
Merge-and-Shrink Heuristics for Classical Planning: Efficient Implementation and Partial Abstractions

Silvan Sievers

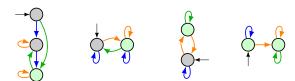
July 14, 2018

Motivation

 Given: large (labeled) transition system (your favorite search problem, classical planning task, ...)

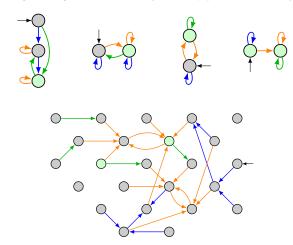
Motivation

 Given: large (labeled) transition system (your favorite search problem, classical planning task, ...)


 Goal: compute admissible heuristic, then solve optimally using A*

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)


Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

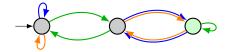
Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Merge-and-shrink: Framework

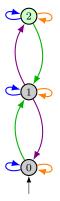
- Start with atomic factored transition system (one factor for each variable of the problem)
- Repeatedly apply transformation to factored transition system
- Keep factored mapping alongside to represent the abstraction (omitted in the following)

Outline

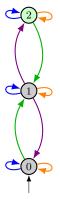

- Motivation
- 2 Efficient Implementation in Fast Downward
- Partial Abstractions

Representing Transition Systems

- Common approach: adjacency matrix
- Previous implementation: store transitions by labels
 - → beneficial for all transformations


Representing Transition Systems

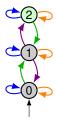
- Common approach: adjacency matrix
- Previous implementation: store transitions by labels
 → beneficial for all transformations
- New: store label groups of locally equivalent labels

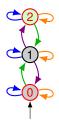

→ reduce memory pressure

Representing Transition Systems: Example

previous representation

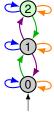
Representing Transition Systems: Example

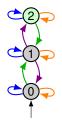


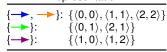

previous representation

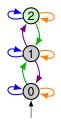
```
 \begin{array}{c} \longrightarrow : \{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\} \\ \longrightarrow : \{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle\} \\ \longrightarrow : \{\langle 0,1\rangle,\langle 2,1\rangle\} \\ \longrightarrow : \{\langle 1,0\rangle,\langle 1,2\rangle\} \\ \end{array}
```

optimized representation

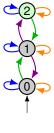

```
\{ \longrightarrow, \longrightarrow \} : \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \} 
\{ \longrightarrow \} : \{ \langle 0, 1 \rangle, \langle 2, 1 \rangle \} 
\{ \longrightarrow \} : \{ \langle 1, 0 \rangle, \langle 1, 2 \rangle \}
```

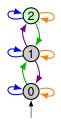




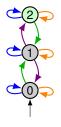
representation



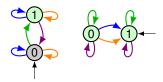
representation

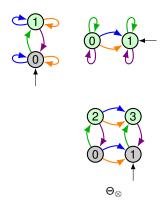

```
{→, →}:
```

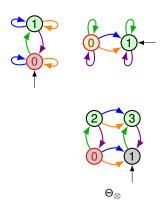

representation

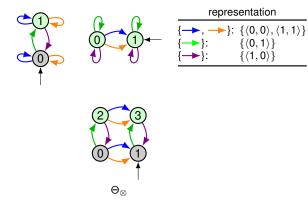

```
\{ \longrightarrow, \longrightarrow \}: \{ \langle 0, 0 \rangle, \}
```


representation

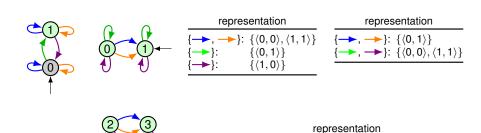

```
\{\longrightarrow,\longrightarrow\}: \{\langle 0,0\rangle,\langle 1,1\rangle\}
```

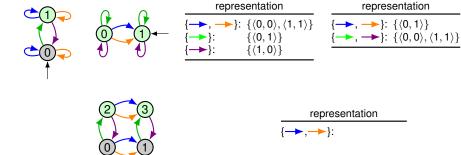




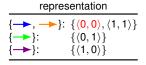

representation

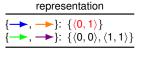
```
\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\} : \left\{ \langle 0, 0 \rangle, \langle 1, 1 \rangle \right\} 
\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} : \left\{ \langle 0, 1 \rangle \right\} 
\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} : \left\{ \langle 1, 0 \rangle \right\}
```

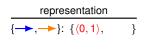



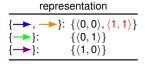


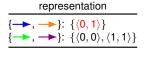
 Θ_{\otimes}

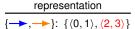


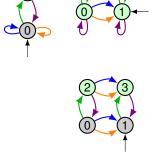

 Θ_{\otimes}

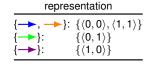


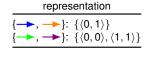


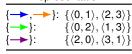


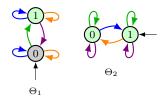


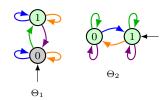


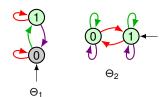


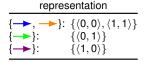


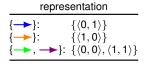




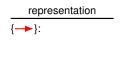

 Θ_{\otimes}







representation

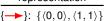


representation
{-----}:

Transformations: Generalized Label Reduction

representation

```
\{ \longrightarrow, \longrightarrow \}: \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle \}
\{ \longrightarrow \}: \{ \langle 0, 1 \rangle \}
\{ \longrightarrow \}: \{ \langle 1, 0 \rangle \}
```


representation

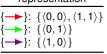
```
\{ \longrightarrow \}: \qquad \{ \langle 0, 1 \rangle \} 
\{ \longrightarrow \}: \qquad \{ \langle 1, 0 \rangle \} 
\{ \longrightarrow , \longrightarrow \}: \qquad \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle \}
```


representation

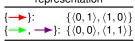
representation

Transformations: Generalized Label Reduction

representation


```
\{ \longrightarrow, \longrightarrow \}: \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle \}
\{ \longrightarrow\}: \{ \langle 0, 1 \rangle \}
\{ \longrightarrow\}: \{ \langle 1, 0 \rangle \}
```

representation



representation

representation

Algorithm Framework

Merge-and-Shrink in Fast Downward

Parameters: transformation strategies, size limits

Remarks

Considering label groups also benefits:

- Computing bisimulation-based shrinking
- Computing symmetry-based merging

Experiments – Previous vs. Optimized Implementation

- Integrate old version into recent Fast Downward
- All results with bisimulation-based shrinking, 50000 states

Experiments – Previous vs. Optimized Implementation

- Integrate old version into recent Fast Downward
- All results with bisimulation-based shrinking, 50000 states

	previous	optimized	difference	
Coverage	733	754	21	CGGL
# constr	1387	1467	80	
Coverage	768	774	6	DFP
# constr	1419	1504	85	
Coverage	778	804	26	MIASMdfp
# constr	1382	1480	98	
Coverage	756	773	17	RL
# constr	1433	1515	82	

Outline

- Motivation
- Efficient Implementation in Fast Downward
- Partial Abstractions

Motivation

- Efficient implementation increased performance
- But: heuristic computation fails in 151–267 out of 1667 tasks for state-of-the-art configurations

Algorithm – Early Termination

Merge-and-Shrink in Fast Downward

```
F \leftarrow F(\Pi) \qquad \qquad \text{// factored transition system} \\ \textbf{While} \ |F| > 1 \  \  \, \text{and not ReachedLimit():} \\ \Theta_1, \Theta_2, \leftarrow \text{Select}(F) \\ \text{LabelReduction(F)} \\ F \leftarrow \text{Shrink}(F, \Theta_1, \Theta_2) \\ F \leftarrow \text{Merge}(F, \Theta_1, \Theta_2) \\ \textbf{Return} \ h_\Pi^{\text{M&S}} \leftarrow \text{ComputeHeuristic}(F) \\ \\ \textbf{Return} \ h_\Pi^{\text{M&S}} \leftarrow \text{ComputeHeuristic}(F) \\ \end{cases}
```

Algorithm – Early Termination

Merge-and-Shrink in Fast Downward

```
F \leftarrow F(\Pi) \qquad \qquad \text{// factored transition system} \\ \textbf{While} \ |F| > 1 \ \ \textbf{and not} \ \ \textbf{REACHEDLIMIT()} \text{:} \\ \Theta_1, \Theta_2, \leftarrow \ \textbf{SELECT}(F) \\ \textbf{LABELREDUCTION}(F) \\ F \leftarrow \ \textbf{SHRINK}(F, \Theta_1, \Theta_2) \\ F \leftarrow \ \textbf{MERGE}(F, \Theta_1, \Theta_2) \\ \textbf{Return} \ \ h_\Pi^{\text{M&S}} \leftarrow \ \textbf{COMPUTEHEURISTIC}(F) \\ \\ \textbf{Return} \ \ h_\Pi^{\text{M&S}} \leftarrow \ \textbf{COMPUTEHEURISTIC}(F) \\ \end{aligned}
```

Termination criteria (REACHEDLIMIT):

- Growing too many transitions in a factor
- Reaching a time limit

Computing the Heuristic from Partial Abstractions

- Given: set of remaining factors and corresponding factored mappings
 - → set of partial abstractions
- Wanted: merge-and-shrink heuristic

Computing the Heuristic from Partial Abstractions

- Given: set of remaining factors and corresponding factored mappings
 - → set of partial abstractions
- Wanted: merge-and-shrink heuristic
- Two simple variants:
 - Compute h^{M&S} as maximum over heuristics induced by partial abstractions
 - Choose a single "good" heuristic, preferring high initial state heuristic values, breaking ties by favoring larger factors

Experiments – Limiting Transitions

		single heuristic		maxir	num he			
	base	t2m	t5m	t10m	t2m	t5m	t10m	•
Coverage	804	775	791	801	775	791	801	MIASMdfp
# constr	1482	1515	1493	1490	1515	1493	1490	
Coverage	802	787	797	802	792	798	802	sbMIASM
# constr	1400	1453	1422	1414	1452	1424	1417	
Coverage	813	778	801	811	778	801	811	SCCdfp
# constr	1506	1532	1515	1514	1532	1515	1512	

Experiments – Limiting Time

		single heuristic		maxi	mum he			
	base	450s	900s	1350s	450s	900s	1350s	•
Coverage	804	835	832	827	835	833	826	MIASMdfp
# constr	1482	1595	1591	1568	1592	1590	1566	
Coverage	802	835	835	835	836	836	835	sbMIASM
# constr	1400	1637	1628	1616	1636	1628	1615	
Coverage	813	844	844	840	844	845	840	SCCdfp
# constr	1506	1622	1620	1608	1622	1620	1610	

Conclusions

- Algorithmic view on merge-and-shrink for classical planning
- Efficient implementation in Fast Downward
- Partial abstractions further push efficiency