q, ♦J, ♦9

Table 2.5: Suits in an aces solo

one solo, a so-called �P�ichtsolo� (compulsory solo). When playing a compulsory solo,
the solo player always is in the �rst position, i.e. he starts the card play. In order to
avoid that the player that would normally have started this game loses his right to be
the starting player, a compulsory solo must be �repeated� in the sense that the same
player deals the cards again in the next game. That way, in the end of the session, all
players have been �rst-positioned exactly six times; �ve times for every game other than
a compulsory solo and once with their own compulsory solo. Note that it can happen
that one player deals cards more often than the others if he is the dealer for several
compulsory solos.
Once the number of remaining games equals the number of players that still need

to play a compulsory solo (this may happen because getting good enough cards for
a solo does not happen that often), these players are forced to play their compulsory
solos, starting with the player positioned next to the dealer (here, �next� means the next
player positioned after the dealer who still needs to play a solo). This procedure is called
�Vorführung� (maybe best translated as exhibition, because the player is given no choice
but to play a solo, no matter how �bad� his cards may be). Note that even if another
player than the one positioned next to the dealer still needs to play his compulsory solo
and would like to do so, he is not allowed to. He will be forced to play his solo when it
is his turn during the remaining games. Players thus should always try to avoid getting
into this situation by risking to play a solo even with a not so good hand. Compulsory
solo games of a �Vorführung� must not be repeated in the sense that the same dealer
must deal again, but the player positioned next to the dealer will become the dealer for
the next round (even if he has to deal his own �Vorführung�, i.e. even he is the next one
to play a forced compulsory solo).
After having played their compulsory solo, players are allowed to play more solo games

during the session; these are called �Lustsolo� (literally lust solo, which means a solo that
a player is free to play if he likes to) and they do not give the right of starting card play
to the solo player as a compulsory solo does. Note that the �rst solo a player plays
is always the compulsory one and all later solos will be lust solos. This means players
cannot choose to �rst play a lust solo and then later do a compulsory solo5. Note that
only �announced solos� count as compulsory solo, i.e. a silent solo as explained above
and a �failed marriage� (i.e. the case where the marriage player wins the �rst three tricks

5This scenario may sound strange, but for some solo games a player really needs to start playing,
otherwise he could not play the solo; so if a player has cards for a solo where he does not necessarily
need to start the game, he would like not to use his right to start playing, but he is forced to!

7

and thus plays alone) do not count as a compulsory solo. The reasoning behind this
rule is that both of these �non-announced solos� are considered to be �easy solos�: when
playing a silent solo, the kontra-team does not know it plays against a soloist and thus
cannot pro�t from playing three against one because every player will play by himself
as long as he does not know who he plays with. In the case of the failed marriage, the
marriage player already made three tricks, and usually the �rst tricks are very valuable
ones. Still these solo games count as lust solos, which is important for the scoring.

2.2.4 Game type determination

As already stated, before a game can actually start, the players need to �nd out which
game type they will play � a regular game, a marriage or any kind of solo. To do
so, starting with the player left to the dealer, each player says whether he is �gesund�
(healthy) or he has a �Vorbehalt� (reservation), meaning either that he is �ne with
playing a regular game or that he wants to either announce a marriage or play a solo. If
several players have a reservation, then the following ordering applies, starting with the
highest priority:

1. compulsory solo

2. lust solo

3. marriage

To �nd out which player has what kind of reservation without revealing too much
information about the players' cards, players are �rst asked if they want to play a
compulsory solo or not, again starting with the player on �rst position, i.e. the player
left to the dealer. Players who played their compulsory solo already are not allowed to
answer �yes�. If all players answer �no�, then they are asked if they want to play a lust
solo. As the �rst-positioned player among those with a reservation of the same priority
is admitted to play a solo, the asking stops as soon as a player answers a questions with
�yes�. Note that if there are several players having a reservation, then a marriage can
never be admitted. This procedure guarantees that always the player with the highest
priority is admitted to play a solo, but it is a bit involved. In practice, players often do
not ask separately for compulsory solos and then for lust solos, but generally for a solo.
A compulsory solo is still always admitted �rst before a lust solo.
With the same reasoning, a player who is sure that his reservation will be of highest

priority may even skip the procedure of saying �healthy� or �reservation� and immedi-
ately announce a solo he wants to play. This is also valid later during the reservation
procedure, i.e. as soon as a player knows that his solo has highest priority (e.g. because a
player positioned in front of him is healthy) he is allowed to announce it and the rest of
the reservation procedure will not be �nished. This is explicitly stated in the o�cial rules
to allow players to prevent other players from revealing information about their cards.
For example, if player A is sure he wants to play a solo and has the highest priority but
does not immediately announce his solo, some other player B may say �reservation� as

8

well. If player B now sits before player A and does not want to play a solo, then this
is because he wants to play a marriage. Thus he must have both ♣Q � an information,
which would then be available to the solo player as well as to all three opponents, which
possibly could help the opponents to play against the soloist.

2.2.5 Card play

Every game is divided into twelve tricks, where a trick consists of four cards, one card
played by each player. The player in the �rst position plays a card, the remaining three
players play a card (according to certain rules which will be explained soon) in the
positioned order. After completion of the trick, the winner of the trick takes the cards
of the trick and puts them face down in front of him and does not take them onto his
hand. These cards are of no more use until the current game is �nished, they are only
important when counting how many points a player made during the game. Note that
players are not allowed to view the played tricks except the most recently completed
one.
The rules for playing cards do not di�er from the rules for schafkopf or skat. Cards

are divided into a trump suit (except for the aces solo) and several non-trump suits,
depending on the game type being played. The player who starts the trick is free to
choose any of his cards, setting the suit for the current trick. All players have to follow
suit, i.e. they have to play a card of the same suit. If a player cannot follow suit, he
is free to play any of his cards. If the �rst-played card was of a non-trump suit and a
player cannot follow suit and he decides to play a trump card, then he �trumps� the other
cards. Trump cards are always higher than any non-trump cards. As a consequence, the
player who played the highest trump card wins the trick (in both cases that the trick
suit is trump or non-trump). If nobody played a trump card, then the player playing
the highest card in the suit of the trick wins the trick. Since each card exists twice, it
can happen that players are tied for the highest card because they played the same. In
this case, the �rst-played card always wins.

2.2.6 Announcements

If no marriage is being played, each player knows which team he belongs to. During
the �rst tricks, a player can make an �Ansage/Absage� (announcement or bid6) claiming
that his team will reach a speci�c goal. If a team does not ful�ll these self-given goals,
it automatically loses even if it had won under normal winning conditions. The interest
in taking the risk for such announcements is the increased game value and sometimes
also to give information about the strength of a hand to the other players, especially to
the teammate.

6In German, the o�cial rules distinguish between �Ansage� (announcement) for re or kontra, and
�Absage� (best translated into denial or rejection) for the rest, because the intention of the latter
is to prevent the other team of reaching a certain amount of points/making a trick at all. For
simplicity, I will stick to announcement for all kind of �Ansage� and �Absage�.

9

The �rst possible type of announcements is �re� or �kontra�, depending on a player's
team. With the announcement of re or kontra, a team claims to win the game, which
usually means to gain more than 120 points, with the exception of replies (see later).
As a consequence of the announcing player revealing his team, all other players know if
they play with or against the announcing player (if they do not know it already anyway,
e.g. in case of a solo being played).
The second type of announcements is a whole group of announcements, stating that the

opponent team will get less than a certain amount of points. These announcements can
only be made after an announcement of re or kontra. For example, if re was announced
by a player and his partner wants to make an additional announcement, he should
identify himself as a re-player before doing so (unless it is clear that he also belongs to
re, because kontra did not announce kontra). The possible announcements are:

• �Keine 90� (No 90), often abbreviated to �Keine 9� (No 9), meaning that the
opponents will get less than 90 points. This also means they win by reaching 90
points.

• �Keine 60�, �Keine 30� (No 60, No 30): the same as no 90 but with a higher goal
of reaching a speci�c amount of playing points for the announcing team

• �Schwarz� (black), meaning the other team will not make a single trick, not even
a trick worth 0 points.

Players can only make announcements while they still hold at least a certain amount
of cards in their hand (they can always do announcements earlier than the latest moment
allowed):

• For announcing re or kontra, the announcing player needs to have at least eleven
cards, i.e. the announcement must be made before playing the second card.

• An announcement of no 90 (no 60, no 30, black) requires the player to hold at
least ten (nine, eight, seven) cards and the announcement of re or kontra of the
team before (does not have to be the same player).

Players are allowed to leave out a lower announcement and to immediately make a
high announcement, e.g. to directly announce no 90 (but they have to say for which
team), which then also implies the announcement of re or kontra. This is only possible
if the left out announcement is still legal at the time of making the announcement.
For example, a team which announced re cannot announce no 60 while the announcing
player still holds nine cards, because the implied no 90 would be illegal at this moment.
As both teams may do as many announcements as they like to, it can happen that no
team wins in the end, e.g. when both teams announce (at least) no 90 and both teams
reach (at least) 90 points.
An exception for a late announcement of re or kontra is given as an �Erwiderung�

(reply): whenever a team does an announcement, the other team is allowed to reply re
or kontra against this announcement as long as they hold at least one card less than

10

the announcing team needed for their last announcement. For example, if the re-team
announced no 60 (it does not matter when they do so � at the beginning, at the last
possible moment, i.e. with nine cards, or sometime in between), then the kontra-team is
allowed to say kontra as long as the team is holding at least eight cards. A reply does
not entitle to further announcements as no 90 etc., unless it was said while holding at
least eleven cards (i.e. it was a legal announcement and not only a reply).
In the case of a marriage, the teams are only determined after the �clari�cation trick�.

Before this trick has been completed, no announcements are allowed. If a marriage
partner is found (or not found) after the second (third) trick, the number of cards a
player needs to hold for making an announcement (this includes replies) is reduced by
one (two). If the �rst trick already determines the teams, nothing is changed.

2.2.7 Game evaluation

First, the winning team needs to be determined if there is a team that won.
If no announcements except re or kontra were made, the following holds: the re-team

normally wins the game if it reaches at least 121 points and it also wins by reaching 120
points if it did not announce re and if kontra at the same time announced kontra but not
more. Similarly, kontra wins with 120 points if both teams did not announce anything
or if re announced only re and kontra announced only kontra or nothing. If only kontra
announces kontra and re does not announce anything then kontra needs 121 points to
win.
If a team announced more than just re or kontra, then the following winning criteria

hold for both teams: a team must reach at least 151, 181 or 211 points to win if it
announced no 90, no 60 or no 30. If a team announced black, then the opposing team
is not allowed to take a single trick. If a team did not announce anything above re or
kontra, then it su�ces to reach 90, 60 or 30 points to win if the other team announced
no 90, no 60 or no 30. A team also wins by making a trick if the other team announced
black (and if the team did not commit to any goal by announcing no 90 or more). Note
that the latter winning criteria are independent of the announcing time of re or kontra,
e.g. if a team announces re in a regular manner (while having at least eleven cards) and
thus not as a reply, but then later kontra announces no 90 or more, then re still wins by
reaching 90 points and it does not need to reach 121 points, even if at the moment of
announcement of re, that would have been the case (because kontra did not announce
anything at that moment). Both re and kontra announcements only state that the team
is going to win the game (and not to reach more than 120 points) � if the winning
conditions are changed later towards some stronger conditions, then re and kontra are
adapted to those new conditions.
As already noted above, in some cases where both teams announced at least no 90, it

may happen that no team won. This is important for the following scoring rules.

A game is valued by the score points it is worth (contrasting the points made by
winning tricks during the game)7. Score points are granted in a zero-sum manner, that
7Again note that in German, the distinction is more clear by using �Augen� (literally eyes) for card

11

is the losing team gets as many negative points as the winning team gets positive points.
For all solo games, the so calculated score points value will be multiplied by three for
the soloist (in order to keep the valuation zero-sum).
The following score points are always granted to either the winning team if there is

one or to the team(s) to which they apply if there is no winning team:

• (1a) One score point for the team reaching at least 120 (90, 60, 30) points against
an announcement of no 90 (no 60, no 30, black) of the other team. Thus a team
could theoretically get up to four score points by reaching at least 120 points
against an announcement of black.

• (1b) One score point for the team reaching at least 151 (181, 211) points/winning
all tricks (i.e. the other team has less than 90 (60, 30) points/is black). Thus a
team can get up to four score points by winning all tricks.

The following score points are only granted to the winning team if existent:

• (2a) One score point for winning the game.

• (2b) Two score points each for an announcement of re and kontra.

• (2c) One score point for each other announcement (i.e. no 90 etc.), no matter of
which team. Thus a team could theoretically get up to eight score points (including
the score points for re and kontra) if both teams announced black.

There are several special score points which are only granted in non-solo games, i.e. in
regular and successful marriage games. These points are always granted to both teams,
no matter if they won or not (it may happen that the winning team gets negative points
because the losing team gained more special points):

• (3a) One score point for the kontra-team winning �Gegen die Alten� (against the
elders), i.e. winning against the re-team which has both elders (the ♣Q). This is
intended to reward the kontra-team which has lower winning chances because the
re team always has at least two high trumps.

• (3b) One score point for the team catching a �Fuchs� (fox) � a ♦A � of the other
team. A team �catches a fox� if a player of the team wins a trick where a player
from the opposing team played a ♦A. No extra points are granted for �bringing
home� a fox of a teammate, though. As there exist two foxes, a team can get up
to two score points by catching both of them.

• (3c) One score point for the team winning the last trick with a �Karlchen� (charlie),
a ♣J. A team wins the last trick �with a ♣J� if a player of the team plays a ♣J
and it is the highest card in the trick, i.e. no other higher trump card is in the trick

points and �Punkte� (points) for score points. To avoid speaking about �eyes�, I'll use points for card
value points and score points for the points granted to the players after the game �nished, although
I may sometimes drop the �score� in score points when it is clear from context.

12

(no matter if it was played by the teammate or the other players). There are no
points granted for preventing a player from winning the last trick with a charlie,
i.e. by playing a higher trump card.

• (3d) One score point for each trick containing at least 40 points (a so-called dop-
pelkopf) made by the team.

All score points are added up for each team and the players of the team with more
points gets the di�erence of points between both teams as a positive value, the players of
the other team get the di�erence of points as a negative value. Score points are summed
up for players over all games of the session. The winner is the player with the highest
amount of score points at the end.
The following examples illustrate the calculation of score points. Score points are

calculated for each team �rst, then the di�erence between the teams is the �nal result,
as described above. Note that in practice, people tend to directly add up all score points
(either positive or negative) for the winning team only rather than doing it for both
teams separately and calculating the di�erence afterwards. The result obviously is the
same.

• Example no. 1:
regular game; re announced no 90, re gets 182 points, kontra wins the last trick
with a charlie

� re won the game: +1 for re (2a)

� re was announced: +2 for re (2b)

� no 90 was announced: +1 for re (2c)

� kontra has less than 90 points: +1 for re (1b)

� kontra has less than 60 points: +1 for re (1b)

� kontra won the last trick with a charlie: +1 for kontra (3c)

Total: the di�erence of score points is 6 − 1 = 5, thus the re-players are granted
+5, the kontra-players −5 score points.

• Example no. 2:
regular game; re announced no 60, kontra announced kontra, re gets 145 points,
re catches a fox of a kontra-player

� kontra won the game: +1 for kontra (2a)

� kontra won against the elders: +1 for kontra (3a)

� re was announced: +2 for kontra (2b)

� no 90 was announced: +1 for kontra (2c)

� no 60 was announced: +1 for kontra (2c)

� kontra was announced: +2 for kontra (2b)

13

� kontra reached at least 90 points against an announcement of no 60 of re: +1
for kontra (1a)

� re caught a fox: +1 for re (3b)

Total: the di�erence of score points is 9−1 = 8, thus the kontra-players are granted
+8, the re-players −8 score points.

• Example no. 3:
Same as example no. 2, but kontra additionally announces no 90. In this case
nobody wins (both teams fail to reach their self-given goals), thus none of the
score points only being granted for the winning team (i.e. rule 2) are granted, but
rule 1 is now applied to both teams (and not only to the winning team)!

� re reached at least 120 points against an announcement of no 90 of kontra:
+1 for re (1a)

� kontra reached at least 90 points against an announcement of no 60 of re: +1
for kontra (1a)

� re caught a fox: +1 for re (3b)

Total: the di�erence of score points is 2 − 1 = 1, thus the re-players are granted
+1, the kontra-players −1 score points.

• Example no. 4:
Solo game; re announced no 90, re gets 85 points

� kontra won the game: +1 for kontra (2a)

� re was announced: +2 for kontra (2b)

� no 90 was announced: +1 for kontra (2c)

� kontra reached at least 120 points against an announcement of no 90 of re:
+1 for kontra (1a)

� re has less than 90 points: +1 for kontra (1b)

Total: the di�erence of score points is 6−0 = 6, thus the kontra-players are granted
+6 score points and the single re-player gets −(6× 3) = −18 score points.

2.3 Doppelkopf and AI games research

Obviously doppelkopf could be seen just as �another trick-taking card game with im-
perfect information� as skat, bridge or others that have previously been examined in AI
games research and its related �elds. Still there are some signi�cant di�erences to the
games mentioned before, such as complexity of the state space, the fact that teams are
not always known before playing and change throughout a session, the fact that points
made during the game are also important and not only the number of tricks as in bridge
for example, and the di�erent conventions good players use to share information about
their hands and to optimize card play and game values.

14

Doppelkopf is played with 48 cards and four players, thus there are(
48

12

)
·
(
36

12

)
·
(
24

12

)
·
(
12

12

)
≈ 2.358 · 1026

di�erent card deals. For one �xed deal, the number of possible states can be calculated
by computing the number of possibilities of how i remaining cards can be distributed
among the 4 players and summing up over all possible numbers for i. If a player needs
to have k cards, there are

(
12
k

)
possibilities for a �xed deal. Combining the above, the

number of states per deal is the following:
48∑
i=0

4 ·
(

12

b(i+3)/4c

)
·
(

12

b(i+2)/4c

)
·
(

12

b(i+1)/4c

)
·
(

12

bi/4c

)
≈ 2.384 · 1013

As there are states that are consistent with many card deals, multiplying the number
of deals with the number of states per deal only yields an upper bound for the size of
the complete state space: 2.358 · 1026 · 2.384 · 1013 ≈ 5.622 · 1039. Additionally there are
a lot of possible game moves to make before the actual card playing starts in order to
determine the game type, each resulting in a game subtree which has nothing in common
with other subtrees (because another player is the soloist, another game type is chosen
etc.), again increasing the number of possible states. Also the fact that announcing is
possible for quite a long time during the �rst tricks (depending on what announcements
players make) multiplies the size of the state space by a good amount, although the
actual game state with respect to card play is not being changed by an announcement
(except for the knowledge of the announcing player's team). Compared to skat which
has been well examined over the last years (e.g. a skat player based on Monte Carlo
(MC) simulation [14], an improved player with features such as state inference [4] or a
player based on UCT [17]), doppelkopf is a way more complex game and thus it is of
interest to see how far similar approaches used for skat can get at doppelkopf.
As for classi�cation of the game doppelkopf, it is a four person zero-sum game with

imperfect information. Although for some game types it may be broken down to a two
person game because teams are �xed, this is practically not valid because the players
still do not know their team's cards, thus they still have to play �alone� in a certain
way. Also players can infer information about the other players' cards, but nevertheless
players usually only have near-to-perfect information during the last two tricks.
To my best knowledge, doppelkopf has not been examined by the AI games research

community yet, thus it seems to be an interesting possibility to start doing so by trying
to adapt the UCT algorithm which has been successfully applied to similar games before.
In their work �Understanding the Success of Perfect Information Monte Carlo Sampling
in Game Tree Search� Long et al. [15] state several reasons why Monte Carlo search
methods have a lot of success when being applied to games with imperfect information,
thus giving hope that also for doppelkopf a UCT algorithm with an MC search may
be implemented successfully. The question though is whether UCT can handle all the
subtleties of doppelkopf, especially the enormous strategic depth of the game which
requires a lot of good handling of hidden and indirect information when played by
human players.

15

3 UCT

This section introduces the original UCT algorithm as developed by Kocsis and Szepesvári
[12].

3.1 Monte Carlo tree search methods

Consider a large state space Markovian Decision Problem (MDP) or a large game tree
with the problem of �nding the optimal (or at least near-optimal) action for a given state
(provided that a generative model for the MDP/the game is available). Often, computing
a solution with a �classical� deterministic approach is infeasible, explaining the use of
so-called Monte Carlo (MC) methods. For the purpose of using the UCT algorithm, I
will focus on Monte Carlo tree search (MCTS) methods and always imply a tree search
algorithm even if only writing a �MC algorithm� or similar. An MCTS method is an
algorithm relying on repeated random sampling to compute an (approximate) result.
For this purpose, it builds a search tree with the root node corresponding to the given
state for which an near-optimal action has to be found. An estimated value for actions
at the root is computed by averaging over the accumulated reward values obtained
during sampling. The estimated values obtained converge to their expectation value
when choosing actions uniformly at random.
As even a simple MCTS algorithm quickly comes to its limits for larger problems,

it needs to be improved further. This is the motivation for Kocsis and Szepesvári [12]
who propose to choose actions during MC sampling not randomly, but selectively. An
exemplary calculation for a problem with a large number of available actions at each
node and with a �xed depth d for the MC search tree shows that by restricting sampling
to only use half of the available actions, the overall work load can be reduced to (1/2)d.
Consequently, if a subset of �suboptimal� actions may be identi�ed early on in the search
procedure (and then ignored for sampling), then the time gained can be used to search
more promising parts of the search tree. This �deepening� of the search in interesting
parts of the tree allows for re�ning estimate values faster and thus should yield a huge
performance improvement. Furthermore, using a guidance for selecting �good� actions
is important to ensure that the estimate values converge towards the optimal value.
For the purpose of using the UCT algorithm, I will consider rollout-based MCTS

algorithms which build the search tree in an incremental manner. A sample can be
considered a rollout (also called episode), which is a sequence of state-action pairs that
represents a path from the initial state to a terminal node. During a rollout, the search
tree is traversed starting at the root and then choosing an action according to a selection
strategy. When a terminal node (or a depth limit) is reached, the reward obtained at

16

that node is applied to the nodes visited during the rollout to update the estimate values
for actions.
A general advantage of using a rollout-based algorithm is its anytime aspect. As the

algorithm iteratively increases the depth and/or width of the search tree, the value of
the information computed by the algorithm increases step by step. Thus in settings
where time or memory is limited, one can pro�t from a rollout-based MCTS algorithm
by stopping it after an arbitrary number of rollouts, after a certain time elapsed or when
a memory limit is reached and still the algorithm will have computed some meaningful
results. These results might have been improved if more time or memory was given, but
the result is not incorrect nor not available as it would be the case with many other
algorithms if prematurely stopped.
Another more speci�c advantage of a rollout-based MCTS algorithm is to keep track

of estimates of visited state-action pairs, thus enabling the use of this information for
future episodes. The main idea of the UCT algorithm is to replace the uniform random
sampling by a selective sampling strategy which relies on information gained during
previous rollouts. If action selection is done in a good way (thus identifying a set of
�suboptimal� actions mentioned above), this should potentially speed up the convergence
of estimate values for the action and thus the convergence toward an optimal action for
the given state. The higher the fraction of nodes being re-encountered during di�erent
rollouts, the higher the pro�t of a rollout-based MCTS algorithm compared to the vanilla
MCTS algorithm.
An action is suboptimal at a given state if its value is less than the maximum value

of all actions available at this state. As action values depend on the subtree rooted
at the successor generated by applying the action at the state, the problem consists of
minimizing the estimation error of action estimates fast. An MCTS algorithm should
balance between testing alternatives that it did not visit so far (in earlier episodes) and
using actions with the highest estimate value so far (over all previous episodes) in order
to make those estimate values more precise (as precision of estimate values for state-
action pairs increases with the number of rollouts visiting the according states). This
problem is known as the exploration-exploitation dilemma. A most basic form of such a
dilemma shows up in the multi-armed bandit problem.

3.2 Multi-armed bandit problems and UCB1

A multi-armed bandit gets its name from a classical slot machine (also called one-armed
bandit) with multiple levers (or arms). When pulled, each lever yields a reward drawn
from a distribution of that particular arm. A gambler playing the slot machine does not
know the distribution of rewards in advance, and his aim is to maximize his pro�t. Thus
he faces the exploration-exploitation dilemma each time he needs to decide which arm
to play: either an arm of which he assumes or hopes that it has a �good� payo�, or an
arm which he did not pull yet (or only few times) and which could even yield a higher
reward in the long term.
A K-armed bandit problem is an example for a stationary stochastic process and is

17

de�ned by the sequence of random variables Xit for each arm i = 1, . . . , K and time step
t ≥ 1. Successive play of arm i yields rewardsXi1, Xi2, . . . withXi = {Xi1, Xi2, . . .} being
independent and identically distributed according to an unknown distribution function.
An allocation strategy or a policy A maps each time step t to an arm i to play, where the
arm i to be played at time t can depend on earlier results of A, i.e. on results of playing
some arm j at some time u < t. The expected reward of allocation policy A after n

time steps is de�ned as EA,n = E
[∑K

i=1

∑Ti(n)
t=1 Xit

]
, where Ti(n) =

∑n
t=1 1(It = i) is the

number of times arm i has been chosen by A up to time n and where It ∈ {1, . . . , K}
is the index of the arm being played by policy A at time t. The optimal allocation
policy A∗ is the one playing the optimal arm at all time steps, thus maximizing the
total expected reward EA∗,n = maxi E [

∑n
t=1Xit]. The regret RA,n of a policy A after

n time steps is de�ned as the loss caused by not always having played the best arm,
thus: RA,n = EA∗,n − EA,n. The goal for a policy which tries to solve the exploration-
exploitation dilemma is to minimize its regret.
The Upper Con�dence Bounds (UCB1 � there exist two variants) policy for the multi-

armed bandit problem was developed by Auer et al. [1] and was shown to guarantee a
worst-case regret logarithmic in the number of total plays under the assumption that
the payo�s lie in the interval [0, 1]. As this is the optimum that a policy can reach for
a large class of distributions [12], it thus resolves the exploration-exploitation dilemma.
The algorithm keeps track of the average reward X i of each arm i and the number of
times Ti(n) it was played up to and including the current time step n. For initialization
of X i and Ti(n), each arm is played exactly once before starting the actual algorithm.
The algorithm then chooses to play the arm with the best upper con�dence bound,
calculated according to the UCB1 formula:

It = argmax
i

(X i + ci,n)

where ci,n is a bias term which depends on the time step, i.e. the total number of times
an arm was played, and on the number of times the speci�c arm was played:

ci,n =

√
2 log n

Ti(n)

This way, arms which have not been played many times get a growing weight over time
and thus eventually will get selected for exploration even if their estimated reward may
be low. This weight however decreases with increasing number of total plays and thus
for large n, an arm with a low estimated reward only gets selected if it was played signif-
icantly less often than other nodes with higher rewards. Note that also the initialization
(playing each arm once) is consistent with the UCB1 formula because ci,n would grow
to in�nity when Ti(n) was approaching zero, and thus an arm with Ti(n) = 0 would
need to be played anyway. So the initialization just does what applying the algorithm
would do if division by zero was possible in the sense that the result was a in�nitely
high number.

18

Assuming that rewards Xit lie in the interval [0, 1], Auer et al. [1] prove with the help
of Cherno� bounds and Hoe�ding's inequality that the following bounds for the UCB1
policy hold at time step n:

P(Xi ≥ E(Xi) + ci,n) ≤ n−4 (3.1)

P(Xi ≤ E(Xi)− ci,n) ≤ n−4 (3.2)

These bounds state that the average reward achieved by UCB1 lies in the interval of the
the real expectation value plus/minus the bias term with high probability (increasing
with the number of played arms).

3.3 The UCT algorithm

UCT stands for UCB1 applied to Trees and was �rst described by Kocsis and Szepesvári
[12]. It has been applied to the game of Go (a game with perfect information) shortly
after its development and since the resulting program MoGo was a huge success [10, 9],
the algorithm has experienced a growing popularityf also in many other domains such
as General Game Playing (CadiaPlayer, [7, 8]), Klondike Solitaire [3], the Canadian
Traveller Problem [6] and Probabilistic Planning (PROST, [11]).
The main idea behind UCT is to improve a (rollout-based) MCTS by using the UCB1

policy at inner nodes of the tree when sampling actions, thus treating each inner node as
a separate multi-armed bandit problem. The pseudocode for one iteration of the UCT
algorithm for a game tree is given in Algorithm 1, taken (and slightly adapted) from
a work by Sha�ei et al. [18]. The �rst three lines initialize the root of the search tree
without expanding it yet. The loop starting at line 5 searches through the nodes of
the existing tree by determining values for all successors and then following the subtree
rooted at the node with the maximum value (line 15). Value determination is done as
follows: If there exists an unvisited successor at the current node (line 8), then its value
is set to an in�nitely large number. Otherwise, if all successors have been expanded
already, the UCT formula (line 11) is applied to determine the successor's value. Note
that by doing this extra check for unvisited successors, division by zero in the UCT
formula is avoided, as successors that have been expanded have also been visited at
least once. Also preferring unvisited successors over already visited ones is consistent
with the UCT formula, as a node with a visit counter of zero would get an in�nite high
exploration bonus and thus would get selected also when applying the formula. This
also corresponds to the afore mentioned �playing each arm once� initialization commonly
used for multi-armed bandit problems.
If the leaf node where the while-loop (line 5) stopped at needs to be expanded (line

17), then this is done and a random successor of the newly added node is chosen (which
is again a leaf node). Here, expanding means that the successors are added to the
tree, their visit counter and the accumulated rewards are set to zero, but they are not
expanded themselves yet. If the current node is a non-terminal state (line 21; this can
only be the case after the above check for exploration succeeded and thus a new node

19

Algorithm 1 One iteration of the UCT algorithm
1: if root = null then
2: root ← MakeNode . Initializes the root of the tree
3: end if

4: traverser ← root
5: while not IsLeaf(traverser) do . IsLeaf(node) tests if

the given node is a leaf
6: expandLeaf ← true
7: for i = 1 to number [traverser.children] do
8: if traverser.children[i].counter = 0 then . Will be incremented in

UpdateValues(. . .)
9: values [i] ←∞ . a vector of reward values for all players

10: expandLeaf ← false
11: else

12: values [i] ← traverser.children[i].values +C
√

log(traverser .counter)
traverser .children[i].counter

13: end if

14: end for

15: traverser ← traverser.children[argmax values]
16: end while

17: if expandLeaf and not IsTerminal(traverser) then
. IsTerminal(node) tests if the given node
corresponds to a terminal state

18: ExpandNode(traverser) . Adds all children of the node and sets their
counters to zero, but does not expand them

19: traverser ← RandomChild(traverser)
20: end if

21: if not IsTerminal(traverser) then
22: outcome ← DoMonteCarloSimulation(traverser)

. Does a Monte Carlo simulation (with random
action choice) until a terminal node is reached

23: else

24: traverser.values ← GameValue
. GameValue is a vector of rewards for all players,
computed from the value of the completed game

25: outcome ← traverser.values
26: end if

27: UpdateValues(traverser, outcome)
. Updates the accumulated rewards values and increments the
number of visits counters of the nodes along the path to the root

20

has been added to the tree, but still there was not terminal state reached yet), then
an MC simulation (with random action selection) is carried out starting at the current
node until a terminal state is reached where the state's UCT reward must be computed.
Otherwise, if the while-loop (line 5) ended up at a leaf (and thus a terminal state) or the
expansion of the leaf reached a terminal state (line 23), then no simulation needs to be
performed. The UCT rewards corresponding to the terminal state where the iteration
of the UCT algorithm ended up are then propagated back along the path of all visited
nodes to the root (line 27). This means all nodes visited during the iteration get their
visit counter incremented and the obtained UCT rewards are added.
When doing a theoretical analysis of the UCT algorithm, a non-stationary bandit

problem � in contrast to the stationary multi-armed bandit problem the UCB1 algorithm
was originally designed for � needs to be examined. This is the case because the sampling
probabilities for a speci�c successor of a node in the tree are changing with each rollout
and hence the expected reward X i of a node i will drift over time. To take these drifting
rewards into account, the bias term ci,n needs to be replaced or modi�ed appropriately
so that the inequalities bounding the average rewards in the case of a stationary multi-
armed bandit problem (see equations (3.1) and (3.2)) are still ful�lled even in the case
of non-stationary problems. Kocsis and Szepesvári [12] �rst show that UCB1 can also
be applied to non-stationary bandit problems so that its properties still hold if the
rewards satisfy some drift conditions. Their main result is to modify ci,n by multiplying
a constant C and by removing the factor 2 in front of the logarithm in the nominator
of the formula. They further prove that the UCT rewards obtained at internal nodes of
the game tree using this new bias term with an appropriate constant C satis�es the drift
conditions needed for non-stationary bandit problems. The proof of the consistency of
the whole procedure is then done with the means of induction over tree depth. For more
detailed analyses and a proof sketch see [12] and the references mentioned there.

21

4 Card Assignment Problem

UCT is designed for the use under perfect information which is not available when playing
doppelkopf. There are two possible solutions for this problem: either one directly applies
the UCT algorithm to the belief state space rather then the concrete state space, thus
dealing with information sets rather than single states of complete information, or one
completes the missing information before applying the UCT algorithm. This could be
done by assigning the remaining cards (i.e. the cards that the player does not hold and
that have not been played before) to all other three players which would then result
in a game with complete information. The second approach seemed to be the more
appropriate one in order to use the �original� version of the UCT algorithm and thus
is the one chosen solution used in this work. Therefore, an algorithm for generating
consistent card assignments needs to be implemented.
The �rst design goal of an algorithm for a UCT player playing doppelkopf solving

the card assignment problem is that it preferably assigns the card uniformly at random
to avoid generating any bias towards sampled worlds which could then in�uence the
MC search of the UCT algorithm. Still the algorithm should not assign cards purely
at random but �rst consider available information about other players and especially it
should distribute the cards in a way which is consistent with the prior game process (of
course the prior game could be completely ignored, but this would probably have a very
bad impact on the performance of the UCT algorithm).

4.1 Consistency of card assignments

The starting point for the card assignment problem is the following: a game of doppelkopf
is at a certain time step where a game type has been chosen, maybe some cards have
already been played and/or some announcements have been done. A player only knows
his own cards, but he has some additional information about the cards of the other
players:

1. In a marriage game, the marriage player must hold both ♣Q and thus none of the
other players can hold a ♣Q.

2. If a player, asked if he wants to play a solo, denied to do so, then he wanted to
play marriage, thus the same as in 1 holds.

3. In a regular game, a player who announced re must hold (at least) one ♣Q in his
hands if he did not play one yet.

4. In a regular game, a player who announced kontra cannot hold a ♣Q.

22

5. In any game, a player who did not follow suit at a given moment cannot hold any
card belonging to this suit.

To summarize, a player has the following information: he knows which cards have been
played and which cards he holds in his hands and thus can compute the set of remaining
cards and can possibly exclude for some other player to hold some speci�c cards or the
other way around, he may know that some player must hold a speci�c card. Note that all
cards exist twice in the card deck and that a computer program in contrast to a human
player has to di�erentiate syntactically between two semantically identical cards. This
means that if one player must have a ♣Q, the player does not know which of the two it
is unless he holds the other one or the other one was played already. This results in an
algorithm which may seem to be a bit more tedious than one expects at �rst glance.
Before describing the algorithm implemented to solve the card assignment problem,

the following section will compare the problem at hand with two similar problems.

4.2 Related problems

Obviously the card assignment problem can be seen as a matching problem [5] from
graph theory: given a graph G = (V,E), a matching M is a set of pairwise non-adjacent
edges, i.e. no two edges share a common vertex. In the case of the card assignment
problem, the set of remaining cards needs to be assigned to the players, or to be more
precise, to the player's card slots (i.e. each player has a number of card slots equal to
the number of cards he needs to get assigned). The resulting graph is a bipartite graph
G = (V = (X, Y), E) [5], where X is the set of cards to be assigned, Y is the set of the
card slots of all players and E is the set of edges between X and Y . There is an edge
between a card x ∈ X and a player's card slot y ∈ Y if and only if this player can have
this card, i.e. if assigning x to y is consistent with the prior game process. Obviously
X and Y have the same cardinality and the card assignment problem translates to the
problem of �nding a perfect (bipartite) matching in the corresponding graph.
Alternatively the card assignment problem can be formulated as a constraint satisfac-

tion problem (CSP) [16]: a CSP is a 3-tuple 〈X,D,C〉, consisting of a set X of variables,
a domain D for the variables in X and a set of constraints C over the variables X. A
solution for a CSP is an evaluation v : X → D which satis�es all constraints C. In the
case of the card assignment problem, X is the set of cards that need to be assigned to
players, D is the set of card slots of all players and C is the set of constraints. There are
two types of constraints: the �rst type is unary and restricts the domain of a variable
x ∈ X so that the card corresponding to x can only be assigned to slots of the player(s)
that can have the card in a consistent card assignment. The second type of constraints
is binary and states that all variables x ∈ X must have a di�erent value d ∈ D, i.e. no
two cards can be assigned to the same card slot of a player. Then every solution to the
CSP constructed in the way described corresponds to a consistent card assignment.
For the purpose of designing an algorithm which assigns the cards uniformly at ran-

dom, the probability for a card to be assigned to a speci�c player needs to be known. This
is where the card assignment problem could be transformed into a matching problem,

23

a CSP or a third representation, with the goal of computing the number of consistent
card assignments which corresponds to the number of solutions to the problem. If this
number is known, then an algorithm for the card assignment problem can be designed
in the following way: let N be the number of consistent card assignments and let x
be a card of the remaining cards X that still needs to be assigned. Assign the card
hypothetically to player i if this is allowed in the sense that it is consistent with the
prior game process. Then the number Ni of consistent card assignments, given that x
would be assigned to i, is computed, otherwise Ni is set to zero. This has to be done for
all four players, resulting in N1, N2, N3 and N4. Then card x gets ultimately assigned
to player i with probability Ni/N. Doing this for all remaining cards x ∈ X yields a
uniformly random card assignment.
There exist several polynomial algorithms for solving matching problems (e.g. the

Hungarian algorithm [13]) and for the special case of bipartite matchings, there is even
a fully polynomial time randomized approximation scheme for counting the number of
bipartite matchings [2]. Also for solving CSPs, there are several known algorithms, most
of them based on backtracking, constraint propagation (e.g. the AC3-algorithm [16]) or
local search. However determining the number of perfect matchings in a general graph is
#P-complete and also using the polynomial approximation scheme for the bipartite case
seems to be too much work load for just computing a number which will then be used in
another algorithm which does the actual card assignment. Similarly, solving CSPs with
a �nite domain is an NP-complete problem in general and thus computing the number
of solutions for such a CSP is at least #P-complete. Computing the number of solutions
for complex problems before the actual card assignments can be generated seems to be
a too large overhead to be justi�ed just by having a perfect uniformly random card
assignment. Instead I propose my own rather intuitive card assignment algorithm which
will be described in the next section.

4.3 Card assignment algorithm

The general idea of the algorithm is the following: �rst assign all cards that need to
be assigned in a speci�c way, i.e. there is only one possibility of assigning them in the
sense that there exists only one player who can have the card. This is repeated until
there are no more such uniquely assignable cards. Then the algorithm needs to check
if a player still needs to get a ♣Q, which can be the case because he announced re,
because three other players announced kontra, because two players announced kontra
and the second re-player is doing the card assignment and thus knows the last player
needs to have the other ♣Q or because a player wanted to play a marriage but could
not because someone else plays a solo � all other cases such as marriage are covered by
the case above where also a ♣Q can uniquely be assigned to only one player. If there is
such a player, then this is �rst taken care of by assigning one or two ♣Q to the player(s)
in question, breaking ties in an arbitrary way as it does not make a semantic di�erence
for the UCT algorithm. As soon as no more cards are to be assigned in a unique way,
cards get assigned to a random player. Each time after a card was assigned to a player,

24

two checks are performed which possibly lead to a repetition of the algorithm because
a player may have all cards he needs or because a player needs to get all cards he can
possibly get.

Algorithm 2 The card assignment algorithm: Part 1
1: data

2: remainingCards : set<Cards>
3: cardsToAllowedPlayers : Card → set<Player>
4: playersThatNeedCQ : set<Player>
5: playersCardsCount : Player → int
6: cardsToAssignedPlayer : Cards → Player
7: end data

8: procedure AssignCard(card, player)
9: . requires: remainingCards.contains(card)

10: cardsToAllowedPlayers [card].contains(player)
11: playersCardsCount [player] > 0

12: cardsToAssignedPlayer [card]← player
13: remainingCards.remove(card)
14: ReduceByOne(playerCardsCount [player])

15: if playerCardsCount [player] = 0 then
16: for card in remainingCards do
17: cardsToAllowedPlayers [card].remove(player)
18: end for

19: end if

20: if IsQueenOfClubs(card) and playersThatNeedCQ.contains(player) then
21: playersThatNeedCQ.remove(player)
22: end if

23: end procedure

This paragraph describes the �rst central method of the algorithm in more detail:
AssignCards(). The pseudocode of the algorithm is split into two parts and shown
in Algorithms 2 and 3. There are four data structures that contain the information
the UCT player has about the other players cards. They should be precomputed once
and must be available to both involved methods of the algorithm. As AssignCards()
modi�es these data structures and in order to generate a lot of card assignments for
the same given state, they should also be stored separately as a copy in order to avoid
recomputation. These data structures are shown in the �rst block starting at line 1: a
set of cards remainingCards, storing all cards that need to be distributed among players,
a map cardsToAllowedPlayers of the same size, mapping each remaining card to a set of
players being able to have this card, a set of players playersThatNeedQueenOfClubs that
contains all players that need to have a ♣Q and a map playersCardsCount which maps

25

each player to the number of cards he must get assigned. There is an additional data
structure cardsToAssignedPlayer, initially empty, which will store the result of the card
assignment by mapping each card from remainingCards to the player it got assigned to.
Starting in line 8, the method AssignCard(card, player) is shown. Given a player

player and a card card, it assigns card to player. To do so, the three statements shown
in lines 9 to 11 are required to hold: card must be contained in the set of remaining
cards, player must be allowed to get card and the player still needs to get at least one
card, i.e. he did not get as many cards as he needs yet. The method then does the
actual assignment, removes the card from the set of remaining cards and decrements
the number of cards the player still needs by 1. In line 15, a check to determine if the
player now has enough cards is performed. If this is the case, the player gets completely
removed from all entries in cardsToAllowedPlayers so that he will not be considered
further. The next check is performed in line 20 and tests if the card just assigned is a
♣Q and if the player the card was assigned to still needed to get a ♣Q. In the case the
check succeeds and the player gets removed from playersThatNeedCQ. This concludes
the �rst method AssignCard.
The core method of the card assignment algorithm, AssignCards(), starts at line 24

and will be described next. The �rst check at line 25 is a termination criterion, as the
method calls itself recursively, each time assigning exactly one more card to a player. The
for-loop beginning at line 28 searches for the �rst card in the set of remaining cards which
can only be assigned to one player. If such a card is found, the method AssignCard
is called for this card and the player that can have it. Afterwards, AssignCards is
called again in order to possibly �nd more cards that are to be uniquely assigned. This
needs to be done because AssignCard may always change cardsToAllowedPlayers by
removing a player who got all the cards he needs.
If there are no (more) cards that only can be assigned to a single player, then the next

�unique assignment possibility� check is performed: starting at line 36, the algorithm
iterates over all three other players, i.e. the players di�erent from the UCT player who
uses the card assignment algorithm for the UCT algorithm. The set of cards that the
player (still) can have has to be computed. If the number of cards the player can have
equals the number of cards he still needs to get, then all these cards get assigned to that
player. As this �nally removes the player from all entries in cardsToAllowedPlayers, the
method AssignCards must be called again, starting again with the �rst loop where it
is now again possible to �nd a card which can only be assigned to one player. Note that
the recursive call stops the for-loop in line 36, but this is still a consistent procedure as
it is not possible that assigning a card which can only be assigned to one player could
be �wrong�. It is especially impossible that if another player who needs to have exactly
the cards he can have (which would have been checked if the for-loop was continued)
cannot have all these cards assigned anymore, because that would be a contradiction to
the existence of a consistent card assignment as such. Also, if two players need exactly
all the cards they can have, also the third player's cards are exactly determined. More
formally, let a be the set of cards which can be assigned to players 1 and 2, b the set
of cards for players 1 and 3, c for 2 and 3 and d for all three players. Let the number
of cards player 1 still needs be denoted by N1, similar N2 and N3 the number of cards

26

Algorithm 3 The card assignment algorithm: Part 2
24: procedure AssignCards
25: if remainingCards = ∅ then
26: return

27: end if

28: for card in remainingCards do
29: players ← cardsToAllowedPlayers [card]
30: if |players | = 1 then
31: player ← the element in players
32: AssignCard(card, player)
33: return AssignCards()
34: end if

35: end for

36: for player in { p ∈ {1, 2, 3, 4} | p 6= UCT player } do
37: possibleCards ← { c | remainingCards.contains(c)

∧ cardsToAllowedPlayers [c].contains(player) }
38: if |possibleCards | = playersCardCount [player] then
39: for card in possibleCards do
40: AssignCard(card, player)
41: end for

42: return AssignCards()
43: end if

44: end for

45: if playersThatNeedCQ 6= ∅ then
46: card ← some element of { c | remainingCards.contains(c)

∧ IsQueenOfClubs(c) }
47: player ← some element of playersThatNeedCQ
48: assignCard(card, player)
49: return AssignCards()
50: end if

51: card ← �rst element in remainingCards
52: player ← ChooseUniform(cardsToAllowedPlayers [card])
53: AssignCard(card, player)
54: return AssignCards()
55: end procedure

27

players 2 and 3 still need. Furthermore it must always hold that the number of cards a
player can have is at least as big as the number of cards he still needs to have. Formally,
|a| + |b| + |c| ≥ N1, |a| + |c| + |d| ≥ N2 and |b| + |c| + |d| ≥ N3. Obviously, entirely
removing a player from the lists because he got all cards does not break the inequalities
that guarantee that there are enough cards for the other two players.
When the algorithm for the �rst time reaches the next if-statement at line 45, then

there are no more cards that can only be assigned in a unique way. Before assigning
cards randomly though, there is another check to be performed: if there is still a player
who needs to get a ♣Q assigned, then this is done next. In the case that there are even
two players who need a ♣Q, then an arbitrary ♣Q of the two cards is assigned to an
arbitrary player of those who still need one. The algorithm will then recursively call
AssignCards again and will also assign the other remaining ♣Q to the correct player
in one of the future calls to the method. When none of the above checks trigger, then
line 51 will be reached and the card will be assigned randomly to one of the players who
can have it. Note that this implementation of the card assignment algorithm does not
use card slots of players, but the players themselves. This is discussed further in the
next section.

4.4 Analysis of the card assignment algorithm

As stated at the beginning of this chapter, an important goal when generating card
assignments is to avoid any bias which could in�uence the UCT algorithm. Thus it is
important to have a look at the card assignments produced by the algorithm described in
the previous section. However, one should �rst note that this card assignment algorithm
always terminates because in each call to AssignCards, it assigns exactly one card to a
player and thus the termination check in line 25 will eventually succeed (and recursively
succeed until all recursive calls have been terminated). As the algorithm always �rst
assigns cards that can only be uniquely assigned to a player and for the remaining cards,
it assigns them strictly at random, it obvious that whenever the algorithm terminates, a
correct and consistent card assignment was generated. Furthermore, for the same reason
(the way of constructing the card assignments), each legal card assignment (ignoring
double cards and card positions) can be generated with a strictly positive probability.
Still, the produced card assignments are not generated uniformly at random. Generally
speaking, this is due to the fact that the probabilities used in the algorithm are not
calculated according to the relation of the number of times a card is assigned to a
speci�c player divided by the number of consistent card assignments. More speci�c,
already the fact that the algorithm at hand does not consider card slots but only players
to assign cards to does not take into account the di�erent probabilities of a card to be
assigned to a player depending on how many cards this player still needs. This can be
demonstrated with the help of the following small example: there are four cards left
to be assigned to the three players other than the UCT player himself. One of them
must be uniquely assigned to a player, thus there are three cards left for two players,
one of whom (say player 1) needs to get two cards and the other one (say player 2) just

28

needs one. All three cards can be assigned to both players. The �rst card the algorithm
assigns should be assigned to player 2 with probability of one third (in two out of six
possible assignments) and to player 1 with probability of two thirds (in four out of six
possible assignments). As the algorithm just considers the players and not the actual
card slots, it will assign the card to player 1 or 2 with an equal probability of one half.
Of course, the algorithm could be adapted to circumvent this problem by also con-

sidering the number of cards a player needs rather then only the set of possible players
a card can be assigned to. Still the card assignment produced would not be uniformly
random because assigning one or two ♣Q to a player who still needs a ♣Q ignores the
probabilities of the cards being assigned to players. The above example only needs to
be slightly adapted to demonstrate this fact: again there are three cards which need
to be assigned to two players, but this time two of the cards are a ♣Q and player 1,
who needs to get two cards, must get a ♣Q assigned. As there are no more cards to be
uniquely assigned to a speci�c player, the algorithm will now reach line 45 and assign
a ♣Q to player 1. Afterwards, there are two cards remaining which will be assigned to
player 1 and 2 with an equal probability of one half. This means that player 1 ends up
having both ♣Q or just one ♣Q and the other card with an overall probability of one
half each. Similarly, player 2 gets a ♣Q or the third card with probability of one half
each. Clearly, this is again �wrong� in the sense that player 2 should have the third card
with a probability of one third only and a ♣Q with a probability of two thirds. The
problem in this case is the fact that player 1 will anyway end up with a ♣Q, and thus
the algorithm would not need to take care of assigning it �rst to that player, but as it
does so, the correct probabilities are not respected.

29

5 Implementation

This chapter is intended to describe how the doppelkopf framework and the UCT al-
gorithm for doppelkopf is implemented. Both the framework and the UCT algorithm
incorporate some subtleties; the framework implements doppelkopf in a way that slightly
di�ers from the o�cial rules at some points (still without changing the semantics of the
game but only some of the procedures before the card play begins). The UCT algorithm
could generally be implemented in many di�erent ways and was implemented with sev-
eral options which will be described. The �rst section illustrates the implementation of
the doppelkopf framework and the second section explains the di�erent UCT versions
implemented for the framework. An additional third section summarizes all available
options for the complete program.

5.1 Doppelkopf framework

There exist a few commercial doppelkopf programs, but I only found one open source
implementation for doppelkopf, called FreeDoko1. It is written in C++ and implements a
GUI for playing with human players, an AI player who plays based on rules and heuristics
(with a huge amount of options that can be con�gured). As I was only interested
in the o�cial rules and as the open source project has a huge amount of sources, I
decided to start a new implementation of doppelkopf from scratch. The disadvantage
with this approach is that comparing my program with an existing implementation was
not possible. In exchange I was free to choose my own implementation details and
programming style which made it easier to adopt the UCT algorithm in a convenient
way. I also resigned to implement a GUI but preferred to write a console-based program,
as the main purpose of writing the program was to test AI players based on the UCT
algorithm and not to be played by human players.
The whole program is written in C++ and uses the module �program options� from

the boost library2. It compiles with the gnu g++ compiler3 under linux4.

1http://free-doko.sourceforge.net/en/
2http://www.boost.org
3http://gcc.gnu.org/
4There might be some problems when using either a boost version which is too old (lower than 1.40.0)
or a g++ version which is too new (problems occurred when using version 4.6); versions 4.3 and 4.4
should work.

30

5.1.1 General design and structure

In the following, I will describe the design of the architecture and the cooperation of
di�erent parts and modules of the program while always keeping a certain level of ab-
straction. Particularly, I will not describe the architecture itself, i.e. I will not write
about speci�c class names, class diagrams or similar details. Furthermore, as stated in
the introduction of this chapter, I explain the process of the game as implemented in
the framework, because it is not clear how the o�cial rules should be implemented (e.g.
human players can announce at any moment as long they are allowed to; a computer
program cannot but has to be asked at discrete time steps).
The general design of the framework is oriented towards a client-server structure.

Thus, the intent is that the program can be extended easily to have network support
and be run on a server. It also makes the structure of the program modular, as the
core of the program which implements the game of doppelkopf and its rules (from now
on called the game module) is strictly separated from the players who play against each
other using the program. The interface via which the game and the players communicate
works as follows: when starting a new session, all players are �rst informed about the
chosen game options (e.g. number of games, with compulsory solo or not etc.). Then
each time before a new game of the session is started, the game module �deals the cards�
in the sense that each player gets informed about which cards he got assigned to. The
game itself is then played as follows: the game module asks the player at turn to make
a move by sending him a vector containing all legal moves and asking him to return an
index to the position of the vector which corresponds to the chosen move by the player.
A move in this case covers all cases of game moves of doppelkopf, i.e. it can be a move
to determine game types at the beginning as well as a card or an announcement move.
The advantage of sending the player all legal moves he is allowed to make over asking
him to return any move is that the program avoids to check if the move returned by the
player is legal or not. This would need to be done if the player was free to submit any
move he could think of. The only thing the game module needs to do is to check that the
index returned is indeed valid, i.e. it lies in the range of the size of the vector. Another
advantage is that the player can be totally ignorant towards the game of doppelkopf,
i.e. a random player can just return a random index. After the game module received
a valid index of the player at turn, it sends the chosen move to all players. When the
game end is reached, the game module determines the winner(s) and calculates the score
points. It then informs the players about the score points each player got.

5.1.2 Game module and game process

The game module constitutes the �game master� so to say, i.e. it operates the whole
session and communicates with the players who on their part cannot and should not
communicate between themselves. This subsection describes the whole game process and
the functionality of the game module. As stated above, the game module manages the
session with all chosen program options and starts a game by dealing cards and assigning
them to the players. The game type determination is the most complicated part of the

31

game process: the game module starts by checking if the number of remaining games
equals the number of open compulsory solos, in which case the player on �rst position
is forced to play his compulsory solo (the so called �Vorführung� or exhibition, see
Subsection 2.2.3). Otherwise, the player positioned �rst with an open compulsory solo is
determined and asked for an �immediate solo�, i.e. he is asked if he wants to immediately
announce a solo (because his solo would have highest priority), thus shortening the
reservation procedure. If there is no such player (because all players already played
their compulsory solo or because the chosen options disable compulsory solos), then just
the player on �rst position is asked if he wants to shorten the reservation procedure. If
he answers with �yes�, then in the next move he will be asked for a game type and then
the card play starts. Otherwise, the program asks all players if they have a reservation,
starting again with the player on �rst position. Every time a player answers �no� (i.e.
he is healthy) and there is still no player who has a reservation, another player may be
allowed to shorten the reservation procedure because he now knows that his solo would
have the highest priority. Again, if this player wants to do so, he will be asked to set
a game type and the card play will start. Otherwise, the next player (positioned after
the last player who was asked for a reservation) will be asked for a regular reservation.
This is done until all players have been asked for a reservation or a game type (a solo)
has been prematurely determined.
The following example illustrates this non-trivial procedure: player 1 is on the �rst

position, player 2 and 4 did not play their compulsory solo yet but player 1 and 3
already did. Player 2 will thus be the �rst player to be asked if he wants to shorten the
reservation procedure. If he does not want to, then starting with player 1, players will
be asked for regular reservations. If player 1 and 2 deny a regular reservation, then the
game module must ask player 4 next if he wants to shorten the reservation procedure,
because now that he knows that the only other player with a higher priority than himself
does not have a reservation, he knows that his solo has highest priority. Of course, if
also player 4 is healthy, then player 3 gets asked for a regular reservation and �nally
player 4 will be asked.
After the players have been asked for a reservation and there is none, a regular game

will be played, i.e. the game module advances to card play which is described later.
Otherwise, the players need to be asked if they want to play a solo or not (in the latter
case they can only have a reservation because they want to play a marriage). This
is where the implemented procedure slightly di�ers from the one stated in the o�cial
rules: in order to not to have to permanently check after each response of a player if
another player now could immediately announce his solo, players are allowed to shorten
the reservation procedure at most once, i.e. during the procedure described above, while
players say if they have a reservation or not. Note that it is reasonable to assume that
if a player did not want to immediately announce his solo the �rst time he could do, he
also will not do so the second or third time he is asked.
The procedure to ask players if they want to play a solo or not works as follows:

starting with the �rst-positioned player, each player is asked. If a player answers �yes�
and he has the highest priority, then the asking procedure is stopped and the player is
admitted. The player has the highest priority if he either did not play a compulsory

32

solo yet (and thus is the �rst-positioned player with an open compulsory solo), if all
players with an open compulsory solo either did not have a reservation or said �no�
to the question if they want to play a solo or not or if all players with a reservation
positioned somewhere behind the player already played their compulsory solo and thus
he is also allowed for a lust solo. Otherwise, if a player answers �no�, he can only be
admitted if he is the only one with a reservation. In this case, the player can announce
his marriage. Note that this procedure is slightly di�erent from the one described in the
o�cial rules, as the game module does not �rst explicitly ask if players want to play a
compulsory solo and then asks for lust solos, but it just asks them if they want to play
a solo or not. This means that in some cases a player must reveal if he intended to
play a lust solo or not where the same procedure implemented strictly according to the
o�cial rules would not have forced the same player to reveal it, because he would never
be asked if a player with a compulsory solo positioned somewhere behind him decided
to play a solo before. I think that the �information gain� for the compulsory solo player
in this case is su�ciently small to be neglected.
After the game type has been determined, the game module starts the card playing

part of the game, which means that in all cases except for a marriage where announcing is
not possible before the clari�cation trick, the players are �rst asked for announcements
and then for playing a card. In a doppelkopf game played with humans, players can
�always� make an announcement as long as they are allowed to, which is obviously not a
reasonable choice for a doppelkopf program. The implementation I chose therefore allows
players to make an announcement in the order of positions after a card has been played.
Also before the very �rst card is played, all four players are asked for an announcement.
The player who just played a card is not asked for an announcement afterwards, as he
was asked before he played a card and thus his information did not change. Thus, after
the �rst card has been played, there are always only three players being asked for an
announcement. If there is no announcement done during such a �round� of players being
asked, then the next player who needs to play a card is asked to do so. Otherwise,
as soon as an announcement is done, all other three players need to be asked for an
announcement (again).
There are two interesting implementation details for the card play and announcement

procedures: �rst, there exist two versions for the way the announcing process is modeled,
con�gurable via program options. The �rst version asks a player to choose between all
legal announcements, i.e. the player can immediately announce black if he likes to. The
second version only asks if the player wants to make an announcement or not, and
if the player answers �yes�, the announcement done corresponds to the �next higher�
announcement for the player's team. If for example a player of the re-team announced
re and the second re-player answers �yes� to the question, this will be interpreted as
an announcement of no 90. In order to still allow players to �skip� announcements, a
player who answered �yes� will be asked again immediately, even before all other three
players are asked. The reason the second version was added to the �rst one was the
hope of reducing the branching factor for nodes in the game tree in order to enhance
the performance of the UCT algorithm. This is discussed more in the chapter about
experiments. The second implementation detail worth to notice is the following: when

33

the game module determines if a player is allowed to make an announcement or not, i.e.
when the game module determines if a player has to be asked for an announcement or
not at all, then it can happen that players are asked for an announcement even if their
only option is to answer �no�. The reason behind this is to prevent to leak information
about a player's team. This becomes clear in the following example: a regular game
is played, a re-player announced no 60, no ♣Q has been played so far and no other
announcements have been done. The latest moment for all players for an announcement
or a reply in case of the two kontra-players is while still holding at least nine cards.
Now one of the kontra-players announces kontra as a reply, e.g. while holding ten cards.
Now both kontra-players cannot do any further announcement, but as the re-player who
announced no 60 cannot know who of the two players is re and who is kontra, the game
module should ask both players for announcements, even if the kontra-player's only
option is to answer �no�. Otherwise, the program would reveal the second kontra-player.
The player who announced kontra as a reply does not need to be asked again, because
all players know he is kontra and thus he cannot do any further announcements. The
same holds for a player who announces black. To summarize, as long as the players'
teams in a regular game are not known to all players, the game module keeps track of
the latest possible moment for announcements for each player separately, avoiding to
leak any information about a player's membership of a team. As soon as the teams are
known, the latest moment for an announcement possibly needs to be updated for some
players and from then on, the latest moment for an announcement of the player's team
is considered when checking if he is still allowed to make an announcement or not.
As noted above, when the game is �nished, the game module computes the score

points and broadcasts them to all players who are thus able of keeping track of the
overall standings. It also needs to do a few other things such as updating the player who
is positioned �rst in the next game, checking if the last game was a compulsory solo and
possibly updating the according data structures and checking if the next game needs to
be a �Vorführung� or not.

5.2 UCT algorithm

Players using the doppelkopf program described above must of course implement the
mentioned interface, i.e. they must be able to accept a set of cards, a vector of moves
from which a chosen index has to be returned, the chosen move by the current player
and the score points after a game is �nished. A player who wants to use the UCT
algorithm must keep track of game process and needs to collect information from it. In
other words, a UCT player needs to have a �belief game state�, i.e. a game state with
imperfect information from the player's speci�c point of view. The task for a UCT player
is to compute a move that is �as good as possible� when asked by the game module to
choose a move. As the application of the UCT algorithm presumes the availability of a
world model to generate perfect information worlds, the UCT player also needs to �ll in
the missing information about other players' hands. As stated in Chapter 4, the chosen
solution is to use an algorithm for computing card distributions given the current belief

34

game state of that player. The UCT player implemented for the doppelkopf program uses
the card assignment algorithm presented in Section 4.3. With the help of the generated
worlds, a UCT player is then able to transform his belief game state into a �concrete
game state�, which then can be used during the MCTS of the UCT algorithm, where
nodes (which correspond to states) must be expanded. In the implementation, the UCT
player re-uses parts of the game state implementation of the game module.
The work �ow of a UCT player then is the following: when the session is started,

the player receives the chosen options. Each time a new game is started, the UCT
player needs to start keeping track of the game process by maintaining a belief game
state. Every time he is asked to make a move, he uses the UCT algorithm to compute
the best move. Depending on the selected version of the UCT algorithm and other
options, several simulations and/or rollouts are performed, each using many di�erent
card assignments created with the help of the card assignment algorithm.
I implemented two versions of the UCT algorithm; they do not di�er greatly, but still

the results sometimes show rather big di�erences, see Chapter 6, Section 6.2. The �rst
version of the UCT algorithm uses �simulations� in addition to the common rollouts;
where a simulation consists of several rollouts. When started, a card assignment is
computed and �xed for each simulation. All rollouts performed during one simulation
then use the same card assignment to build a search tree. As soon as a leaf node with
an unvisited successor is encountered, one of the successors is chosen and added to the
tree. An option for the UCT player allows to always choose the �rst index, a random
index or, if the action is a card move, to choose a �safe card� which guarantees that
he or his teammate wins the trick if he has such a card (see Section 5.3). The newly
created leaf node is then added to the tree. From this point on, the algorithm updates
the current state with one of the legal moves until a terminal state is reached. An option
allows to choose how this is done: the �rst version performs an MC simulation where
only the current state gets updated, but no new nodes are created and added to the
tree. A second version continues the tree search and adds a new node for each state
encountered until the terminal state is reached. The latter version needs more memory
but may sometimes allow to go further into the depth of the tree, as more nodes are
added to the tree during each rollout and thus the chance of re-visiting a node during a
future rollout is increased. On the other hand, it is not very probable to reach the same
newly created leaf node again so that the algorithm could pro�t from the nodes that
have been added on the path from the leaf node to a terminal state. Thus, both variants
seem to be worth being examined. In both cases, when a terminal state (or a terminal
node corresponding to a terminal state) is reached, the game value is computed and
transferred into UCT rewards for players. How this is done exactly depends on several
options and is described below. During the back-propagation of the UCT rewards in
the UCT algorithm, rewards are added up at all nodes along the path from the last
node added to the tree (this is the node corresponding to the terminal state if all nodes
are added to the tree or it is the single newly created leaf node added to the tree
before the MC simulation was started) up to the root node and the visit counters are
increased. When all rollouts for the current simulation are �nished, the average rewards
of all successors of the root node are computed and summed up over all simulations.

35

Note that the successors of the root node correspond to the application of the possible
moves the UCT player has and that they are always the same, independent of the card
assignments. Parallel, a counter for each possible move at the root node is increased
by one for the move which would be chosen if only the one simulation was taken into
account. Each simulation constructs a new search tree; no information from previous
simulations is re-used. When all simulations have been computed, the sum of the average
rewards is normalized by dividing the values through the number of simulations5. The
move with the maximal normalized summed up average reward sometimes di�ers from
the move which would have been chosen in majority of simulations, but the summed up
average rewards yield better performance in some informal experiments and is thus the
criterion used to determine the best move.
The second version of the UCT algorithm implemented for the UCT players is solely

based on rollouts; no simulations are performed and only one search tree is constructed
over time. For each rollout, a new card assignment is used. As a consequence, nodes
in the game tree from previous rollouts may become inconsistent with the current card
assignment, because obviously at a player's node where he has to play a card, the
possible successors will di�er from rollout to rollout with di�erent card assignments
for this player. Thus this version of the UCT algorithm has to deal with information
sets rather than single states. However this can be easily transferred back to the more
simple case of nodes corresponding to game states as in the �rst version of the UCT
algorithm: during a rollout, all successors of a node which are not consistent with the
current assignment, i.e. for which there exists no action that leads to that node, are
ignored. All other reachable consistent nodes always contain the identical information
during di�erent rollouts with one small exception to this rule: in a rare case, it can
happen that a node reached again in a di�erent rollout corresponds to a game state
which only di�ers in the next player to move. The only reason for this to happen is
the following: if player A announces black at a moment before that node is encountered
in the game tree, then the teammate of player A is not allowed to make any more
announcements, assuming that teams are known for all players because both ♣Q have
been played or because other announcements have been done. Now, suppose a player
plays a card, which generates a successor node where the player positioned behind him,
let it be player B, has to be asked for an announcement next. Player B in that case
it not the teammate of player A and thus allowed to make an announcement. In a
future rollout with a di�erent card assignment (because in the actual game, teams are
not known yet and thus di�erent players may have a ♣Q in di�erent card assignments),
player A's teammate may be player B, and thus the �same� node is reached by exactly
the same game process, but a di�erent player has to move, because player B cannot
be asked for an announcement (again assuming the teams are known to the players in
which case players who obviously cannot do any further announcements are not asked
anymore). This version of the UCT algorithm thus also needs to check if the same player

5The normalization would not be necessary, but the normalized numbers better re�ect the average
rewards of a single simulation (and are better comparable to the second version of the UCT algo-
rithm)

36

has to move next when testing successors of a node for consistency with the current card
assignment. When the algorithm reaches a node where some of the legal moves have
not been explored, one needs to be chosen and the corresponding node will be added
to the tree. This and everything else which follows afterwards (i.e. MC simulation or
continued tree search, computation of UCT rewards and back propagation) is done in
the same way as in the �rst version of the UCT algorithm and thus depends on the
chosen settings. The �nal determination of the best move is di�erent, as there are not
several simulations that need to be aggregated. Instead, the algorithm just returns the
successor which has the highest average accumulated reward for the UCT player.
UCT rewards for each player are computed from the game value as follows: the player's

score points get multiplied by a constant con�gurable via program options. In order to
also consider the playing points and not only the score points (assuming that a player
should always prefer reaching 149 over 121 points, although the result in the means of
score points is the same), the playing points, divided by another constant which can
be set via the program options, are added to the previously calculated value. Another
option allows to toggle to use either the player's points or the team points of a player.
When traversing the search tree, the UCT formula (as described in Section 3.3) needs to
be applied if all successors of a node have already been visited. The exploration term of
the UCT formula can also be con�gured via the program options by choosing a value for
the exploration constant. Another option concerning the exploration term results from
a bug in an early implementation, where instead of the number of visits of the current
node, the number of the current rollout (i.e. the number of total visits at the root node
so far) was used for the nominator n in the exploration term

ci,n =

√
log n

Ti(n)

Thus the user can choose to use this �wrong� UCT formula or the normal one; the reason
for this is that some informal local experiments have shown that the wrong formula
sometimes even produces better results.

5.3 Summary of program options

So far, many program options have been mentioned throughout this chapter. This
section provides a summary of all relevant options for the game model and the UCT
algorithm. Note that the default values may seem to be chosen arbitrarily, but they were
selected according to many experiments and re�ect the values for the best con�guration
found, see also Chapter 6. The program supports a few more options which are related
to debugging or implementation details and which are not listed here.

• Number of games: specify the number of games to be played. The default value
is 1000 which is not the number of games played in an o�cial tournament (24),
because results di�ered a lot when only playing 24 games.

37

• Compulsory solo: specify if the players have to play a compulsory solo or not. The
default is false, as any decent player will play at least one solo during a set of
1000 games and thus there is no need to force players to do so.

• Announcement style version: specify if the �rst or second version for announcing
should be used. The �rst version allows a player to choose an announcement from
all legal announcements whereas the second version only asks a player if he wants
to make an announcement and if necessary infers the announcement automatically
and then asks the same player again for a further announcement. The default is
to use the second version.

• Player types: each player type can be speci�ed to be a UCT, random or human
player. The default is UCT for the �rst player and random for the other three
players.

• Player options for UCT players:

� Version: specify if the player should use the �rst or the second version of the
UCT algorithm. The default is to use the second version.

� Score points factor: specify the constant which is multiplied to the score
points when computing the UCT rewards. The default value is 500.

� Playing points: specify if the bias term added to the score points should be
calculated based on the player's points or the team points of the player. The
default is to use the team points.

� Playing points divisor: specify the constant which the playing points are
divided by before being added to the score points. The default is 1, i.e. the
playing points are not modi�ed. It is only reasonable to use this option if the
value for the score points constant is smaller than its default value or values
similar to it, and thus the playing points would have a too big impact on the
UCT rewards compared to the score points.

� Exploration constant: specify a value for the exploration constant of the UCT
formula. The default value is 20000.

� Number of rollouts: specify the number of rollouts to be used in the UCT
algorithm, no matter which version. This means this value is the number of
rollouts per simulation for the �rst UCT version and the the number of total
rollouts for the second UCT version. The default value is 1000 as the default
version is the second UCT version. When using the �rst UCT version, this
should be adapted to be 100 (because the default value for the number of
simulations is 10) so that both versions use 1000 rollouts in total.

� Number of simulations: specify the number of simulations that should be
used in the UCT algorithm. The default value is 10. This option only has an
e�ect if the �rst version of the UCT algorithm is used.

38

� Announcing rule: there are three supported options: the �rst one is to allow
the player to do regular announcements. The second one only allows the
player to make an announcement if the average reward for the corresponding
move in the game tree is not negative. The reason for this option is that
the analysis of the game process of some local experiments have shown that
especially the second version of the UCT algorithm tends to over-announce,
because apparently this version of the UCT algorithm has di�culties to dif-
ferentiate between several �bad� choices. The third and last option is to
completely forbid any announcing for the player. The default is to allow only
allow announcing if the corresponding UCT rewards are positive.

� UCT formula: specify if the UCT formula should be calculated in the normal
correct way or in the �wrong� way described above, where the number of visits
of the node in question is replaced by the number of the current rollout. The
default is to use the correct UCT formula.

� MC simulation: specify if no MC simulation should be carried out but all
states encountered during a rollout should be added as nodes to the tree, i.e.
more than one per rollout or if an MC simulation should be carried out as
soon as a leaf node was added to the tree, i.e. only one node is added to the
tree per rollout. The default is to use no MC simulation.

� Action selection: there are two moments where a successor needs to be chosen
out of a set of unvisited ones: the �rst one is when adding the �rst node of the
current rollout (which always needs to be done no matter if an MC simulation
is carried out or not) and the second one is during the remaining tree search
or MC simulation, depending on the chosen option, thus the di�erentiation
between those two otherwise similar decisions.
There are �ve versions combining di�erent action selection policies for the two
decisions: the �rst one chooses the �rst successor when adding the �rst node
and chooses a random successor during the continued tree search or the MC
simulation. The second version uses random action selection in both cases.
The third version again chooses the �rst successor when adding the �rst node
of the rollout and from then on uses a heuristic guided action selection (see
below) for card moves and chooses a random successor if the move is of any
other type. The fourth version uses random move selection for the �rst node
and the heuristic choice for the tree search or the MC simulation and the last
version uses the heuristic approach in all cases. The default is to use the �rst
version.

The heuristic for action selection is based on playing �safe cards�: If there are already
cards in the trick, then the heuristic checks if a teammate of the player wins the trick
so far. If so, it needs to further check if any of the opponents can play a higher card. If
not, then the heuristic chooses a valuable card of the legal cards of the player, preferring
to a valuable non-trump card over playing a valuable low ranked trump over playing
a valuable high ranked trump card (i.e. ♥10). If the trick is not safely owned by a

39

teammate or owned by an opponent, then the following procedure applies: the heuristic
checks if the player can play a non-trump card so that nobody can play a higher card
(or trump it). If this is not possible for non-trump suits, then the heuristic checks if the
player can play a non-trump card of a suit where his teammate can win the trick (also
considering the positioning of players, i.e. it is not enough to check if the teammate has
the highest card of that suit or if he can trump it, but he also needs to be able to play
it before a player of the other team can play the same highest card). If also this is not
possible, then the heuristic makes the same checks for the trump suit: if the player can
play a high trump card which wins the trick for sure, then this card is chosen, otherwise,
if a teammate holds a high trump card then can secure the trick, then a low valuable
trump should be played. If none of these options are possible, then the heuristic chooses
a random card.

40

6 Experiments

This chapter presents experiments made with the doppelkopf program described in the
previous chapter. The �rst section shows experiments that served to �nd reasonable
parameter values for a baseline UCT player for both UCT versions. This baseline UCT
player uses the most �simple� settings possible, especially concerning the player options.
The values to be tested include the parameters for the UCT formula and the computation
of UCT rewards out of the game result. The second section is dedicated to comparing
the two di�erent implementations of the UCT algorithm. The third section is dedicated
to testing all important player options of the doppelkopf program. For this purpose,
the baseline UCT player is compared to a UCT player that modi�es the parameter that
needs to be tested and leaves everything else as in the baseline version. Depending on
the domain of the parameter, this may result in several combinations being tested. The
fourth section presents results of experiments making changes to several parameters at
a time, thus combining some of the experiments from the third section. The goal is to
test if combining several con�gurations that have been proven to be good can still yield
an overall improvement. The �fth section is intended to analyze the pro�ts of increasing
the number of samples for the quality of results and the e�ect of increasing the number
of games played on the reliability of the results. Also time and memory usage will be
discussed. The �nal section shows the result of a tournament of the best UCT player
con�guration found against a human player.
The general settings for the experiments are the following, unless mentioned di�erently

for speci�c cases: as 24 games as played in a standard tournament is not a lot when
players are in�uenced by random events such as card dealing, random players or random
choices during the execution of the UCT algorithm, a standard experiment consists of
1000 games. Players do not have to play compulsory solos either when playing 1000
games; experiments have shown that the UCT players play �well enough� to voluntarily
play a solo from time to time, so there is no need to force them. Especially, forcing a
random player to play a solo nearly always results in a big loss for that player. Whenever
comparing two di�erent values for a parameter, usually two UCT players adapting the
di�erent values play against each other, together with two random players. Additionally,
the two UCT players also play alone against three random players to see the direct
performance without the in�uence of another UCT player. The number of rollouts was
chosen to be 1000 for both UCT versions, i.e. 10 simulations at 100 rollouts each for the
�rst version and 1000 rollouts for the second version. This value is neither too low to
produce poor results nor high enough to make the computation last several days for one
set of 1000 games. The standard values for the following experiments are summarized
in Tables 6.1 and 6.2.
Both the in�uence of raising the number of samples used for the algorithm, i.e. the

41

General Options

Number of games: 1000
Use compulsory solo?: no
Use random cards?: yes
Random seed for card dealing: 2012

Table 6.1: General settings for all experiments of this chapter unless stated di�erently

Player Options: UCT version 1

Number of rollouts: 100
Number of simulations: 10

Player Options: UCT version 2

Number of rollouts: 1000

Table 6.2: Players' settings for all experiments of this chapter unless stated di�erently

(total) number of rollouts, and the in�uence of changing the number of games played
in an experiment will be investigated in a extra section. For now I assume that using
more samples up to a certain amount will increase the quality of results and increasing
the number of games played will increase statistical reliability of results. Thus these
parameters will be constant for all tests done in Section 6.3, as this section is supposed
to test the in�uence of UCT player parameters that directly concern the character of
the UCT algorithm.

6.1 Tuning parameters to obtain a good baseline

UCT player

This section presents experiments that were made to �nd some reasonable values for
baseline players for both UCT versions. The baseline players use the simplest settings
for the UCT algorithm, i.e. all player speci�c options are set to their default values:
players' playing points rather than their team points are used to bias the score points
when computing the UCT rewards, a player is allowed to make announcements (and not
only if the average rewards are positive or even none at all), players use the �wrong�
UCT formula (as this was the �rst version implemented), an MC simulation is carried out
rather than expanding the tree by more nodes than one per rollout and when choosing
a successor out of a set of unvisited successors, the �rst one is chosen before adding
the node to the tree and a random one is chosen during the MC simulation (i.e. the
�rst version of the action selection option is used). The only relevant global option that
concerns all players at the same time is the announcement style version used. As some
experiments showed some problems concerning the version where a player can freely
choose from all legal announcements rather than only saying �yes� or �no�, both versions
will be tested already in this section.
The remaining parameters which should thus be tested concern the computation of

42

the UCT rewards out of the game result and the computation of the UCT formula. More
precisely, they include:

• Score points factor

• Playing points divisor

• Exploration constant

Note that the score points factor was chosen to be at least 500 in all experiments, i.e.
big enough that the playing points added to the scaled score points do not need to be
made smaller by dividing by a constant, thus the playing points divisor was set to be 1
for all experiments. Also note that choosing a score points factor of 1000, an exploration
constant of 1000 and a playing points divisor of 1 is exactly the same as choosing 1, 1
and 1000 for the three parameters respectively.
Table 6.3 summarizes the player options which are �xed for experiments of this section.

Player Options

Playing points divisor: 1
Use team points instead of player's points?: no
Allow announcements?: yes
Use wrong UCT formula?: yes
Do an MC simulation?: yes
Action selection: version 1

Table 6.3: Players' settings for all experiments of this section

6.1.1 First announcement style version

This �rst subsection is dedicated to experiments where the �rst announcement style
version is used, i.e. players are allowed to choose from all legal announcements and can
not only say �yes� or �no� when asked if they want to make an announcement. As the
domains of the tested parameters are integer valued, there are too many combinations
of values to test many of them when playing against each other. Therefore, the �rst
series of tests consist of choosing some parameter settings that seem to be appropriate
and then letting a UCT player with those settings play against three random players.
The obtained results are of course of less importance compared to results where a UCT
player with a certain setting of parameters directly plays together with another UCT
player. Still, this �rst series serves to determine a set of reasonable parameter settings
which can then be used in a second series where UCT players play against each other.

First UCT version

Table 6.4 shows the results of a UCT player using the �rst UCT version playing together
with three random players. The �rst column shows the values used for the exploration

43

500 1000 2000

500 9.07± 0.94 9.43± 0.93 -
1000 9.23± 0.92 8.98± 0.95 9.18± 0.95
1500 9.45± 1.03 9.77± 0.90 8.83± 0.95
2000 - - 8.74± 1.00
2500 - - 8.78± 0.94
3000 - 9.42± 0.88 -
4000 10.44± 1.05 - 9.98± 0.93
4500 11.06± 1.13 - -
5000 10.32± 1.08 9.80± 1.00 -
7000 - 10.67± 1.07 9.52± 1.00
8000 11.10± 1.29 - -
9000 - 10.68± 1.07 -
10000 10.66± 1.36 11.10± 1.17 9.32± 1.00
15000 - - 10.27± 1.07

Table 6.4: Results of a UCT player playing against three random players, using the �rst
UCT version and di�erent values for the score points constant (columns) and
the exploration constant (rows). The values shown are the 95% con�dence
intervals for the average score points for a round, i.e. multiplying the value
with 250 yields the concrete score points the UCT player achieved in the
experiment.

constant and the �rst row shows the values used for the score points constant. The values
shown are the 95% con�dence intervals for the average score points for a round (i.e. four
games) of the UCT player. The scores of the random players (always negative) have
been omitted, as have been memory and time usage of each single experiment, as the
values are very similar for each setup. The best three con�gurations (with very similar
results) are the combinations 500/4500, 500/8000 and 1000/10000 for the score points
constant/exploration constant. Apparently, increasing the exploration constant while
keeping the score points constant at the same value increases the player's performance
up to a certain level. This can be observed for all three tested values of the score points
constant (500, 1000 and 2000). Also if the score points constant is doubled (e.g. from
500 to 1000), it seems to be appropriate to also approximately double the exploration
constant at the same time in order to achieve a similar good result. Thus the relation
between the two values has a fairly high in�uence on the results. As a consequence, in
order to avoid to overload this chapter with tables, I will only show results of experiments
where a value of 500 for the score points constant has been chosen. Similar results can
of course also be obtained by testing other (higher) values, but then also the exploration
constant must be increased accordingly. This has been con�rmed in other experiments
which are omitted in order to avoid putting even more tables into this chapter.
Table 6.5 shows some experiments where the con�guration 500/4500 found above

is tested against some very similar players. The results are very astonishing in the
sense that the second UCT player outperforms the �rst UCT player no matter which

44

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 4500 4500 4500 4500 4500

Player 2 Options

SP factor: 400 500 500 500 600
Expl const.: 4500 3500 4500 5500 4500

95% con�dence intervals for average round scores

P1 (UCT): −1.77± 2.13 −0.90± 2.14 −2.30± 2.03 −1.62± 2.26 −1.05± 2.07
P2 (UCT): 12.22± 2.08 10.77± 1.84 12.43± 1.98 11.49± 2.15 11.42± 1.96
P3 (Rnd): −4.34± 2.07 −4.07± 1.95 −4.55± 1.85 −5.25± 2.02 −4.79± 1.90
P4 (Rnd): −6.12± 2.04 −5.80± 2.01 −5.58± 1.94 −4.62± 1.94 −5.58± 2.00

Table 6.5: Two UCT version 1 players positioned next to each other

con�guration is used. These huge di�erences cannot solely be explained by the only
slightly di�ering con�guration. Suspecting the reason for the results to be the positioning
of the players, the same experiments have been conducted again, but with switched
positions for the UCT players. The results are depicted in Table 6.6.

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 4500 3500 4500 5500 4500

Player 2 Options

SP factor: 500 500 500 500 500
Expl const.: 4500 4500 4500 4500 4500

95% con�dence intervals for average round scores

P1 (UCT): −4.50± 2.21 0.32± 1.90 −2.30± 2.03 −2.99± 2.21 0.74± 1.98
P2 (UCT): 13.90± 1.95 11.14± 2.01 12.43± 1.98 12.37± 2.03 10.96± 2.02
P3 (Rnd): −4.41± 2.04 −5.96± 1.83 −4.55± 1.85 −3.52± 1.88 −6.07± 1.79
P4 (Rnd): −4.99± 2.04 −5.50± 1.91 −5.58± 1.94 −5.87± 2.15 −5.62± 1.87

Table 6.6: Two UCT version 1 players positioned next to each other with inversed
positions

Clearly, the positions of the UCT players have a huge in�uence, as switching positions
did not change any of the observed behavior. Apparently, one can generally say that a
UCT player placed in front of another UCT player gets exploited. Some informal local
experiments have con�rmed that no matter which concrete position players are placed
on, a UCT player positioned in front of another UCT player always will get exploited;
also when three UCT players and only one random player are playing, the UCT player
positioned after the random player will always end up being the worst. The crucial
advantage that the UCT player placed behind the �rst UCT player has is that he can
always play cards after the �rst UCT player played a card, with the exception of the
cases where the second UCT player starts a trick. Thus he can quite easily exploit
any �mistakes� the �rst player does. This e�ect is even reinforced when the �rst UCT

45

player tends to over-announce, which is the case when using the �rst announcement
style version, as seen when analyzing in more details the game process of some local
experiments. Consequently, experiments with a setup where two UCT players are placed
next to each other are of a very small signi�cance and therefore the experiments have
been repeated with a positioning where the two UCT players are placed vis-à-vis, with
a random player positioned before and after each of them.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 4500 4500 4500 4500 4500

Player 3 Options

SP factor: 400 500 500 500 600
Expl const.: 4500 3500 4500 5500 4500

95% con�dence intervals for average round scores

P1 (UCT): 9.50± 2.21 6.84± 2.23 8.19± 2.00 10.91± 2.17 8.34± 2.02
P2 (Rnd): −9.57± 1.84 −8.17± 1.90 −9.30± 1.81 −10.15± 1.90 −9.32± 1.89
P3 (UCT): 7.63± 2.39 9.67± 2.10 8.12± 2.10 8.04± 2.41 8.71± 2.02
P4 (Rnd): −7.57± 1.89 −8.34± 1.80 −7.01± 1.85 −8.80± 1.94 −7.73± 1.89

Table 6.7: Two UCT version 1 players positioned vis-à-vis

The results shown in Table 6.7 demonstrate very well that the e�ect of exploiting due
to the positioning of UCT players is not existent in this setup, as two identical UCT
players that play together with two random players nearly yield the same result, as can
be seen in the middle column. Also deviating from the chosen con�guration (500/4500)
seems not to be good except for the con�guration 500/3500 and also 600/4500 seems to
be slightly favored. Both cases indicate that the exploration constant in relation to the
score points constant was chosen slightly too big, possibly 500/4000 would be a better
choice.

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 4500 3500 4500 5500 4500

Player 3 Options

SP factor: 500 500 500 500 500
Expl const.: 4500 4500 4500 4500 4500

95% con�dence intervals for average round scores

P1 (UCT): 7.55± 2.20 9.09± 2.02 8.19± 2.00 8.06± 2.13 8.69± 1.87
P2 (Rnd): −10.60± 1.88 −9.65± 1.96 −9.30± 1.81 −9.85± 1.93 −10.08± 1.86
P3 (UCT): 9.18± 2.21 8.17± 2.23 8.12± 2.10 8.84± 2.17 8.84± 2.14
P4 (Rnd): −6.13± 1.84 −7.61± 1.91 −7.01± 1.85 −7.05± 1.90 −7.45± 1.76

Table 6.8: Two UCT version 1 players positioned vis-à-vis with inversed positions

To be sure that the positions really have no or only a little in�uence when placing
UCT players vis-à-vis, the experiment is repeated with inversed positions for the UCT

46

players. The results are shown in Table 6.8. They seem to be consistent in the way
that if the UCT player placed on position one in the �rst experiment wins, then he
also wins when placed on the third position. There is one exception: the con�guration
600/4500 (last column) wins in the �rst setup but is a little worse than the other UCT
player in the second setup. However, the average round score points are very close
to each other, so that the di�erence can be caused by the di�erent hands the players
have during one experiment (this observation is also supported by the quite large and
overlapping con�dence intervals). When summing up the average round score points of
the two experiments, the con�guration 600/4500 achieves a slightly better result than
the con�guration 500/4500. By increasing the number of games played, this behavior
(that one player wins on one position, but loses on the other one) could probably be
ruled out or at least the e�ect could be reduced (the con�dence intervals would also
become smaller). There is some further evidence that the absolute positions of players
indeed matter at least a little bit, because taking a look at the second column, the
con�guration 500/3500 wins with a di�erence of 2.83 average round score points over
the other UCT player with the con�guration 500/4500 in the �rst experiment, but when
switching positions, the UCT player with the con�guration 500/3500 only wins by a
di�erence of 0.94 average round score points. Both of the two last observations indicate
that the relation between the score points constant and the exploration constant was
chosen a little bit too hight, maybe 500/4000 would be a better choice for a baseline UCT
player when using the �rst announcement style version. Further, note that by using a
vis-à-vis positioning of the two UCT players, an exploitation of the other UCT player
can be avoided (due to the symmetry of the positioning), but 1000 games is obviously
not enough to rule out any di�erences in the results which are due to the di�erent card
deals the players have to play. A solution is to increase the number of games played in
an experiment, but to signi�cantly reduce the con�dence intervals, the number of games
must be increased a lot and experiments would take a long time to run. Therefore,
experiments where two UCT players are tested will always be repeated with inversed
player positions.

Second UCT version

The same setup of experiments for UCT players using the second UCT version will be
presented in the following. Thus the �rst series of experiments consists of letting one
UCT player play together with three random players, testing di�erent combinations for
the score points constant and the exploration constant. As explained above, the results
shown are restricted to those where a value of 500 is used for the score points constant
and the exploration constant is varied.
Taking a look at Tables 6.9 and 6.10 and according to the results of the �rst UCT

version seen above, one can observe that increasing the exploration constant in relation
to the score points constant seems to be reasonable up to a certain amount. More
generally, the di�erences between the results of di�erent con�gurations are way more
signi�cant in these experiments compared to those of the �rst UCT version and also
the con�dence intervals are a bit larger. Thus all results obtained from the second

47

Player 1 Options

SP factor: 500 500 500 500
Expl const.: 500 1000 1500 4000

95% con�dence intervals for average round scores

P1 (UCT): 3.96± 1.32 5.48± 1.20 6.64± 1.21 8.03± 1.51
P2 (Rnd): −2.50± 1.39 −3.40± 1.42 −2.13± 1.42 −2.89± 1.36
P3 (Rnd): −1.70± 1.40 −2.24± 1.31 −3.03± 1.27 −3.57± 1.34
P4 (Rnd): 0.24± 1.44 0.16± 1.32 −1.48± 1.39 −1.56± 1.30

Table 6.9: One UCT version 2 player with three random players (1)

Player 1 Options

SP factor: 500 500 500 500
Expl const.: 4500 5000 8000 10000

95% con�dence intervals for average round scores

P1 (UCT): 5.96± 1.62 6.30± 1.76 0.42± 2.17 −4.09± 2.55
P2 (Rnd): −2.80± 1.32 −2.96± 1.34 −0.45± 1.36 1.70± 1.39
P3 (Rnd): −2.59± 1.22 −1.83± 1.37 0.06± 1.31 1.52± 1.44
P4 (Rnd): −0.58± 1.33 −1.51± 1.44 −0.03± 1.26 0.86± 1.38

Table 6.10: One UCT version 2 player with three random players (2)

UCT version are a bit less reliable. More insights and comments on the di�erences
between both UCT versions are given in Section 6.2. The best result is obtained by
the combination 500/4000 which is thus further tested in the next series of experiments,
where a UCT player using this con�guration is tested in direct play together with a
UCT player using a slightly di�erent con�guration. Both UCT players are positioned
next to each other.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 4000 4000 4000 4000 4000

Player 2 Options

SP factor: 400 500 500 500 600
Expl const.: 4000 3000 4000 5000 4000

95% con�dence intervals for average round scores

P1 (UCT): −0.50± 3.01 −3.04± 3.09 −3.59± 3.30 −1.98± 3.20 −0.74± 3.37
P2 (UCT): 7.49± 3.28 7.19± 2.55 9.17± 3.06 9.63± 3.22 6.84± 3.09
P3 (Rnd): −3.03± 2.44 −2.17± 2.39 −2.62± 2.33 −4.57± 2.26 −3.54± 2.39
P4 (Rnd): −3.95± 2.34 −1.97± 2.31 −2.96± 2.22 −3.08± 2.28 −2.57± 2.30

Table 6.11: Two UCT version 2 players positioned next to each other

Tables 6.11 and 6.12 show the results of those experiments, the second one using the
same setup but with inversed positions. As observed for the corresponding setup for

48

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 4000 3000 4000 5000 4000

Player 2 Options

SP factor: 500 500 500 500 500
Expl const.: 4000 4000 4000 4000 4000

95% con�dence intervals for average round scores

P1 (UCT): −5.74± 3.36 −3.90± 2.87 −3.59± 3.30 −3.47± 3.73 −2.30± 2.98
P2 (UCT): 10.57± 3.00 11.98± 3.01 9.17± 3.06 8.68± 2.95 7.90± 2.94
P3 (Rnd): −3.43± 2.32 −3.25± 2.34 −2.62± 2.33 −2.89± 2.52 −2.02± 2.23
P4 (Rnd): −1.39± 2.42 −4.83± 2.37 −2.96± 2.22 −2.32± 2.51 −3.58± 2.30

Table 6.12: Two UCT version 2 players positioned next to each other with inversed
positions

the �rst UCT version, the second UCT player positioned directly behind the �rst one
outperforms the �rst one by a large amount. This is also con�rmed when switching
the positions. For this reason, the experiments have been repeated with a vis-à-vis
positioning.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 4000 4000 4000 4000 4000

Player 3 Options

SP factor: 400 500 500 500 600
Expl const.: 4000 3000 4000 5000 4000

95% con�dence intervals for average round scores

P1 (UCT): 7.35± 3.36 10.87± 3.18 10.04± 3.21 9.36± 3.10 11.15± 3.23
P2 (Rnd): −11.19± 2.31 −10.45± 2.33 −9.71± 2.22 −9.24± 2.53 −9.50± 2.53
P3 (UCT): 11.39± 3.27 6.11± 2.88 6.04± 3.30 6.48± 3.50 7.03± 3.18
P4 (Rnd): −7.55± 2.38 −6.54± 2.32 −6.36± 2.54 −6.59± 2.23 −8.68± 2.51

Table 6.13: Two UCT version 2 players positioned vis-à-vis

Tables 6.13 and 6.14 show the results of those experiments, where the second table
contains the results of experiments with the same setup as the �rst table, but with
inversed positions. Even although not positioned next to each other, the results of two
identical UCT players playing together with two random players yield quite di�erent
results: the �rst UCT player achieves 10.04 compared to 6.04 average round score points
of the second UCT player, as seen in the middle column of the �rst (and second) table.
This di�erence makes it hard to analyze the di�erent con�gurations that only slightly
di�er. Still, having a look at the �rst and the fourth column of the �rst table, it seems
that the relation between the exploration constant and the score points constant is not
big enough, as increasing the exploration constant or lowering the score points constant
of the second UCT player moves the results more in favor of this player (always compared

49

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 4000 3000 4000 5000 4000

Player 3 Options

SP factor: 500 500 500 500 500
Expl const.: 4000 4000 4000 4000 4000

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 3.28 7.81± 2.75 10.04± 3.21 12.93± 3.51 10.23± 2.94
P2 (Rnd): −7.96± 2.41 −7.27± 2.34 −9.71± 2.22 −9.12± 2.32 −7.71± 2.42
P3 (UCT): 6.05± 3.33 7.78± 3.05 6.04± 3.30 4.91± 3.24 5.25± 3.09
P4 (Rnd): −7.96± 2.39 −8.32± 2.51 −6.36± 2.54 −8.72± 2.39 −7.77± 2.40

Table 6.14: Two UCT version 2 players positioned vis-à-vis with inversed positions

to the results displayed in the middle column, which serves as a reference). Similarly,
column two and �ve of the �rst table show that decreasing the relation of the score points
constant to the exploration constant even shifts the results more in favor of the �rst UCT
player. Taking a look at the second table, switching the positions con�rms the results of
the �rst table: in the �rst column, the winning con�guration of the �rst experiment also
wins after switching positions. In the second column, this is less obvious but still holds:
in the �rst table, the con�guration 500/4000 achieves slightly better than 500/3000
(comparing the values to those of the middle column) and in the second table, it largely
improves its results compared to the middle �reference� column. Alternatively, adding
up the average round score points of both experiments also con�rms that 500/4000 is
indeed the better con�guration. Analog observations can also be made for the last two
columns. All together, 500/4000 seems indeed to be a reasonable con�guration for a
baseline UCT player when using the �rst announcement style version.
The main problem with the experiments of the second UCT version still remains the

huge �uctuation of the results, making it hard to draw conclusions. Note that also the
con�dence interval has nearly doubled its size compared to the experiments conducted
for the �rst UCT version. Possibly, increasing the number of games could help, but it is
quite obvious already after those few experiments that the second UCT version cannot
compete with the �rst one, no matter what �good� con�guration can be found. More on
this topic will be discussed in Section 6.2.

6.1.2 Second announcement style version

This subsection uses the exact same procedure of experiments as the preceding one,
the only di�erence is that the second announcement style version is used, i.e. players
can only say �yes� or �no� when being asked if they want to an announcement or not,
automatically announcing the next level of announcement when answering �yes�.

50

Player 1 Options

SP factor: 500 500 500 500
Expl const.: 500 1000 2000 4000

95% con�dence intervals for average round scores

P1 (UCT): 9.05± 0.79 8.95± 0.81 9.33± 0.76 9.72± 0.83
P2 (Rnd): −3.16± 1.11 −2.90± 1.12 −3.19± 1.07 −3.48± 1.13
P3 (Rnd): −3.76± 1.03 −3.95± 0.98 −3.91± 0.99 −3.86± 1.05
P4 (Rnd): −2.14± 1.04 −2.10± 1.11 −2.22± 1.10 −2.38± 1.10

Table 6.15: One UCT version 1 player with three random players (1)

Player 1 Options

SP factor: 500 500 500 500
Expl const.: 7000 10000 15000 20000

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 0.84 9.56± 0.82 8.33± 0.84 7.89± 0.81
P2 (Rnd): −3.64± 1.07 −3.28± 1.02 −2.70± 0.98 −2.78± 0.99
P3 (Rnd): −4.00± 0.97 −4.00± 0.95 −3.56± 0.88 −3.28± 0.91
P4 (Rnd): −2.23± 1.05 −2.28± 1.04 −2.07± 1.00 −1.83± 1.00

Table 6.16: One UCT version 1 player with three random players (2)

First UCT version

The �rst experiments again test di�erent combinations for the score points constant and
the exploration constant, �xing a value of 500 for the �rst one, using a setup where one
UCT player (using the �rst UCT version) plays together with three random players.
Tables 6.15 and 6.16 show the results. The best con�guration found is the one with

values of 500/7000 for score points constant/exploration constant. Analog to the pre-
vious subsection where the �rst announcement style version was used, one can observe
that increasing the relation of the exploration constant at the score points constant also
increases the quality of the UCT player up to a certain amount.
Tables 6.17 and 6.18 show the result of the next series of experiments, where the

con�guration found above is tested against itself and against slightly di�ering con�gu-
rations. The UCT players are placed behind each other, switching the positions in the
experiments shown in the second table. Comparing the slightly di�ering con�gurations
(�rst, second, fourth and �fth column) to the results obtained when the tested con�g-
uration 500/7000 plays against itself (middle column), one observes that all di�ering
con�gurations achieve slightly less score points, with the exception of the con�guration
600/7000, which slightly improves over the 500/7000 con�guration. Note that the sec-
ond placed UCT player apparently has a disadvantage due to the card deals, as already
the middle column, where two identical UCT players are tested, shows an average round
score points di�erence of 1.14. However, the second table, which shows the result for the
same setup with inversed player positions, con�rms the results of the �rst table, i.e. all
con�gurations other than 500/7000 achieve less score points compared to the reference

51

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 7000 7000 7000 7000 7000

Player 2 Options

SP factor: 400 500 500 500 600
Expl const.: 7000 6000 7000 8000 7000

95% con�dence intervals for average round scores

P1 (UCT): 7.11± 1.24 7.12± 1.29 7.29± 1.27 6.90± 1.29 6.98± 1.26
P2 (UCT): 5.70± 1.32 5.98± 1.32 6.15± 1.29 5.97± 1.29 6.23± 1.30
P3 (Rnd): −7.10± 1.08 −6.86± 1.18 −7.62± 1.13 −7.23± 1.17 −7.03± 1.14
P4 (Rnd): −5.72± 1.16 −6.24± 1.30 −5.82± 1.25 −5.64± 1.26 −6.18± 1.24

Table 6.17: Two UCT version 1 players positioned next to each other

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 7000 6000 7000 8000 7000

Player 2 Options

SP factor: 500 500 500 500 500
Expl const.: 7000 7000 7000 7000 7000

95% con�dence intervals for average round scores

P1 (UCT): 6.84± 1.24 7.01± 1.22 7.29± 1.27 6.59± 1.24 7.53± 1.31
P2 (UCT): 6.32± 1.27 6.17± 1.32 6.15± 1.29 6.44± 1.26 6.14± 1.29
P3 (Rnd): −7.92± 1.07 −7.34± 1.15 −7.62± 1.13 −7.22± 1.11 −7.93± 1.11
P4 (Rnd): −5.24± 1.23 −5.83± 1.29 −5.82± 1.25 −5.81± 1.23 −5.74± 1.29

Table 6.18: Two UCT version 1 players positioned next to each other with inversed
positions

52

middle column, while at the same time, the con�guration 500/7000 improves. This holds
again with the exception of the last column, where the 600/7000 con�guration seems to
have a little advantage over the 500/7000 version. It is worth to note that the di�er-
ences between the results when reversing the player positions can nearly be neglected
in comparison to the results of the previous subsection, where the �rst announcement
style version was used. This makes the results more reliable and easier to interpret. To
make sure that there is no exploitation involved when UCT players are placed next to
each other, the experiments are repeated with a vis-à-vis positioning.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 7000 7000 7000 7000 7000

Player 3 Options

SP factor: 400 500 500 500 600
Expl const.: 7000 6000 7000 8000 7000

95% con�dence intervals for average round scores

P1 (UCT): 6.66± 1.29 6.95± 1.38 6.55± 1.34 6.74± 1.28 6.45± 1.32
P2 (Rnd): −6.73± 1.31 −6.56± 1.32 −7.31± 1.25 −6.91± 1.28 −6.30± 1.40
P3 (UCT): 5.61± 1.24 5.62± 1.23 6.16± 1.36 5.92± 1.24 5.88± 1.24
P4 (Rnd): −5.54± 1.22 −6.00± 1.27 −5.40± 1.22 −5.75± 1.21 −6.02± 1.33

Table 6.19: Two UCT version 1 players positioned vis-à-vis

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 7000 6000 7000 8000 7000

Player 3 Options

SP factor: 500 500 500 500 500
Expl const.: 7000 7000 7000 7000 7000

95% con�dence intervals for average round scores

P1 (UCT): 6.13± 1.27 6.29± 1.22 6.55± 1.34 6.85± 1.29 6.13± 1.30
P2 (Rnd): −6.80± 1.30 −6.92± 1.32 −7.31± 1.25 −6.67± 1.35 −6.78± 1.30
P3 (UCT): 6.33± 1.25 6.56± 1.25 6.16± 1.36 6.30± 1.26 6.14± 1.42
P4 (Rnd): −5.67± 1.33 −5.92± 1.32 −5.40± 1.22 −6.48± 1.31 −5.49± 1.35

Table 6.20: Two UCT version 1 players positioned vis-à-vis with inversed positions

Tables 6.19 and 6.20 show the results of these experiments. Taking a look at the
�rst table, all con�gurations other than the one to test, namely 500/7000, achieve less
average round score points, both compared directly against the con�guration 500/7000
and to the reference result of the middle column, where two identical versions of the
con�guration 500/7000 played against each other. Also the second table, which shows
the results of experiments with the same setup but inversed positions for the UCT
players, con�rms these results: the con�guration 500/7000 is still the prevailing one,

53

with the exception of the fourth column, where the result of con�guration 500/8000
is better than the reference value of the middle column, but still when adding up the
results of both tables, 500/7000 has a slightly higher average round score. All in all,
choosing 500 for the score points constant in combination with 7000 for the exploration
constants is apparently a very reasonable choice for a baseline UCT player using the
�rst UCT version.
Note that the last two experiments also show that using a positioning where UCT

players are placed next to each other or vis-à-vis apparently does not in�uence the
results when using the second announcement style version. This is certainly due to
the fact that a UCT player cannot exploit another UCT player placed in front of him,
which again is due to the fact that UCT players do not tend to over-announce when
the second announcement style version is used. The reason for this is probably the
reduced branching factor of nodes where a player has to decide if he wants to make
an announcement or not. This observation still needs to be con�rmed when using the
second UCT version, but already now, it is worth to note that future experiments can
use an arbitrary positioning of UCT players without risking to falsify the results.

Second UCT version

In the following, the same setup of experiments as before will be presented, but this time
with UCT players using the second UCT version. Again, the �rst series of experiments
consists of �nding the best combination of values for the score points constant and the
exploration constant by letting a UCT player player with three random players.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 500 1000 2000 4000 7000

95% con�dence intervals for average round scores

P1 (UCT): 3.82± 1.17 6.64± 0.99 7.89± 0.82 9.62± 0.84 10.24± 1.00
P2 (Rnd): −1.44± 1.30 −3.03± 1.24 −2.60± 1.02 −3.56± 0.97 −3.71± 0.96
P3 (Rnd): −1.79± 1.35 −2.48± 1.16 −3.60± 0.96 −3.72± 0.90 −4.24± 0.87
P4 (Rnd): −0.58± 1.22 −1.13± 1.24 −1.68± 1.03 −2.35± 1.00 −2.28± 0.94

Table 6.21: One UCT version 2 player with three random players (1)

Tables 6.21 and 6.22 show the results of these experiments. The combination 500/30000
is the best one, although only very slightly ahead of con�guration 500/20000. Note that,
as already observed in previous experiments, it still holds that increasing the exploration
constant up to a certain amount while keeping the score points constant �xed bene�ts
the obtained results.
Tables 6.23 and 6.24 show the results of experiments where the con�guration 500/30000

is tested in direct play against itself and against slightly deviating con�gurations. UCT
players are positioned next to each other and their positions are interchanged in the
experiments depicted in the second table. The middle column, again the �reference� col-
umn because two identical UCT players with the con�guration to be tested play against

54

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 10000 15000 20000 30000 40000

95% con�dence intervals for average round scores

P1 (UCT): 11.51± 1.11 11.26± 1.14 11.98± 1.22 12.01± 1.23 10.57± 1.24
P2 (Rnd): −3.92± 0.95 −3.64± 0.88 −4.19± 0.87 −3.90± 0.86 −3.65± 0.88
P3 (Rnd): −4.55± 0.87 −4.55± 0.84 −4.60± 0.87 −4.72± 0.86 −4.10± 0.89
P4 (Rnd): −3.04± 0.94 −3.07± 0.90 −3.19± 0.90 −3.39± 0.94 −2.82± 0.88

Table 6.22: One UCT version 2 player with three random players (2)

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 30000 30000 30000 30000 30000

Player 2 Options

SP factor: 400 500 500 500 600
Expl const.: 30000 24000 30000 36000 30000

95% con�dence intervals for average round scores

P1 (UCT): 8.07± 1.76 8.31± 1.71 7.28± 1.77 8.38± 1.84 6.86± 1.80
P2 (UCT): 6.17± 1.59 6.04± 1.68 6.25± 1.74 6.11± 1.70 6.05± 1.77
P3 (Rnd): −7.43± 0.96 −7.58± 0.92 −7.28± 0.92 −7.57± 0.96 −6.67± 0.97
P4 (Rnd): −6.81± 1.00 −6.77± 1.06 −6.26± 1.02 −6.92± 1.00 −6.24± 1.01

Table 6.23: Two UCT version 2 players positioned next to each other

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 30000 24000 30000 36000 30000

Player 2 Options

SP factor: 500 500 500 500 500
Expl const.: 30000 30000 30000 30000 30000

95% con�dence intervals for average round scores

P1 (UCT): 6.12± 1.84 8.12± 1.82 7.28± 1.77 7.62± 1.72 7.50± 1.90
P2 (UCT): 7.07± 1.71 5.11± 1.71 6.25± 1.74 6.15± 1.65 5.98± 1.73
P3 (Rnd): −7.18± 0.94 −7.11± 0.91 −7.28± 0.92 −7.33± 0.93 −7.00± 0.88
P4 (Rnd): −6.02± 0.98 −6.12± 0.99 −6.26± 1.02 −6.44± 0.96 −6.48± 1.01

Table 6.24: Two UCT version 2 players positioned next to each other with inversed
positions

55

each other, shows a not so little di�erence between the results of the UCT players and
also the con�dence intervals are larger than the ones when using the �rst UCT version.
This however corresponds to the previous observations of UCT players using the second
UCT version. Still, the �rst table shows that 500/30000 achieves a better score than the
di�ering con�gurations listed in columns one, two and four, but 600/3000 seems to be a
bit favored. This observation is con�rmed when taking a look at the second table, where
player positions have been switched. Not only 600/30000, but also 500/24000 (which
is a similar deviation from 500/30000 in terms of the relation between exploration con-
stant and score points constant) achieve better results than 500/30000. The results of
the fourth column are less obvious, as in the �rst table, 500/30000 clearly wins against
500/36000, but in the second table, it is the other way around. However, adding up the
average score round points for both experiments, con�guration 500/30000 still achieves
a slightly better result than 500/36000.

Player 1 Options

SP factor: 500 500 500 500 500
Expl const.: 30000 30000 30000 30000 30000

Player 3 Options

SP factor: 400 500 500 500 600
Expl const.: 30000 24000 30000 36000 30000

95% con�dence intervals for average round scores

P1 (UCT): 7.92± 1.68 6.37± 1.76 7.82± 1.76 7.98± 1.65 6.91± 1.70
P2 (Rnd): −6.82± 0.99 −6.85± 1.00 −7.30± 1.01 −6.96± 0.99 −7.48± 0.95
P3 (UCT): 5.62± 1.72 6.76± 1.72 6.24± 1.79 5.94± 1.69 7.00± 1.71
P4 (Rnd): −6.71± 0.99 −6.28± 1.05 −6.76± 1.03 −6.96± 0.98 −6.44± 0.98

Table 6.25: Two UCT version 2 players positioned vis-à-vis

Player 1 Options

SP factor: 400 500 500 500 600
Expl const.: 30000 24000 30000 36000 30000

Player 3 Options

SP factor: 500 500 500 500 500
Expl const.: 30000 30000 30000 30000 30000

95% con�dence intervals for average round scores

P1 (UCT): 6.12± 1.73 7.12± 1.65 7.82± 1.76 5.90± 1.71 6.50± 1.69
P2 (Rnd): −6.44± 0.98 −6.60± 0.97 −7.30± 1.01 −6.43± 1.02 −7.25± 1.04
P3 (UCT): 6.70± 1.84 6.33± 1.75 6.24± 1.79 6.34± 1.68 7.16± 1.81
P4 (Rnd): −6.38± 1.07 −6.85± 1.00 −6.76± 1.03 −5.81± 1.02 −6.41± 0.99

Table 6.26: Two UCT version 2 players positioned vis-à-vis with inversed positions

To ensure that placing UCT players next to each other does not allow any kind of
exploitation also when using the second UCT version, the same experiments as the ones

56

shown in the previous two tables are repeated with UCT players being placed vis-à-vis.
Tables 6.25 and 6.26 show the results, where the experiments displayed in the second
table use the same setup but with inversed positions for the UCT players. The �rst
table perfectly supports the observations made in the previous two experiments, namely
that 500/30000 is surpassed by 600/30000 and 500/24000. The second table does not
con�rm these results that well, as all con�gurations di�erent from 500/30000 achieve
worse results than 500/30000, but still 500/24000 and 600/30000 achieve the best out
of these worse results. All together, I come to the conclusion that 30000 may be a bit
too large and that lowering the exploration constant a bit would be appropriate. Taking
a look at Table 6.22 again, one can see that 500/20000 achieved nearly as good results
as 500/30000, at least in the test against three random players. Also 30000 is a large
value compared to the value of 7000 chosen for the UCT player using the �rst UCT
version. Therefore 500/20000 should be a very good con�guration for a baseline UCT
player using the second UCT version.

6.1.3 Chosen baseline con�guration

Taking into account the results of the previous subsection, the �rst decision to make is
a simple one: a baseline UCT player, no matter which UCT version it uses, should use
the second announcement style version or more speci�c, as this is not a player's option
but a global option, all further experiments will use the second announcement style
version. There are several reasons for this choice: �rst, the obtained results are more
reliable and show less deviations when comparing very similar con�gurations. Second,
player positioning does not seem to play role when using the second announcement style
version, as results obtained using a setup where two UCT players are placed behind
each other are consistent to results obtained where they are placed vis-à-vis. Thus UCT
players placed in front of another UCT player do not get exploited. This is certainly not
the case when using the �rst announcement style version. Last but not least and related
to the previous reason, UCT players do not tend to over-announce as it is the case when
using the �rst announcement style version. This has been tested by analyzing the game
process of some small tournaments comparing the di�erent announcement style versions.
The second decision to make is whether to use the �rst or the second UCT version,

but as it seems to be interesting to test both versions because they have di�erent char-
acteristics as seen so far, I decided to use two UCT baseline players, one for each UCT
version.
The last choice concerns the values to choose for the score points constant and the

exploration constant. Combinations for these parameters have been extensively tested
and the results have been shown in the previous two subsections of this section. The
combination of choice for the �rst UCT version baseline player is 500 for the score points
constant and 7000 for the explorations constant and for the second CUT version baseline
player, it is 500 and 20000.
All remaining parameters will stay unchanged and use the values stated in the intro-

duction of this chapter and this section.

57

General Options

games: 1000 1000
Comp. solos?: no no
Random cards: yes yes
Random seed: 2012 2012
Ann. version: 2 2

Player 1 Options

Version: 1 2
SP factor: 500 500
Team points?: no no
PP Divisor: 1 1
Expl const.: 7000 20000
rollouts: 100 1000
sim: 10 -
Allow ann.: yes yes
Wrong formula?: yes yes
MC simulation?: yes yes
Action selection: 1 1

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 0.84 11.98± 1.22
P2 (Rnd): −3.64± 1.07 −4.19± 0.87
P3 (Rnd): −4.00± 0.97 −4.60± 0.87
P4 (Rnd): −2.23± 1.05 −3.19± 0.90

Table 6.27: A complete description of the con�gurations of the baseline UCT players
for both UCT versions (used to play with the second announcement style
version)

58

6.2 Comparing the two UCT versions

This section compares the two di�erent implementations of the UCT algorithm, i.e. the
�rst version using simulations and rollouts, �xing a card assignment per simulation,
and the second version only using rollouts, each with a di�erent card assignment. In
addition to the baseline con�guration, some additional �good� con�gurations according
to the experiments shown in the previous section are tested. As usual, UCT players
are tested playing against each other with two random players and alone against three
random players.

Player 1 Options

Version: 1 2 1 2

Player 3 Options

Version: - - 2 1

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 0.84 11.98± 1.22 5.57± 1.18 9.07± 1.76
P2 (Rnd): −3.64± 1.07 −4.19± 0.87 −6.78± 1.12 −7.43± 1.20
P3 (Rnd/UCT): −4.00± 0.97 −4.60± 0.87 8.06± 1.83 5.22± 1.24
P4 (Rnd): −2.23± 1.05 −3.19± 0.90 −6.85± 1.21 −6.86± 1.14

Time

Total time: 39m18s 1h59m49s 2h42m27s 2h43m37s

Table 6.28: Comparing the two UCT versions using the second announcement style
version

Table 6.28 shows the two baseline con�gurations competing in separate experiments
against three random players and in experiments where they directly play against each
other together with two random players. Amazingly, the second UCT version wins
against the �rst one in all experiments � I explicitly say amazingly because all �rst
local tests and experiments always have shown way worse results for the second UCT
version than for the �rst version. There are probably two reasons for this: �rst, many
tests have been conducted using the �st announcement style version and not the second
one and second, no �best� parameters for the score points constant and the exploration
constant have been found at this moment, but some default con�guration 1000/1000
was used and thus an exploration constant way too low for the second UCT version.
Therefore, another series of experiments to compare the two UCT versions using the
�rst announcement style will be conducted. For these, a di�erent con�guration of values
for the score points constant and the exploration constant will be used, namely 500/4000
for both UCT versions, as these have shown the best results in the previous section.
Table 6.29 shows the results of these experiments. As expected, the �rst version of

the UCT algorithm vastly outperforms the second version, both in direct comparison
when playing together with two random players and when comparing results of matches
against three random players. I originally expected the second UCT version to be at least
as good as the �rst version, because using a di�erent card assignment for each rollout
over only using a few di�erent card assignments and letting them be �xed for an entire

59

Player 1 Options

Version: 1 2 1 2

Player 3 Options

Version: - - 2 1

95% con�dence intervals for average round scores

P1 (UCT): 10.44± 1.05 8.03± 1.51 22.97± 2.30 −11.04± 2.66
P2 (Rnd): −3.75± 1.28 −2.89± 1.36 −7.92± 2.15 −6.90± 2.24
P3 (Rnd/UCT): −4.28± 1.15 −3.57± 1.34 −9.89± 2.70 23.11± 2.40
P4 (Rnd): −2.41± 1.30 −1.56± 1.30 −5.16± 2.26 −5.18± 2.20

Time

Total time: 46m54s 2h27m49s 3h34m4s 3h33m40s

Table 6.29: Comparing the two UCT versions using the �rst announcement style version

series of rollouts seemed to be a big re�nement of the information used. Especially the
amount of information contained in the �nal tree of the second version should be higher
than the amount of information distributed over di�erent trees constructed by the �rst
version. This has been con�rmed when using the second announcement style version, see
above, but using the �rst announcement style version obviously causes huge problems
for the second UCT version. The reason must thus lie in the larger branching factor of
announcement move nodes of the game tree. This can result in the single tree constructed
by the second UCT version to become very broad and thus to contain a lot of �di�use�
information, but none of the regions of the tree will really get explored intensively during
the search or if so, then only a few of the interesting regions can be explored. In contrast
to this, the �rst UCT version builds several search trees, and thus even if a single tree
does not contain �good� information (because a card assignment is �xed for the whole
tree and thus probably only one part of the tree is heavily explored, namely the part
which seems to be promising under the �xed card assignment), aggregating over several
trees apparently makes up for it.
Interestingly, Bjarnason et al. [3] come to a very similar conclusion when comparing

results of UCT and �HOP-UCT�, as they call the aggregation of several search trees
constructed by UCT (which thus corresponds to the �rst UCT version in this case),
applied to Klondike solitaire. They state that �Comparing the performance of HOP-
UCT and UCT trials suggests that sampling multiple UCT trees boosts performance and
decreases computing time compared to UCT trees with an equivalent number of total
trajectories. [. . .] Not only does the HOP-UCT approach slightly outperform the UCT
method, it requires less than one third the time to do it.� These observations correspond
astonishingly well to the results observed above, especially for the time aspect (the second
UCT version needs approximately 3.2 times more time than the �rst version). The �rst
UCT version even vastly and not only slightly outperforms the second UCT version.
Still, all the comments above can be neglected by preferring the second announcement

style version over the �rst one, as it clearly allows the UCT players to achieve better
results (note that the absolute average round score points are also higher when comparing
the tests of a UCT players playing with three random players). Also note that using the

60

second announcement style version is a bit faster compared to using the �rst version.
All remaining experiments of this chapter will thus use the second announcement style
version.

6.3 Testing single player options

This section is dedicated to show experiments which compare the baseline UCT player
with another UCT player that changes exactly one parameter, i.e. that changes one
characteristic of the UCT algorithm in comparison to the baseline UCT players. Each
of the following subsections describes which parameter is changed and shows how this
is re�ected in the results. The general setup of experiments is as follows: �rst, the
UCT players with the di�erent values for the tested parameter play together with three
random players and second, they play directly against each other, together with two
random players. In the latter setup, UCT players are positioned vis-à-vis, even if in an
earlier section of this chapter, it was shown that when using the second announcement
style version, the positioning of the UCT players does not matter. Also, all experiments
are conducted both with UCT players using the �rst and the second version in order to
see if maybe some of the player options tested yield an improvement for only one of the
UCT version or a more accentuated change at one of the versions.

6.3.1 Using team points as a bias for the UCT rewards

This subsection is dedicated to investigate the in�uence of choosing between using a
player's points or his team points as a bias in addition to the score points when calcu-
lating the UCT rewards.

Player 1 Options

Team points?: no yes no yes

Player 3 Options

Team points?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 0.84 9.28± 0.83 6.36± 1.39 5.74± 1.27
P2 (Rnd): −3.64± 1.07 −2.83± 1.07 −6.64± 1.32 −6.77± 1.29
P3 (Rnd/UCT): −4.00± 0.97 −4.02± 1.02 5.92± 1.24 7.00± 1.29
P4 (Rnd): −2.23± 1.05 −2.42± 1.04 −5.64± 1.27 −5.96± 1.27

Table 6.30: Comparing the use of team points against the use of player's points, using
the �rst UCT version

Table 6.30 shows both the results of one UCT player playing with three random players
(column one and two) and two UCT players playing together with two random players
(columns three and four). Amazingly, the UCT player using his team points instead of
his own points to bias the won score points achieves less score points in all of the four

61

experiments. I would have expected that using the team points as a bias should not be
worse than using the player's points, but apparently this is not the case.

Player 1 Options

Team points?: no yes no yes

Player 3 Options

Team points?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 11.98± 1.22 12.00± 1.12 6.97± 1.74 7.91± 1.74
P2 (Rnd): −4.19± 0.87 −4.30± 0.90 −7.29± 0.98 −7.80± 1.04
P3 (Rnd/UCT): −4.60± 0.87 −4.45± 0.81 6.90± 1.65 6.68± 1.78
P4 (Rnd): −3.19± 0.90 −3.25± 0.88 −6.58± 1.02 −6.79± 1.03

Table 6.31: Comparing the use of team points against the use of player's points, using
the second UCT version

Table 6.31 shows the same setup of experiments, but UCT players use the second UCT
version. Again somewhat amazing, now using the team points instead of the player's
points achieves better results for the UCT players: in column three, the UCT player
using his playing points and not his team points is slightly better than the UCT player
doing the other way round, but in the fourth column, the UCT player using the team
points wins by a large average round score points di�erence, and also when playing
against three random players, the version using team points is a little bit better. To
conclude, the �rst UCT version should use player's points to bias the score points when
calculation the UCT rewards and the second UCT version should use the team points
of the player instead.

6.3.2 Changing the announcement rule

This subsection investigates the e�ect of changing the announcement rules for UCT play-
ers, i.e. they can either be allowed to make all announcements, to only announce some-
thing if the calculated UCT reward for the corresponding successor is positive or to do
no announcements at all. This option originally was intended to avoid over-announcing
of the UCT players when using the �rst announcement style version, i.e. when they
are allowed to choose from all legal announcements. As a consequence, announcement
move nodes have a large branching factor and thus many times, the algorithm �wrongly�
chooses one of the successors which corresponds to make an announcement although it
is clear at the moment of the game that no announcement should be made at all. As
over-announcing can be reduced a lot or even completely removed when using the second
announcement style version, this option maybe does not yield any improvement.
Tables 6.32 and 6.33 show results of experiments where UCT players using the �rst

UCT version play against three random players or against another UCT player with a
di�erent announcement rule, together with two random players. The �rst thing to notice
in the �rst table, �rst three columns, is that there is no di�erence at all between allowing

62

Player 1 Options

Allow ann.: no yes only + yes no

Player 3 Options

Allow ann.: - - - no yes

95% con�dence intervals for average round scores

P1 (UCT): 7.82± 0.67 9.87± 0.84 9.87± 0.84 6.53± 0.96 5.17± 0.92
P2 (Rnd): −3.06± 0.93 −3.64± 1.07 −3.64± 1.07 −6.27± 0.96 −6.04± 1.01
P3 (Rnd/UCT): −3.18± 0.85 −4.00± 0.97 −4.00± 0.97 4.65± 0.95 6.24± 0.95
P4 (Rnd): −1.58± 0.93 −2.23± 1.05 −2.23± 1.05 −4.90± 1.00 −5.36± 0.99

Table 6.32: Comparing di�erent announcement rules, using the �rst UCT version (1)

Player 1 Options

Allow ann.: yes only + no only +

Player 3 Options

Allow ann.: only + yes only + no

95% con�dence intervals for average round scores

P1 (UCT): 6.07± 1.29 6.68± 1.31 5.14± 0.92 6.53± 0.96
P2 (Rnd): −7.36± 1.23 −7.38± 1.22 −6.07± 1.01 −6.27± 0.96
P3 (UCT): 6.64± 1.30 6.01± 1.33 6.26± 0.95 4.65± 0.95
P4 (Rnd): −5.35± 1.18 −5.30± 1.20 −5.34± 0.99 −4.90± 1.00

Table 6.33: Comparing di�erent announcement rules, using the �rst UCT version (2)

all announcements or only announcements when the UCT reward is positive. This can
be easily explained by the fact that the random players are not a �serious� opponent for
the UCT player and thus he will always have positive UCT rewards for moves where
he can choose to make an announcement or not, because when choosing not to make
an announcement, the UCT player wins the game with a very high probability. The
same does not hold anymore as soon as a second UCT player comes into play. Columns
four and �ve of the �rst table and columns three and four of the second table clearly
show that forbidding all announcements is a hard punishment for any UCT player. The
comparison between allowing all announcements or only if they have a positive UCT
reward can be found in the �rst two columns of the second table: the UCT player
only making announcements if the UCT rewards for that successor are positive clearly
achieves more points than the UCT player allowed to always make an announcement.
This can be explained by the fact that UCT players free to announce even with negative
UCT rewards still risk to make an over-announcement from time to time, which costs
them a few score points. This cannot happen to the other UCT player who plays very
defensively with respect to announcements.
Tables 6.34 and 6.35 show the results of the second series of experiments, which are ba-

sically the same than the ones above, but using the second UCT version. Also the results
are quite similar: when playing against random players, it is clearly better to allow all
announcements and even very slightly better to only allow making announcements if the

63

Player 1 Options

Allow ann.: no yes only + yes no

Player 3 Options

Allow ann.: - - - no yes

95% con�dence intervals for average round scores

P1 (UCT): 9.20± 0.76 11.98± 1.22 12.00± 1.19 6.44± 1.19 3.91± 0.91
P2 (Rnd): −3.25± 0.81 −4.19± 0.87 −4.18± 0.87 −5.61± 0.83 −5.49± 0.84
P3 (Rnd/UCT): −3.63± 0.80 −4.60± 0.87 −4.59± 0.86 4.08± 0.87 6.37± 1.15
P4 (Rnd): −2.32± 0.83 −3.19± 0.90 −3.24± 0.89 −4.92± 0.84 −4.79± 0.84

Table 6.34: Comparing di�erent announcement rules, using the second UCT version (1)

Player 1 Options

Allow ann.: yes only + no only +

Player 3 Options

Allow ann.: only + yes only + no

95% con�dence intervals for average round scores

P1 (UCT): 6.62± 1.74 6.80± 1.74 3.88± 0.91 6.47± 1.20
P2 (Rnd): −7.50± 1.00 −7.55± 1.01 −5.52± 0.84 −5.62± 0.83
P3 (UCT): 7.73± 1.70 7.65± 1.73 6.48± 1.13 4.08± 0.88
P4 (Rnd): −6.84± 1.03 −6.90± 1.04 −4.83± 0.84 −4.92± 0.84

Table 6.35: Comparing di�erent announcement rules, using the second UCT version (2)

corresponding UCT rewards are positive. When taking a look at the experiments where
two UCT players are involved, it is again obvious than forbidding all announcements
is a very bad idea, as this lowers the average round score points by a large amount.
More interestingly, the choice between allowing all announcements or only if rewards
are positive is less clear than in the experiments where the �rst UCT version was used:
when adding up the average score round points of the two experiments shown in the
�rst and second column of the second table, the UCT player allowed to always make
an announcement yields a score of 14.27 against a score of 14.53 of the UCT player
who only can make an announcement if the expected reward is positive. Concluding
this section, it is hard to choose between allowing free announcing for UCT players or
restricting it to cases where the corresponding expected UCT reward is positive. This is
also a question of playing style: either the UCT player plays more o�ensively (which can
be good against week opponents) or more defensively (probably better against stronger
opponents).

6.3.3 Using the correct UCT formula

This subsection examines the e�ect of using the correct UCT formula rather than the
wrong one. The only reason using the wrong UCT formula is an option for a UCT player
is that some local experiments have not shown a signi�cant di�erence in the results after

64

�xing the original bug of the wrong UCT player. Also the di�erence of how the UCT
formula is calculated is not very large, the e�ect of the nominator of the fraction under
the square root being the number of total rollouts rather than the number of visits at
the current node can only become large if the number of visits is low and the number
of the current rollout is high. As a consequence, using the wrong UCT formula causes
the exploration term to be a bit larger than it would normally be, but only when the
number of the current rollout reaches a certain high value. This means that the UCT
algorithm is likely to explore a bit more towards the end of iterations, when the number
of rollouts grows large.

Player 1 Options

Wrong formula?: no yes no yes

Player 3 Options

Wrong formula?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 10.64± 0.90 9.87± 0.84 6.34± 1.27 6.36± 1.35
P2 (Rnd): −3.22± 1.09 −3.64± 1.07 −6.42± 1.30 −7.46± 1.29
P3 (Rnd/UCT): −4.72± 0.98 −4.00± 0.97 6.36± 1.26 6.53± 1.29
P4 (Rnd): −2.70± 1.08 −2.23± 1.05 −6.29± 1.30 −5.44± 1.33

Table 6.36: Comparing the use of the correct UCT formula against the wrong one, using
the �rst UCT version

Table 6.36 shows the results of experiments using the �rst UCT version. The UCT
player using the correct UCT formula achieves a slightly better result when comparing
the �rst two columns. The same holds for the direct comparison shown in the last two
columns (when adding up the values of both experiments), although the improvement
is less dominant.

Player 1 Options

Wrong formula?: no yes no yes

Player 3 Options

Wrong formula?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 12.82± 1.31 11.98± 1.22 8.66± 1.67 6.44± 1.78
P2 (Rnd): −4.70± 0.93 −4.19± 0.87 −7.52± 0.99 −7.53± 1.03
P3 (UCT): −4.93± 0.88 −4.60± 0.87 5.86± 1.75 7.85± 1.71
P4 (Rnd): −3.19± 0.92 −3.19± 0.90 −7.00± 1.00 −6.76± 0.95

Table 6.37: Comparing the use of the correct UCT formula against the wrong one, using
the second UCT version

Table 6.37 shows the results of the same experiments but using the second UCT version
for the UCT players. It is obvious that the UCT player using the correct UCT formula
achieves better results than the player using the wrong formula in all experiments, thus

65

strengthening the observations from the experiments with the �st UCT version. Using
the correct UCT formula is thus a reasonable option to be tested further in Section 6.4.

6.3.4 Not using an MC simulation

In this subsection, the �use or not use an MC simulation� option is tested: if the UCT
player uses an MC simulation as soon as a leaf node has been reached and a new node
has been added to the search tree, then the game is only simulated from that moment on
and no more nodes are added. If no MC simulation is used, then the algorithm continues
to normally add one unvisited successor even after reaching a leaf node of the tree.

Player 1 Options

MC simulation?: no yes no yes

Player 3 Options

MC simulation?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 9.34± 0.82 9.87± 0.84 6.38± 1.25 6.38± 1.15
P2 (Rnd): −3.43± 0.95 −3.64± 1.07 −7.23± 1.15 −7.08± 1.24
P3 (Rnd/UCT): −3.47± 0.87 −4.00± 0.97 6.36± 1.22 6.12± 1.25
P4 (Rnd): −2.44± 0.95 −2.23± 1.05 −5.51± 1.16 −5.42± 1.15

Table 6.38: Comparing the two di�erent options concerning an MC simulation, using
the �rst UCT version

Table 6.38 shows the results of the experiments where a UCT player plays with three
random players (columns one and two) and the results of the experiments in which two
UCT players are directly compared against each other, playing with two random players
(columns three and four). Taking a look at the �rst two columns, it seems that using an
MC simulation has a little advantage over adding all nodes encountered during search to
the tree. The last two columns also show that the UCT player using an MC simulation
achieves slightly better results (only when adding up the average round score points).
Anyway, the results lie very close to each other. Thus there must be both advantages
and disadvantages of adding many nodes to a tree or not. An advantage of adding
all nodes encountered during search to the tree is the hope that in one of the future
rollouts, at least a part of the path added to the tree might be re-visited again. If so, the
information about the already visited nodes does not get lost but remains in the tree.
On the other hand, the probability of reaching an exact same leaf node deep down in the
tree again during a di�erent rollout so that the search could pro�t from the additionally
added nodes is very low. An interesting open question though is how the MC simulation
option correlates with the action selection option, i.e. how successors are chosen as soon
as a leaf node has been encountered. Combining both player options will be tested in
Section 6.4.
Table 6.39 show the results of the same experiments but with UCT players using the

second UCT version. In this case, not doing an MC simulation but adding all nodes

66

Player 1 Options

MC simulation?: no yes no yes

Player 3 Options

MC simulation?: - - yes no

95% con�dence intervals for average round scores

P1 (UCT): 15.54± 1.50 11.98± 1.22 9.98± 2.18 6.21± 1.78
P2 (Rnd): −5.40± 0.85 −4.19± 0.87 −7.84± 1.01 −6.71± 1.06
P3 (Rnd/UCT): −5.45± 0.82 −4.60± 0.87 4.76± 1.59 6.64± 2.40
P4 (Rnd): −4.69± 0.85 −3.19± 0.90 −6.90± 0.99 −6.15± 1.13

Table 6.39: Comparing the two di�erent options concerning an MC simulation, using
the second UCT version

encountered during search to the tree strongly outperforms a UCT player doing an MC
simulation. A reason why when using the second UCT version, the advantages of adding
more nodes to the tree prevail, could be the fact that only one big tree is constructed
in contrast to the many smaller trees constructed by the �rst UCT version. Thus the
probability of ending up in the same part of the search tree during some of the future
rollouts is of course larger. Also for the second UCT version, it is of interest to test how
the �use an MC simulation� option works together with the action selection option.

6.3.5 Changing the action selection version

The last subsection investigates the e�ect of using a heuristic to choose a successor of
a node where the algorithm needs to select one of several unvisited successors. The
algorithm di�erentiates two moments where a successor needs to be chosen: �rst, when
reaching a leaf node of the tree which has at least two unvisited successors. One of them
needs to be chosen and a new node will be added to the tree. From then on, either
an MC simulation is carried out or the search continues normally, adding all nodes.
In both cases, all game states reached after inserting a new node are of course nodes
that cannot have been visited before already, and thus all successors are unvisited. To
choose successor during the simulation/the continued search is the second place where a
heuristic can come into play. As described in the previous chapter on the implementation,
there are �ve versions for the action selection strategy that can be chosen via player
options: the �rst one always chooses the �rst successor at the �rst decision moment and
a random successor at all further decision moments. The second version always chooses
a random successor. Starting with version three, at all decision moments during the MC
simulation or the search after a �rst new node was added, a successor is chosen according
to a heuristic (see Chapter 5 for details). The di�erence of versions three to �ve consists
in the way the �rst unknown successor is chosen, just before the corresponding new node
is added to the tree: version three selects the �rst one, version four chooses a random
one and the �fth version also chooses this successor according to the heuristic.
The �rst series of experiments consist of UCT players playing against random players

using di�erent action selection versions. The results are shown in 6.40. The second

67

Player 1 Options

Action selection: 1 2 3 4 5

95% con�dence intervals for average round scores

P1 (UCT): 9.87± 0.84 9.74± 0.87 10.47± 0.95 10.30± 0.91 10.34± 0.92
P2 (Rnd): −3.64± 1.07 −3.10± 1.07 −3.63± 1.23 −3.66± 1.21 −3.94± 1.21
P3 (Rnd): −4.00± 0.97 −4.17± 1.00 −4.63± 1.05 −4.50± 1.07 −4.38± 1.03
P4 (Rnd): −2.23± 1.05 −2.46± 1.04 −2.21± 1.12 −2.13± 1.10 −2.02± 1.15

Table 6.40: One UCT player using the �rst UCT version playing with three random
players

action selection version seems to be worse than the reference �rst one, but version three
to �ve show some better results.

1 2 3 4 5

1 - 6.21± 1.29,
6.17± 1.24

6.99± 1.31,
6.03± 1.34

6.89± 1.44,
6.60± 1.34

6.72± 1.33,
6.37± 1.34

2 6.44± 1.36,
5.69± 1.35

- 6.78± 1.43,
5.43± 1.35

6.53± 1.39,
5.97± 1.30

6.92± 1.37,
5.53± 1.35

3 7.09± 1.40,
6.57± 1.43

7.77± 1.40,
5.63± 1.31

- 7.06± 1.46,
6.56± 1.33

7.30± 1.43,
6.84± 1.34

4 6.36± 1.38,
6.94± 1.35

7.09± 1.40,
6.46± 1.34

7.48± 1.37,
6.39± 1.38

- 7.72± 1.40,
6.11± 1.36

5 6.96± 1.47,
6.46± 1.42

6.82± 1.42,
6.64± 1.32

7.81± 1.51,
5.82± 1.39

7.15± 1.45,
6.26± 1.45

-

Table 6.41: A matrix showing the results of experiments where two UCT players using
the �rst UCT version play together with two random players, varying the
action selection version (displayed in the �rst row and the �rst column). The
�rst entry corresponds to the 95% con�dence interval for the average round
score points of the row player, the second entry for those of the column
player.

Table 6.41 shows the results of two UCT players using the �rst UCT version playing
against each other, together with three random players. The results are given in the form
of a matrix where the values shown in the �rst row and the �rst column correspond to
the action selection version used. The �rst entry in the matrix corresponds to the 95%
con�dence interval for the average round score points of the row player, the second entry
for those of the column player. The row player is always set on position one and the
column player on position three. Thus all comparison between two speci�c versions have
been tested twice, once with inversed positions. As the values are all quite close to each
other and no clear tendency can be observed, I decided to add up the average round
score points for each comparison of the di�erent versions. The result is shown in Table
6.42, where again the �rst entry corresponds to the result of the row player and the
second entry to the result of the column player, but this time the values include both

68

experiments of each pairing.

1 2 3 4 5

1 - 11.9, 12.61 13.56, 13.12 13.83, 12.96 13.18, 13.33
2 - - 12.41, 13.2 12.99, 13.06 13.56, 12.35
3 - - - 13.45, 14.04 13.12, 14.65
4 - - - - 13.98, 13.26
5 - - - - -

Table 6.42: The same experiments as those shown in the previous matrix, but this time
the average round score points have been added up for each version in order
to allow a better comparison. The �rst entry is still the 95% con�dence
interval for the average round score points for the row player and the second
entry the result achieved by the column player.

Unfortunately, also after adding up the values, no clear results are obtained: version
one wins in two out of four cases, the same holds for version two, version three loses three
out of the four pairings, version four wins in three out of the four cases and version �ve
wins two out of four pairings. I expected that guiding the action selection with the help
of a heuristic rather than choosing a �xed or a random successors should at least not
make the UCT player worse, but at least for the �rst UCT version, no real improvement
can be observed.

Player 1 Options

Action selection: 1 2 3 4 5

95% con�dence intervals for average round scores

P1 (UCT): 11.98± 1.22 4.55± 1.30 11.37± 1.14 3.34± 1.11 1.48± 1.07
P2 (Rnd): −4.19± 0.87 −1.99± 0.88 −3.91± 0.96 −1.00± 0.85 −0.59± 0.86
P3 (Rnd): −4.60± 0.87 −1.75± 0.84 −4.51± 0.91 −1.45± 0.89 −0.71± 0.83
P4 (Rnd): −3.19± 0.90 −0.81± 0.87 −2.94± 0.97 −0.89± 0.85 −0.18± 0.88

Table 6.43: One UCT player using the second UCT version playing with three random
players

In the �rst series of experiments, again one UCT player, but this time using the second
UCT version, plays with three random players, testing di�erent action selection versions.
The results are quite devastating, as all action selection versions other than the reference
one achieve a worse result. The only version that to some degree achieves reasonable
results is the third version.
Table 6.44 shows the results of UCT players using the second UCT version playing

against each other. As expected after seeing the above results, the original version which
does not use the heuristic at, all dominates all other versions. Interestingly, even the
second version, where the only change is that also the �rst time during a rollout where
the algorithm needs to choose one successors, it chooses a random one and not the
�rst one, achieves a real bad result compared to the �rst version. A reason for this

69

1 2 3 4 5

1 - 13.42± 1.69,
−4.46± 1.66

8.77± 1.71,
3.98± 1.47

13.01± 1.75,
−2.65± 1.39

14.75± 1.67,
−5.48± 1.33

2 −3.45± 1.67,
12.43± 1.60

- −3.20± 1.81,
9.18± 1.48

2.71± 1.67,
1.06± 1.26

3.30± 1.70,
0.34± 1.22

3 6.11± 1.65,
8.28± 1.87

10.58± 1.50,
−1.99± 1.71

- 11.14± 1.53,
−2.75± 1.42

12.25± 1.46,
−4.18± 1.33

4 −3.23± 1.49,
13.38± 1.66

1.00± 1.42,
1.56± 1.65

−2.45± 1.55,
9.70± 1.36

- 1.93± 1.45,
0.60± 1.33

5 −5.02± 1.41,
13.60± 1.61

−0.26± 1.41,
2.94± 1.67

−4.83± 1.51,
10.68± 1.36

−0.72± 1.54,
2.23± 1.35

-

Table 6.44: This matrix shows the results of experiments corresponding to the �rst ma-
trix of this subsection, but the UCT players use the second UCT version.

might be that when a node corresponding to an announcement move is reached, the
algorithm usually (i.e. in the �rst version) adds the �rst node to the tree �rst, which
corresponds to choosing �no announcement� or answering �no� to the question if an
announcement should be done or not. Playing defensively, �rst checking the option of
making no announcement seems to be quite reasonable. Still, the di�erences in the
resulting score points should not be that high. The only version that is not getting
strongly beaten by the �rst version is version three (which also wins against version two,
four and �ve), where the algorithm keeps the same decision making compared to the
�rst version when reaching a leaf node for the �rst time in the rollout (always choosing
the �rst successor) but uses the heuristic rather than choosing a random successor when
doing an MC simulation or continuing the search. This also supports the observation
that choosing the �rst successor over choosing a random one is �better�, of course only
due to the ordering of possible successors (cards are always sorted from the lowest rank to
the highest rank within a suit, and non-trump suits are ordered before the trump suit,
if existent, and announcements are always ordered starting with the choice �no�/�no
announcement� followed by the legal announcements in increasing order or �yes� in case
of the second announcement style version). Concluding this subsection, using a heuristic
to bias action selection when choosing between several unvisited successors certainly does
not ful�ll the expectations, but deserves to be investigated further.

6.4 Combining several player options

This section investigates the e�ect of using several UCT player enhancements found in
the last section. Concretely, for the �rst UCT versions, the options tested in combina-
tions include the usage of a di�erent announcement rule, namely to allow announcing
only if the corresponding UCT reward is positive, to use the correct UCT formula and
to continue adding all nodes to the search tree rather than doing a pure MC simulation.
The latter option did not show a real improvement for the �rst UCT version, but it

70

also did not make it worse. For the second UCT versions, there is one additional �good�
option which should be used: the UCT player should use his team points rather than
his own playing points to bias the score points when calculating UCT rewards out of the
game result. Note that the usage of the heuristic for action selection is not investigated
further with the exception of testing the di�erent versions of action selection combined
with adding all nodes to the tree rather than using an MC simulation. This combination
seems to be interesting because depending on the chosen action selection, very di�erent
nodes will be added to the tree after reaching a leaf node.

6.4.1 Comparing action selection versions with no MC simulation

This subsection is dedicated to testing the e�ect of combining the use of di�erent ac-
tion selection methods together with not using an MC simulation but adding all nodes
encountered during search to the tree.

Player 1 Options

MC simulation?: no no no no no
Action selection: 1 2 3 4 5

95% con�dence intervals for average round scores

P1 (UCT): 9.07± 0.82 9.23± 0.86 9.91± 0.89 9.90± 0.88 9.92± 0.85
P2 (Rnd): −3.08± 0.98 −3.60± 0.95 −3.50± 1.11 −3.64± 1.07 −3.66± 1.05
P3 (Rnd): −3.53± 0.89 −3.52± 0.87 −3.75± 0.98 −4.23± 0.99 −3.84± 0.97
P4 (Rnd): −2.46± 0.97 −2.11± 0.95 −2.66± 1.05 −2.03± 1.04 −2.42± 1.07

Table 6.45: One UCT player using the �rst UCT version playing together with three
random players

Table 6.45 shows the results of UCT players using the �rst UCT version playing against
three random players. They are a small improvement compared to the experiments done
using an MC simulation in the sense that the usage of the heuristic for action selection
becomes a bit more meaningful.
Table 6.46 again shows a matrix like in the previous section, showing the 95% con�-

dence intervals for average round score points of the two UCT players playing against
each other with two random players. Again, the �rst entry corresponds to the result
achieved by the row player, the second entry to the results of the column player. Values
shown in the �rst row and column mark the used version of the action selection strategy.
In order to better see what happens, the results of both experiments of each paring are
again added up and shown in Table 6.47
The results show that the �rst (original) version of the action selection strategy loses

against all other con�gurations except for the second version, where still no heuristic is
used but where the �rst node to be added to the tree is chosen randomly out of the set of
unvisited successors rather than choosing the �rst one, as version one and three do. The
second version loses against all other versions. The third version seems to be the best
one, it wins against all others. The fourth version is better than the �fth version. These

71

1 2 3 4 5

1 - 5.85± 1.12,
5.65± 1.07

5.63± 1.25,
6.54± 1.12

6.04± 1.26,
5.94± 1.17

5.79± 1.26,
5.98± 1.07

2 5.67± 1.15,
5.70± 1.12

- 5.73± 1.25,
6.12± 1.09

5.87± 1.26,
6.31± 1.12

6.47± 1.24,
5.79± 1.10

3 6.78± 1.20,
5.47± 1.22

7.13± 1.18,
5.54± 1.23

- 6.93± 1.27,
5.80± 1.15

6.96± 1.38,
5.85± 1.16

4 6.34± 1.12,
5.76± 1.20

7.33± 1.14,
5.30± 1.26

6.84± 1.29,
6.32± 1.27

- 6.96± 1.25,
5.51± 1.16

5 6.83± 1.13,
5.24± 1.17

6.72± 1.12,
5.81± 1.23

6.57± 1.24,
6.10± 1.18

6.42± 1.24,
6.28± 1.20

-

Table 6.46: A matrix showing the results of experiments where two UCT players using
the �rst UCT version play together with two random players, varying the
action selection version (displayed in the �rst row and the �rst column). The
�rst entry corresponds to the 95% con�dence interval for the average round
score points of the row player, the second entry for those of the column
player.

1 2 3 4 5

1 - 11.55, 11.32 11.1, 13.32 11.8, 12.28 11.03, 12.81
2 - - 11.27, 13.25 11.17, 13.64 12.28, 12.51
3 - - - 13.25, 12.64 13.06, 12.24
4 - - - - 13.24, 11.93
5 - - - - -

Table 6.47: The same experiments as those shown in the previous matrix, but this time
the average round score points have been added up for each pairing of ver-
sions in order to allow a better comparison.

72

results are a bit surprising, as they state that using the heuristic to choose successors
is only reasonable after having added the �rst node to the tree, i.e. when continuing
the search until a terminal state is reached. Further, when expanding a node for the
�rst time during a rollout, choosing the �rst successor is the best choice. Again, this
must be due to the ordering of legal moves. Also using an MC simulation rather than
adding all nodes to the tree (see previous section) did not show a great improvement
when using the heuristic. This can be explained rudimentarily by the fact that during
an MC simulation, the nodes are not added to the tree, thus the information gain of
using a heuristic during the MC simulation is only re�ected in the results of the terminal
state reached, but the nodes are not ultimately added to the tree. Still, the information
is of course re�ected in the UCT rewards which are added to the tree, thus it is not very
clear why there exists this di�erence in the results.

Player 1 Options

MC simulation?: no no no no no
Action selection: 1 2 3 4 5

95% con�dence intervals for average round scores

P1 (UCT): 14.66± 1.47 3.18± 1.64 12.31± 1.29 3.59± 1.13 0.61± 1.22
P2 (Rnd): −5.01± 0.85 −1.27± 0.82 −4.42± 0.91 −1.50± 0.81 −0.34± 0.88
P3 (Rnd): −5.53± 0.79 −1.40± 0.84 −4.74± 0.91 −1.84± 0.83 −0.66± 0.87
P4 (Rnd): −4.12± 0.86 −0.51± 0.90 −3.16± 0.93 −0.25± 0.85 0.40± 0.84

Table 6.48: One UCT player using the �rst UCT version playing together with three
random players

Table 6.48 shows the corresponding results of the second UCT version when playing
against three random players. As they are still as devastating as in the previous section,
where the action selection strategy was tested using an MC simulation, this options is
not further investigated for the second UCT version.

6.4.2 Combining good options for the �rst UCT version

The following experiments for the �rst UCT version combine using di�erent announce-
ment rules, using the wrong or the correct UCT formula and using an MC simulation
or not.
Table 6.49 shows the results of the �rst series of experiments, where all combinations

of using the mentioned three options (excluding cases where none or only one of the
enhancements are used as this has been tested in the previous sections) are tested against
three random players. Comparing the results with the average round score points value of
9.87 the baseline player achieves, only the third column shows a signi�cant improvement
for the UCT players that uses all enhancements except to not use an MC simulation, i.e.
the player does an MC simulation in each rollout. Observations made in the previous
sections include that it is not very clear if using an MC simulation or not is better
when using the �rst UCT version, but when combining it with other �found to be good�

73

Player 1 Options

Allow ann.: yes only + only + only +
Wrong formula?: no yes no no
MC simulation?: no no yes no

95% con�dence intervals for average round scores

P1 (UCT): 9.34± 0.82 9.07± 0.82 10.64± 0.90 9.34± 0.82
P2 (Rnd): −3.43± 0.95 −3.08± 0.98 −3.22± 1.09 −3.43± 0.95
P3 (Rnd): −3.47± 0.87 −3.53± 0.89 −4.72± 0.98 −3.47± 0.87
P4 (Rnd): −2.44± 0.95 −2.46± 0.97 −2.70± 1.08 −2.44± 0.95

Table 6.49: One UCT player testing the combinations of using two or all of the three
selected di�erent options together

options, it seems that using an MC simulation should be preferred over adding all nodes
to the tree.

Player 1 Options

Allow ann.: yes only + only + only +
Wrong formula?: no no yes no
MC simulation?: no no no no

Player 3 Options

Allow ann.: only + yes only + only +
Wrong formula?: no no no yes
MC simulation?: no no no no

95% con�dence intervals for average round scores

P1 (UCT): 5.80± 1.07 6.17± 1.07 5.53± 1.07 6.03± 1.10
P2 (Rnd): −6.21± 1.00 −6.37± 1.00 −6.27± 0.95 −6.33± 1.07
P3 (UCT): 6.00± 1.14 5.62± 1.15 5.93± 1.10 5.68± 1.09
P4 (Rnd): −5.59± 1.00 −5.42± 1.00 −5.18± 0.96 −5.37± 0.99

Table 6.50: One UCT player testing the combinations of using two of the three selected
di�erent options against another UCT player using all three of them (1)

Tables 6.50 and 6.51 show the results of experiments where one UCT player using all
possible combinations of using two of the three selected options plays against another
UCT player using all three options at the same time. The �rst table shows very well
that using all three options at the same time wins against the version which allows all
announcements and the version which uses the wrong UCT formula. The second table
however shows that the con�guration which does not add all nodes to the tree but instead
uses an MC simulation wins against the version using all three options (and which thus
adds all nodes to the tree instead of only one per rollout). This observation corresponds
very well to the one seen in Table 6.49. Of course one could now continue testing the
con�guration using that uses an MC simulation, the correct UCT formula and only
allows announcements if the corresponding UCT rewards are positive, but I expect this
con�guration to be the strongest one when considering the experiments shown in this

74

Player 1 Options

Allow ann.: only + only +
Wrong formula?: no no
MC simulation?: yes no

Player 3 Options

Allow ann.: only + only +
Wrong formula?: no no
MC simulation?: no yes

95% con�dence intervals for average round scores

P1 (UCT): 6.90± 1.13 6.60± 1.26
P2 (Rnd): −6.78± 1.22 −7.25± 1.18
P3 (UCT): 5.44± 1.20 6.53± 1.19
P4 (Rnd): −5.56± 1.15 −5.88± 1.17

Table 6.51: One UCT player testing the combinations of using two of the three selected
di�erent options against another UCT player using all three of them (2)

subsection.

6.4.3 Combining good options for the second UCT version

The following experiments for the second UCT version investigates the e�ect of using
di�erent combinations of using team points or player's points when calculating UCT
rewards, allowing all announcements or only if the corresponding UCT rewards are
positive, using the wrong or the correct UCT formula and using an MC simulation or
not.

Player 1 Options

Team points?: no yes yes yes yes
Allow ann.: only + yes only + only + only +
Wrong formula?: no no yes no no
MC simulation?: no no no yes no

95% con�dence intervals for average round scores

P1 (UCT): 15.32± 1.48 15.20± 1.32 14.96± 1.40 12.76± 1.24 15.01± 1.31
P2 (Rnd): −5.33± 0.84 −5.22± 0.76 −5.24± 0.83 −4.37± 0.88 −5.15± 0.77
P3 (Rnd): −5.38± 0.81 −5.49± 0.76 −5.49± 0.82 −5.05± 0.87 −5.42± 0.75
P4 (Rnd): −4.62± 0.84 −4.50± 0.83 −4.23± 0.86 −3.34± 0.89 −4.43± 0.83

Table 6.52: One UCT player testing the combinations of using three of the four and all
of the four selected di�erent options together

The �rst series of experiments consists of letting one UCT player play together with
three random players, using all possible combinations of using or not using the four
selected player options, with the exception of combinations where only one or none of
them is used because those combinations have been tested in the previous section. Table

75

Player 1 Options

Team points?: no no no
Allow ann.: yes only + only +
Wrong formula?: no yes no
MC simulation?: no no yes

95% con�dence intervals for average round scores

P1 (UCT): 15.54± 1.50 14.55± 1.40 12.74± 1.28
P2 (Rnd): −5.40± 0.85 −4.97± 0.84 −4.67± 0.93
P3 (Rnd): −5.45± 0.82 −5.49± 0.79 −4.90± 0.88
P4 (Rnd): −4.69± 0.85 −4.08± 0.84 −3.17± 0.92

Table 6.53: One UCT player testing the combinations of using two of the four selected
di�erent options together (1)

Player 1 Options

Team points?: yes yes yes
Allow ann.: yes yes only +
Wrong formula?: yes no yes
MC simulation?: no yes yes

95% con�dence intervals for average round scores

P1 (UCT): 15.07± 1.44 12.78± 1.26 11.88± 1.12
P2 (Rnd): −5.28± 0.84 −4.38± 0.88 −4.26± 0.90
P3 (Rnd): −5.52± 0.84 −5.06± 0.87 −4.41± 0.81
P4 (Rnd): −4.27± 0.86 −3.35± 0.89 −3.21± 0.88

Table 6.54: One UCT player testing the combinations of using two of the four selected
di�erent options together (2)

76

6.52 shows the results of experiments where three or all of the four combinations have
been tested. The only relatively clear tendency that can be observed is that using an
MC simulation yields less good results compared to the other combination. Tables 6.53
and 6.54 show the results of experiments where combinations of using two of the four
options are tested. It is again quite di�cult to read a lot from these results, but at
least using an MC simulation still yields comparably poor results. Also, using all four
enhancements together seems to be reasonable, as the results are only slightly worse
than when using the player's points instead of the team points (�rst column) or when
allowing all announcements instead of only if they rewards are positive (second column).
The following experiments with two UCT players will always compare a combination
of using some of the options against using all of them, because this still seems to be
the most promising con�guration, as every of the options when used alone improved the
UCT player, as seen in the previous section.

Player 1 Options

Team points?: no yes yes yes
Allow ann.: only + only + yes only +
Wrong formula?: no no no no
MC simulation?: no no no no

Player 3 Options

Team points?: yes no yes yes
Allow ann.: only + only + only + yes
Wrong formula?: no no no no
MC simulation?: no no no no

95% con�dence intervals for average round scores

P1 (UCT): 8.00± 2.18 8.40± 2.09 6.69± 2.15 6.83± 2.13
P2 (Rnd): −7.25± 1.08 −7.08± 1.14 −6.85± 1.05 −6.92± 1.06
P3 (UCT): 5.78± 2.23 5.31± 2.13 6.64± 2.01 6.65± 2.08
P4 (Rnd): −6.52± 1.05 −6.63± 1.09 −6.48± 1.03 −6.56± 1.03

Table 6.55: One UCT player testing the combinations of using three of the four selected
di�erent options against another UCT player using all four of them (1)

Tables 6.55 and 6.56 show the results of experiments where a UCT player using three
of the four selected options plays against a UCT player using all four options. In the
�rst table, the results of the pairings are quite close, one needs to add up the average
round score points of both experiments (with inversed positions). Then the version using
all four enhancements slightly wins against the version where player's points are used
instead of team points and the version where announcements are always allowed rather
than only if the corresponding UCT rewards are positive. These results correspond
very well to the ones seen in Table 6.52, where the same combinations have been tested
against three random players and where also the same two versions were even slightly
better than the version using all four options at the same time. The results of the
second table are more obvious, i.e. using the correct UCT formula and not using an
MC simulation is better than using the wrong UCT formula or using an MC simulation.

77

Player 1 Options

Team points?: yes yes yes yes
Allow ann.: only + only + only + only +
Wrong formula?: yes no no no
MC simulation?: no no yes no

Player 3 Options

Team points?: yes yes yes yes
Allow ann.: only + only + only + only +
Wrong formula?: no yes no no
MC simulation?: no no no yes

95% con�dence intervals for average round scores

P1 (UCT): 7.46± 2.08 9.97± 2.14 5.91± 1.64 10.83± 2.08
P2 (Rnd): −7.10± 1.06 −7.87± 1.04 −7.08± 1.04 −7.71± 0.96
P3 (UCT): 5.90± 2.15 5.40± 2.06 7.99± 2.13 4.37± 1.66
P4 (Rnd): −6.26± 1.04 −7.51± 1.09 −6.82± 1.02 −7.49± 1.01

Table 6.56: One UCT player testing the combinations of using three of the four selected
di�erent options against another UCT player using all four of them (2)

Again, these results correspond well to the ones shown in Table 6.52.
Tables 6.57, 6.58 and 6.59 show the result of experiments where a UCT player using

two out of the four chosen options against a UCT player using all of them. In all six
pairings, the UCT player using all four enhancements at the same time achieves a higher
average round score points value than the other UCT player using a combination of two
out of the four options. The �rst three pairings, shown in the �rst table and the �rst
two columns of the second table, show no signi�cant di�erence in the results and one
needs to add up the average round score points of both experiments of each pairing.
For the remaining three pairings, the version using two of the four options uses an MC
simulation, which again yields to signi�cantly worse results than when not using an MC
simulation.
Summarizing the results of this subsection, it has been shown that combining several

of the previously found to be �reasonable� player options works well and fortunately,
using all four of them at the same time achieves the overall best results.

6.4.4 Chosen best con�gurations for both UCT versions

The con�guration of the best UCT players found for both UCT versions is shown in
Table 6.60. Note that the obtained results when playing with three random players
indeed surpass the results of the baseline con�gurations, depicted in Table6.27

78

Player 1 Options

Team points?: no yes no yes
Allow ann.: yes only + only + only +
Wrong formula?: no no yes no
MC simulation?: no no no no

Player 3 Options

Team points?: yes no yes no
Allow ann.: only + yes only + only +
Wrong formula?: no no no yes
MC simulation?: no no no no

95% con�dence intervals for average round scores

P1 (UCT): 7.79± 2.27 8.70± 2.11 8.06± 1.99 8.36± 2.18
P2 (Rnd): −7.20± 1.11 −6.98± 1.15 −7.38± 0.96 −7.42± 1.04
P3 (UCT): 5.88± 2.25 4.80± 2.17 5.66± 2.14 5.95± 2.00
P4 (Rnd): −6.47± 1.06 −6.53± 1.11 −6.34± 1.00 −6.90± 1.03

Table 6.57: One UCT player testing the combinations of using two of the four selected
di�erent options against another UCT player using all four of them (1)

Player 1 Options

Team points?: no yes yes yes
Allow ann.: only + only + yes only +
Wrong formula?: no no yes no
MC simulation?: yes no no no

Player 3 Options

Team points?: yes no yes yes
Allow ann.: only + only + only + yes
Wrong formula?: no no no yes
MC simulation?: no yes no no

95% con�dence intervals for average round scores

P1 (UCT): 6.35± 1.76 9.47± 2.01 7.46± 2.14 10.03± 2.14
P2 (Rnd): −7.64± 1.00 −7.81± 0.88 −7.12± 1.06 −7.86± 1.06
P3 (UCT): 7.96± 2.05 5.57± 1.67 5.94± 2.17 5.32± 2.11
P4 (Rnd): −6.66± 1.00 −7.23± 0.90 −6.28± 1.06 −7.50± 1.10

Table 6.58: One UCT player testing the combinations of using two of the four selected
di�erent options against another UCT player using all four of them (2)

79

Player 1 Options

Team points?: yes yes yes yes
Allow ann.: yes only + only + only +
Wrong formula?: no no yes no
MC simulation?: yes no yes no

Player 3 Options

Team points?: yes yes yes yes
Allow ann.: only + yes only + only +
Wrong formula?: no no no yes
MC simulation?: no yes no yes

95% con�dence intervals for average round scores

P1 (UCT): 5.85± 1.66 10.94± 2.09 5.97± 1.62 10.44± 2.12
P2 (Rnd): −7.08± 1.05 −7.64± 0.96 −7.34± 1.05 −7.91± 0.96
P3 (UCT): 8.06± 2.14 4.12± 1.66 7.94± 2.28 4.96± 1.62
P4 (Rnd): −6.83± 1.03 −7.42± 1.02 −6.57± 1.01 −7.48± 0.96

Table 6.59: One UCT player testing the combinations of using two of the four selected
di�erent options against another UCT player using all four of them (3)

General Options

games: 1000 1000
Comp. solos?: no no
Random cards: yes yes
Random seed: 2012 2012
Ann. version: 2 2

Player 1 Options

Version: 1 2
SP factor: 500 500
Team points?: no yes
PP Divisor: 1 1
Expl const.: 7000 20000
rollouts: 100 1000
sim: 10 -
Allow ann.: only + only +
Wrong formula?: no no
MC simulation?: yes no
Action selection: 1 1

95% con�dence intervals for average round scores

P1 (UCT): 10.64± 0.90 15.01± 1.31
P2 (Rnd): −3.22± 1.09 −5.15± 0.77
P3 (Rnd): −4.72± 0.98 −5.42± 0.75
P4 (Rnd): −2.70± 1.08 −4.43± 0.83

Table 6.60: Con�gurations of the best UCT players for each version

80

6.5 Increasing the number of rollouts and the

number of games

This section is intended to investigate the e�ect of raising the number of rollouts (and
simulations for the �rst UCT version) on the quality of the results and the e�ect of
increasing the number of games on the con�dence intervals of the results. Furthermore,
the amount of time and memory used when increasing those parameters will be observed.
For this purpose, the best con�gurations found in the previous section will be used. Also
the two UCT versions are again tested against each other, to determine the �nal version
to be used for an experiment against a human player.

General Options

games: 1000 1000 1000 4000

Player 1 Options

rollouts: 100 100 1000 100
sim: 10 100 10 10

95% con�dence intervals for average round scores

P1 (UCT): 10.64± 0.90 11.06± 0.87 12.78± 1.05 9.98± 0.45
P2 (Rnd): −3.22± 1.09 −3.53± 1.11 −4.19± 1.02 −3.14± 0.53
P3 (Rnd): −4.72± 0.98 −4.88± 1.00 −4.80± 0.96 −3.72± 0.51
P4 (Rnd): −2.70± 1.08 −2.64± 1.11 −3.78± 1.02 −3.12± 0.53

Time and memory

Peak mem: 2820kb 2820kb 3156kb 2820kb
Total time: 39m44s 6h32m7s 6h39m46s 2h37m26s

Table 6.61: One UCT player using the �rst UCT version comparing the use of a higher
number of simulations and rollouts and a higher number of games

Table 6.61 shows the results of the �rst UCT version playing against three random
players, varying the number of simulations, rollouts and games played. As expected,
increasing the total number of rollouts used (be it by increasing the number of simu-
lations or the number of rollouts per simulation) slightly improves the quality of the
player. It is interesting to note that increasing the number of simulations results in a
less signi�cant improvement of the result compared to increasing the number of rollouts
made in each simulation (columns two and three). Furthermore, playing four times more
games (column four) approximately decreases the range of the 95% interval by one half
(which was to be expected due to the con�dence interval being calculated with the use
of a square root). Taking a look at time and memory usage, one can observe that in-
creasing the number of simulations and increasing the number of rollouts both result in
a similar increase of time usage: the time usage is very exactly ten times larger, which
corresponds to the number of total rollouts being ten times larger. The reason for this
is that the time needed for computation of the game itself can be neglected in com-
parison to the computing time of the UCT algorithm. When increasing the number of
simulations, the memory usage remains constant, which is due to the fact that the trees

81

of each simulation are not kept in memory but just the results of each tree are stored
and in the end aggregated to the �nal result. When increasing the number of rollouts
though, a little increase of the memory usage can be observed, which is caused by the
constructed trees being larger. To better compare the di�erent versions with respect to
number of simulations and rollouts, they are tested in direct play against each other.

Player 1 Options

rollouts: 100 100 100 1000
sim: 10 100 10 10

Player 3 Options

Expl const.: 7000 7000 7000 7000
rollouts: 100 100 1000 100
sim: 100 10 10 10

95% con�dence intervals for average round scores

P1 (UCT): 6.53± 1.26 8.06± 1.23 5.00± 1.26 10.51± 1.39
P2 (Rnd): −7.62± 1.20 −7.49± 1.22 −7.73± 1.23 −7.91± 1.14
P3 (UCT): 6.93± 1.20 4.97± 1.28 9.60± 1.54 4.08± 1.24
P4 (Rnd): −5.84± 1.20 −5.54± 1.19 −6.87± 1.18 −6.68± 1.16

Table 6.62: Two UCT players using the �rst UCT version comparing the use of di�erent
numbers of simulations and rollouts (1)

Player 1 Options

rollouts: 100 1000
sim: 100 10

Player 3 Options

rollouts: 1000 100
sim: 10 100

95% con�dence intervals for average round scores

P1 (UCT): 6.02± 1.23 9.47± 1.41
P2 (Rnd): −7.55± 1.17 −7.96± 1.10
P3 (UCT): 8.80± 1.49 5.32± 1.25
P4 (Rnd): −7.27± 1.14 −6.83± 1.20

Table 6.63: Two UCT players using the �rst UCT version comparing the use of di�erent
numbers of simulations and rollouts (2)

Tables 6.62 and 6.63 show the results of those experiments. The �rst table shows
experiments where the standard version using values of 10/100 for the number of simu-
lations/rollouts is used. Obviously, both increasing either the number of simulations or
the number of rollouts (thus increasing the total number of rollouts computed) results in
an improvement of the performance. The �rst table also shows that using a combination
of values of 10/1000 yields a larger improvement compared to using 100/100. This sup-
ports the observation previously made in the experiments where one UCT player played

82

against three random players. Also the second table, where the versions using 100/100
and 10/1000 are tested in playing directly together, con�rms this observation. Thus,
increasing the number of rollouts has a larger impact on the improvement of the per-
formance compared to increasing the number of simulation so that the total number of
rollouts is equal. Certainly, these experiments can be re�ned by only slightly increasing
the number of simulations and also increasing the number of rollouts at the same time.

Player 1 Options

rollouts: 1000 10000 1000

95% con�dence intervals for average round scores

P1 (UCT): 15.01± 1.31 17.34± 1.58 15.20± 0.71
P2 (Rnd): −5.15± 0.77 −5.86± 0.79 −5.12± 0.42
P3 (Rnd): −5.42± 0.75 −6.12± 0.76 −5.26± 0.41
P4 (Rnd): −4.43± 0.83 −5.36± 0.78 −4.81± 0.42

Table 6.64: One UCT player using the second UCT version comparing the use of a higher
number of rollouts and a higher number of games

Table 6.64 shows the results of a UCT player using the second UCT version varying
the number rollouts and the number of games against three random players. The results
con�rm the observation made for the �rst UCT version: increasing the number of rollouts
improves the performance of the UCT player and playing more games during a session
increases the reliability of the results, as the 95% con�dence intervals get smaller. I
decided to omit further experiments letting two UCT players with a di�erent number of
rollouts play against each other, as the results above are clear enough and as the results
for the �rst UCT version have shown, it is easy to predict that when compared directly,
the UCT player using more rollouts will achieve a higher valuer of score points.

Player 1 Options

Version: 1 2

Player 3 Options

Version: 2 1

95% con�dence intervals for average round scores

P1 (UCT): 3.93± 1.30 9.68± 2.18
P2 (Rnd): −7.71± 1.12 −6.92± 1.13
P3 (UCT): 10.41± 2.24 3.22± 1.17
P4 (Rnd): −6.62± 1.20 −5.98± 1.14

Table 6.65: Comparison of the two UCT versions where each UCT player uses the best
con�guration found and a value of 1000 for the number of total rollouts used

The last experiment of this section is the second comparison between both UCT
versions, this time not using the baseline UCT players as in Section 6.2, but the best
found con�guration for each UCT version, though only with the standard number of
1000 total rollouts. The results are shown in Table 6.65. They con�rm what has been

83

observed at many experiments before: the best con�guration for the second UCT version
clearly outperforms the best con�guration for the �rst UCT version.

6.6 Human player against best UCT player

In this section, the results of an experiment with myself playing against the best con�g-
uration found are presented. As the second UCT version clearly outperformed the �rst
one, the second UCT version is the choice for this experiment. As it was not possible
for me to �forget� the card deals played, the experiment could unfortunately not be
repeated with an inversed players positioning. Anyway, the number of games played is
very small so that the obtained results are not too much reliable. I chose to play with
only one UCT player and two random players, to avoid any in�uencing of the UCT play-
ers among themselves. Furthermore, I use the tournament settings, i.e. 24 games, but
no compulsory solos are played as those would just cost the two random players more
negative points and the UCT player and I would have two games less to play normally.
The �nal standings of the experiment can be found in Table 6.66. The results show

that the UCT player can compete with my playing strength (which I believe not to be
too bad), although I had one signi�cant advantage: I always knew that players two and
four are random players and thus not trustworthy teammates. This information was of
course not available in any form for the UCT player. Still, I also did one non-trivial
mistakes when I failed to announce a marriage when having both ♣Q, thus playing a
silent solo which I lost and which cost me six score points. Anyway, when increasing the
number of rollouts to 1000 or even more, the playing strength would certainly be even
more improved. E.g. when using 1000 rollouts, the UCT player would already play an
aces solo in the very �rst game. The disadvantage is that one would need to wait seven
to ten seconds for the computation of each move of the UCT player.
In the following, I'll summarize what kind of games have been played unless it was

a regular game (just for statistical reasons and to demonstrate the quality of the UCT
player):

• Game no. 1: Player 2 (random) plays a silent solo (because random players do not
check for marriages), of course losing it.

• Game no. 2: I play a marriage and win.

• Game no. 5: The UCT player plays a jacks solo and wins, without having done
any announcements.

• Game no. 8: I play a marriage and win.

• Game no. 10: The UCT players plays another jacks solo, announces re, I give
kontra, but the UCT player wins closely (128 to 112).

• Game no. 13: Regular game, but both the UCT player and I announced re/kontra
and the gamed ended 121 to 119 in favor of the UCT player's team (the re team).

84

General Options

games: 24
Comp. solos?: no
Random cards: yes
Random seed: 2013
Ann. version: 2

Player 3 Options

Version: 2
SP factor: 500
Team points?: yes
PP Divisor: 1
Expl const.: 20000
rollouts: 1000
Allow ann.: only +
Wrong formula?: no
MC simulation?: no
Action selection: 1

Scores

P1 (Hum): 70
P2 (Rnd): −84
P3 (UCT): 60
P4 (Rnd): −46

95% con�dence intervals for average round scores

P1 (Hum): 11.67± 7.26
P2 (Rnd): −14.00± 5.77
P3 (UCT): 10.00± 16.41
P4 (Rnd): −7.67± 9.16

Table 6.66: Tournament of myself playing against the best UCT con�guration together
with two random players

85

• Game no. 17: The UCT players plays a clubs solo, announces re and wins.

• Game no. 18: I play a diamonds solo, announce re, the UCT player replies kontra
but I win quite distinctly.

• Game no. 19: The UCT player plays a third jacks solo, announces re, I say kontra
(holding three jacks), but the UCT player still manages to win.

• Game no. 20: The UCT players plays an aces solo, announces re and wins by
making all tricks! One has to admit though that he was very lucky, as one of the
random players started by playing the wrong suit and in the end, I chose to keep
the Ace of the wrong suit (having a 50% chance to keep the right one).

• Game no. 21: I play a spades solo, announce re, the UCT player says kontra but
I win.

• Game no. 22: I fail to announce a marriage and lose silent solo.

• Game no. 24: I play a hearts solo, announce re, the UCT player announces kontra
but I win.

Note that I accidentally started playing without limiting the number of games to 24
and thus the 25th game was already started and the UCT player would have played
another solo, namely a hearts solo. I think the large number of solo plays in only
24 games is more than amazing, even at a level of good human players, this is not
common at all. The UCT player played �ve solo games, I played three solo games and
all of them were won by the soloist. I thus assume that computing whether there is
a chance of winning a solo game or not is a strength of the UCT player. A general
observation is that the UCT player often did an announcement only in reaction on one
of my announcements, i.e. when I did a (sometimes risky) announcement of kontra, he
said re, or the other way around. Sometimes, the UCT player's team then also won the
game. It happened rarely though that the UCT player did an announcement on his own,
at least in a regular game. Whenever he played a solo game, with the exception of the
�rst one, he also announced re.
In order to test if the given con�guration of the UCT player is also useful when playing

with four �good� player, i.e. when replacing the remaining two random players by two
copies of the UCT player, I played another tournament against these three players.
No parameters have been changed except that another random seed was used so that
I would not know the card deals in advance. The results are shown in Table 6.67.
Unfortunately, the results are less in favor of the UCT players, especially not in favor
of the one positioned behind me. The reason for the worse results compared to the
experiment above is that 17 out of the 24 games played were solo games, and only 6
of those were won. Thus UCT players tend to decide to play a solo game too often; I
assume this is due to the very large exploration constant (20000) chosen in the �best�
setup. This works as long there are some �bad� players involved as the random players,
but soon as the other three players play well together to stop the soloist, they often

86

fail when playing solo. I assume that optimizing the parameters of the UCT players
when always using four UCT players could adjust the problem at hand. Another idea is
to prevent the UCT players from playing solo games too often by implementing a rule
similar to the announcing rule, which would allow UCT players to play solo games only
if all corresponding UCT rewards are positive.

General Options

Random seed: 2024

Scores

P1 (Hum): 58
P2 (UCT): −52
P3 (UCT): 8
P4 (UCT): −14

95% con�dence intervals for average round scores

P1 (Hum): 9.67± 9.94
P2 (UCT): −8.67± 15.75
P3 (UCT): 1.33± 8.98
P4 (UCT): −2.33± 15.11

Table 6.67: Tournament of myself playing against the best UCT con�guration

Note that the results seem to be worse than they actually are: players three and four
are nearly on a same level around 0 score points. In a perfect world, when all players
have the same playing strength and play a number of games large enough, the resulting
score points should all lie very close to 0. This experiment deviates from this ideal only
in the sense that the UCT player on second position lost too many solo games, whereas
the other two UCT players managed to overall play in a way that they stayed near the 0
points mark. I played very defensively, only playing a solo once and winning it, therefore
explaining why I have a comfortable advance in the �nal points. It is also important to
note that the card playing behavior of the UCT players is most of the time excellent;
they start by playing aces of non trump suits if possible, often play the ♥10 on top of the
♣Q, play foxes when their teammate already secured the trick, use a fox or a ♦10 when
trumping a non trump suit which is played for the �rst time and generally play valuable
cards if the trick will (probably) be taken by a teammate and play low valued cards
if this is not the case. Also the announcing behavior is very passive and reactive, i.e.
they mostly make an announcement as a reaction to an announcement made by another
player. Additionally, they (nearly) always announce re when playing a solo (which is in
99% of the cases a very good idea because one does not play a solo game if one does not
expect to win it).

87

7 Conclusion

This chapter summarizes this thesis in a �rst section by pointing out what has been
done and by showing the contributions of this work. A second section gives an outlook
of what can and still should be done in the future in order to further improve the quality
of playing doppelkopf when using the UCT algorithm.

7.1 Summary

This work �rst introduced doppelkopf, a trick-taking card game with incomplete infor-
mation. Focusing on its o�cial rules, a motivation for solving doppelkopf was given: the
game has a huge state space and and very large strategic depth. Furthermore, there are
several other aspects of playing the game which makes it more appealing to investigate
the game: the separation into a �game type determination phase� and the �card play
phase� in which additionally the problem of good announcing comes into play and the
fact that the teams are not known in advance for most of the games played. Solving
doppelkopf thus is a non-trivial problem and can be compared to playing bridge or skat.
This thesis focused on solving the game using the UCT algorithm, an algorithm based on
MCTS with guided action selection, which had shown success in previous applications
to other games such as go, Klondike solitaire and skat.
In order to use UCT in combination with an imperfect game, one could just use the

belief state space rather then the concrete state space, thus operating on information
sets rather than real states, or the missing information could be replaced by sampling
worlds. The second solution was the one chosen for this thesis and an algorithm to
generate consistent card assignments was presented.
The next part of this thesis explained the implementation of doppelkopf and of the

UCT algorithm. Especially the latter one provides a set of numerous options that
modi�es di�erent aspects of the UCT algorithm, ranging from modi�cations to how
the UCT rewards are calculated over how many iterations of the algorithm should be
computed up to the usage of a heuristic to guide action selection in unexplored parts of
the search tree.
The �nal part was dedicated to the presentation of a large number of experiments.

First experiments were used to determine two reasonable baseline UCT players, one for
each of the two di�erent implemented UCT versions, by tuning the parameters con-
cerning the calculation of UCT rewards and of the UCT formula. The �rst block of
experiments also gave evidence that the ��rst announcement style version� which results
in game trees with a larger branching factor than the second version cause the UCT
players to play a lot worse. Furthermore, a �rst comparison of the two UCT versions

88

was conducted. The second block of experiments was then dedicated to testing the use
of single enhancements, i.e. only one option at the time was changed in comparison to
the baseline players. These results were interesting in the sense that the two di�erent
UCT versions showed di�erent behavior when enabling the same options. Follow-up
experiments tried to combine several of the �good� found options during the previous
experiments in order to �nd a ��nal� best con�guration for each UCT version. Those
were then used to test the in�uence of increasing the number of samples and the number
of games played and to compare the two UCT versions again. The �nal experiment then
consisted of myself playing against the best found UCT player. When playing together
with two random players, the results were very good and promising, but when replacing
the remaining two random players, performance of the UCT players degraded a bit, at
least for one of the tree players, namely the one positioned behind me. Still they showed
very good card playing skills.
Concluding, the primary goal of this work � which consisted of showing that the UCT

algorithm can be applied to doppelkopf and that a player using this algorithm can achieve
some good results when compared to a baseline approach, due to the lack of previous
research that would have provided better comparison data � was reached. Additionally,
a simple UCT player was improved by using several modi�cation of the UCT algorithm.
Finally, the best con�guration of the UCT player achieved some promising results when
playing against a decent human player.

7.2 Outlook

As the approach of using the UCT algorithm for playing doppelkopf was shown to achieve
promising results, it is certainly worth to think about how it can further be improved.
A �rst idea is always to check if the current implementation can be made more e�cient

in some way, so that the number of rollouts used can be improved without the loss of
a player that computes his next move within a few seconds only. More precisely, the
memory usage of the program is quite low for the moment and could be increased for
the sake of making it faster. Currently, the nodes of the search tree only store the data
relevant for the application of the UCT algorithm itself, e.g. the accumulated rewards,
which player moves and which move he chooses. Especially, the corresponding belief
game state of the UCT player using the algorithm is not stored but always recomputed
again in every iteration. If those states could be stored in addition to currently stored
information without exhausting the available memory, then this could very well yield a
speed up of the computation of UCT players.
Another approach consists of improving the heuristic to better guide the algorithm

when choosing between several unvisited successors at a node during the search. For now,
the heuristic only a�ects card play and it is probably not very sophisticated right now. By
extending the heuristic to be usable for all move types, the results of an MC simulation
or the search in general if all nodes should be added to the tree should be improved,
thus enhancing the overall performance of the UCT algorithm. Concrete ideas for the
heuristic include to always �rst choose to make no announcement at announcement

89

move nodes and to choose not to play solo games at nodes where the player is asked for
a reservation. Another good idea would certainly be to �rst choose to play a marriage
when having both ♣Q before exploring any other options like playing a secret solo or
another solo game type. Also the card playing heuristic could be extended not to only
search for �safe cards� but also to consider more information such as if a non-trump suit
can be played twice without being trumped or if playing a speci�c color is reasonable
because the teammate can get rid of a last card of another suit and thus trump this suit
later.
A third idea is to use any kind of initializing for unvisited nodes, i.e. as soon as a

leaf node is reached or added to the tree, all of its successors receive an initial value of
expected UCT rewards. That way, the action selection could always be done by applying
the UCT formula for all successors. Such an initialization could be done with the help
of heuristics again or with help of expert knowledge. It is not clear though, how any
kind of expert knowledge can be that broad that it covers all cases.
Another idea consists of using a kind of �ensemble-UCT� approach also for the second

UCT version, similar to the simulation/rollouts approach of the �rst UCT version. The
di�erence would then consist in the fact that a simulation of the second UCT version
would not �x a card assignment for all rollouts, but still use a new one for each iteration.
Thus the second UCT version would be changed in the way that not only one search
tree is constructed, but several. Their result could then be aggregated in a manner
similar to how the �rst UCT version does. Bjarnason et al. [3] tried using this approach
in their work on Klondike solitaire, and their results are promising in the fact that the
ensemble approach slightly surpasses the normal UCT variant both in the winning rate
for Klondike solitaire and the average time needed, however the HOP-UCT approach
(which corresponds to the �rst UCT version in the case of doppelkopf) is a lot faster
and obtains nearly as good results. Nevertheless, using an ensemble approach for UCT
could be tested also motivated by having di�erent version to trade-o� between speed
and performance.
Last but not least, it would be interesting to compare the performance of the UCT

players to a totally di�erent approach. Due to the lack of previous research on this
topic, one could test to play against one of the several commercially available programs
or, probably better, test against the open source program FreeDoko (see Chapter 5)
which plays solely based on rules and heuristics.

90

Bibliography

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, 47:235�256, May 2002.

[2] Ivona Bezáková, Daniel �tefankovi£, Vijay V. Vazirani, and Eric Vigoda. Accelerat-
ing Simulated Annealing for the Permanent and Combinatorial Counting Problems.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA '06, pages 900�907. ACM, 2006.

[3] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. Lower Bounding Klondike
Solitaire with Monte-Carlo Planning. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling, ICAPS '09, 2009.

[4] Michael Buro, Je�rey R. Long, Timothy Furtak, and Nathan Sturtevant. Improving
State Evaluation, Inference, and Search in Trick-Based Card Games. In Proceedings
of the 21st International Joint Conference on Arti�cial Intelligence, IJCAI'09, pages
1407�1413, 2009.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[6] Patrick Eyerich, Thomas Keller, and Malte Helmert. High-Quality Policies for the
Canadian Traveler's Problem. In Proceedings of the Twenty-Fourth AAAI Confer-
ence on Arti�cial Intelligence, AAAI'10, pages 51�58. AAAI Press, july 2010.

[7] Hilmar Finnsson and Yngvi Björnsson. Simulation-Based Approach to General
Game Playing. In Proceedings of the 23rd National Conference on Arti�cial Intel-
ligence - Volume 1, pages 259�264. AAAI Press, 2008.

[8] Hilmar Finnsson and Yngvi Björnsson. CadiaPlayer: Search Control Techniques.
KI Journal, 25(1):9�16, 2011.

[9] Sylvain Gelly and David Silver. Monte-Carlo Tree Search and Rapid Action Value
Estimation in Computer Go. Arti�cial Intelligence, 175(11):1856�1875, 2011.

[10] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modi�cation of
UCT with Patterns in Monte-Carlo Go. Technical Report 6062, INRIA, November
2006.

[11] Thomas Keller and Patrick Eyerich. PROST: Probabilistic Planning Based on
UCT. In Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS'12, 2012. To Appear.

91

[12] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo Planning. In Pro-
ceedings of the 17th European Conference on Machine Learning, ECML'06, pages
282�293, Berlin, Heidelberg, 2006. Springer-Verlag.

[13] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In Michael
Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors,
50 Years of Integer Programming 1958-2008. Springer Berlin Heidelberg, 2010.

[14] Sebastian Kupferschmid and Malte Helmert. A Skat Player based on Monte-Carlo
Simulation. In Proceedings of the 5th International Conference on Computers and
Games, CG'06, pages 135�147. Springer-Verlag, 2007.

[15] Je�rey Long, Nathan R. Sturtevant, Michael Buro, and Timothy Furtak. Under-
standing the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search. In Proceedings of the Twenty-Fourth AAAI Conference on Arti�cial Intel-
ligence, AAAI'10, 2010.

[16] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach.
Pearson Education, 3rd edition, 2009.

[17] Jan Schäfer. The UCT Algorithm Applied to Games with Imperfect Information.
Master's thesis, Otto-von-Guericke-Universität Magdeburg, July 2008.

[18] Mohammad Sha�ei, Nathan Sturtevant, and Jonathan Schae�er. Comparing UCT
versus CFR in Simultaneous Games. 2010.

[19] Wikipedia. Doppelkopf � Wikipedia, Die freie Enzyklopädie, 2012. URL
http://de.wikipedia.org/w/index.php?title=Doppelkopf&oldid=99972145.
[Online; accessed 6-March-2012].

92

