Merge-and-Shrink Heuristics
for Classical Planning:

Efficient Implementation and
Partial Abstractions

Silvan Sievers

July 14, 2018

Motivation
@00

Motivation

@ Given: large (labeled) transition system
(your favorite search problem, classical planning task, . ..)

~& o 8

Motivation
@00

Motivation

@ Given: large (labeled) transition system
(your favorite search problem, classical planning task, . ..)

~& o 8

@ Goal: compute admissible heuristic, then solve optimally
using A*

Motivation
oeo

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems
representing a large transition system (synchronized product)

Motivation

oeo

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems
representing a large transition system (synchronized product)

- .
%M ¢ ¢0

Motivation

oeo

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems
representing a large transition system (synchronized product)

- .
%M ¢ ¢0

o—Q Q ©)
@) O
C/ o——0 O\‘O
©) O
©)

~—-™oO0

Motivation
ooe

Merge-and-shrink: Framework

@ Start with atomic factored transition system
(one factor for each variable of the problem)

@ Repeatedly apply transformation to factored transition
system

@ Keep factored mapping alongside to represent the
abstraction (omitted in the following)

Efficient Implementation in Fast Downward

Outline

e Efficient Implementation in Fast Downward

Efficient Implementation in Fast Downward
©0000000

Representing Transition Systems

@ Common approach: adjacency matrix

@ Previous implementation: store transitions by labels
— beneficial for all transformations

Efficient Implementation in Fast Downward
©0000000

Representing Transition Systems

@ Common approach: adjacency matrix

@ Previous implementation: store transitions by labels
— beneficial for all transformations

@ New: store label groups of locally equivalent labels

~& e o

— reduce memory pressure

Efficient Implementation in Fast Downward
0®000000

Representing Transition Systems: Example

previous representation
—>: {(07 0>7 <1 ’ 1>7 <272>}
,(2,2)}

Efficient Implementation in Fast Downward
0®000000

Representing Transition Systems: Example

(2)
previous representation
—>: {(0,0), (1,1),(2,2)} optimized representation
(D) 1 {(0,0),(1,1),(2,2)} {—, —} {(0,0),(1,1),(2,2)}
2 {{0,1),(2, 1)} {—} {{0,1),¢2, 1)}
—: {(1,0),(1,2)} {—= {(1,0),(1,2)}
©

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

representation

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

representation
{—, —)

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

representation
{—=, —} {(0,0), }

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

representation

{=, —1: {{0,0), (1, 1)}

Efficient Implementation in Fast Downward
00®00000

Transformations: Shrinking

3

representation

{==, 1 {(0,0),(1,1),(2,2)}
{—} £(0,1), (2, 1)}
{(—=} {(1,0),(1,2)}

representation
{_>1 }: {<070>7<171>}
{—} {(0, 1)}
{—=} {(1,0)}

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
{_> }: {<070>)<1’1>} {_>’ }: {<0a1>}
)ﬁ O D~ (>} {01) >, =} {(0,0),(1,1)}
=) {10

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
{_> }: {<070>)<1’1>} {_>’ }: {<0a1>}
)ﬁ O D~ (>} {01) >, =} {(0,0),(1,1)}
=) {10

Gﬁ representation
ONRO,

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
{_> }: {<070>)<1’1>} {_>’ }: {<0a1>}
)ﬁ O D~ (>} {01) >, =} {(0,0),(1,1)}
=) {10

9 9 representation
{—=-—}k
ONRO,

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
)ﬁ O D~ (>} {01 >, =} {(0,0),(1,1)}
= {10}

9 9 representation
{==—} {0, 1), }
ONRO,

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
)ﬁ O D~ (>} {01) >, =} {(0,0),(1,1)}
= {10}

9 9 representation
{(—==—} {{0,1),(2,3)}
ONRO,

Efficient Implementation in Fast Downward
000®0000

Transformations: Merging

representatlon representatlon
{_> }: {<070>)<1’1>} {_>’ }: {<0a1>}
)ﬁ O D~ (>} {01) >, =} {(0,0),(1,1)}

{—} {(1,0)}
9 9 representation
=N
@O () {20,681

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

T

(CF1

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

T

iz
©
f e

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

e representation representation
@O, D (= 1 {00, (LD} (=} {01}
(o) { J {—} {(0, 1)} {—F {(1,00}

T o {—=} {(1,0)} {—>, =} {{0,0), (1, 1)}

SF1

g b

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

e representation representation
@O, D (= 1 {00, (LD} (=} {01}
(o) { J {—} {(0, 1)} {—F {(1,00}

T o {—=} {(1,0)} {—>, =} {{0,0), (1, 1)}

SF1

0 representation
M representation
.«

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

e representation representation
@O, D (= 1 {00, (LD} (=} {01}
(o) { J {—} {(0, 1)} {—F {(1,00}

T o {—=} {(1,0)} {—>, =} {{0,0), (1, 1)}

SF1

0 representation
. representation
< {—F P
® s

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

e representation representation
@O W= (= 3 {00,010} (=) {0.1)}
0 0" 4 {—F {01} {—} {10}

T o {—=} {(1,0)} {—>, =} {{0,0), (1, 1)}

(CF1

0 representation
MF {—=}: {{0,0), (1,1)} representation
{—} {(0,1), (1,0}
©

Efficient Implementation in Fast Downward
0000@000

Transformations: Generalized Label Reduction

e representation representation
@O, D (= 1 {00, (LD} (=} {01}
(o) { J {—} {(0, 1)} {—F {(1,00}

T o {—=} {(1,0)} {—>, =} {{0,0), (1, 1)}

SF1

0 representation
- {—}: {(0,0), (1, 1)} representation
{—=}: {{0,1)} {—} {(0,1),(1,0)}
© =} {(1,0)} {—, =} {(0,0),(1,1)}

Efficient Implementation in Fast Downward
00000800

Algorithm Framework

Merge-and-Shrink in Fast Downward

F « F() // factored transition system
While |F| > 1:

©1, 02, < SELECT(F)

LABELREDUCTION(F)

F < SHRINK(F,©1,0,)

F < MERGE(F,©1,0,)
Return h¥&S « hg /| ©: single factor in F

Parameters: transformation strategies, size limits

10/19

Efficient Implementation in Fast Downward
00000080

Remarks

Considering label groups also benefits:
@ Computing bisimulation-based shrinking
@ Computing symmetry-based merging

11/19

Efficient Implementation in Fast Downward
00000008

Experiments — Previous vs. Optimized Implementation

@ Integrate old version into recent Fast Downward
@ All results with bisimulation-based shrinking, 50000 states

12/19

Efficient Implementation in Fast Downward
00000008

Experiments — Previous vs. Optimized Implementation

@ Integrate old version into recent Fast Downward
@ All results with bisimulation-based shrinking, 50000 states

previous optimized difference
Coverage 733 754 21

constr 1387 1467 80 CGGL
Coverage 768 774 6 DEP
constr 1419 1504 85
Coverage 778 804 26
constr 1382 1480 og MIASMdip
Coverage 756 773 17 RL
constr 1433 1515 82

12/19

Partial Abstractions

Outline

e Partial Abstractions

13/19

Partial Abstractions
[leJele]e]

Motivation

@ Efficient implementation increased performance

@ But: heuristic computation fails in 151-267 out of 1667
tasks for state-of-the-art configurations

14/19

Partial Abstractions
(o] Jelele]

Algorithm — Early Termination

Merge-and-Shrink in Fast Downward

F <« F(m) // factored transition system
While |F| > 1 and not REACHEDLIMIT():

©1, 0, <+ SELECT(F)

LABELREDUCTION(F)

F < SHRINK(F,©1,0,)

F < MERGE(F,©4,02)
Return hM&S « COMPUTEHEURISTIC(F)

15/19

Partial Abstractions
(o] Jelele]

Algorithm — Early Termination

Merge-and-Shrink in Fast Downward

F <« F(m) // factored transition system
While |F| > 1 and not REACHEDLIMIT():

©1, 0, <+ SELECT(F)

LABELREDUCTION(F)

F < SHRINK(F,©1,0,)

F < MERGE(F,©4,02)
Return hM&S « COMPUTEHEURISTIC(F)

Termination criteria (REACHEDLIMIT):
@ Growing too many transitions in a factor
@ Reaching a time limit

15/19

Partial Abstractions
00e00

Computing the Heuristic from Partial Abstractions

@ Given: set of remaining factors and corresponding factored
mappings
— set of partial abstractions

@ Wanted: merge-and-shrink heuristic

16/19

Partial Abstractions
00e00

Computing the Heuristic from Partial Abstractions

@ Given: set of remaining factors and corresponding factored
mappings
— set of partial abstractions

@ Wanted: merge-and-shrink heuristic

@ Two simple variants:

e Compute AM&S as maximum over heuristics induced by
partial abstractions

e Choose a single “good” heuristic, preferring high initial state
heuristic values, breaking ties by favoring larger factors

16/19

Experiments — Limiting Transitions

Partial Abstractions

[e]e]e] lo}

single heuristic

maximum heuristic

base t2m t5m t10m t2m t5m t10m
Coverage 804 775 791 801 775 791 801
constr 1482 1515 1493 1490 1515 1493 1490 MIASMdfp
Coverage 802 787 797 802 792 798 802 SbMIASM
constr 1400 1453 1422 1414 1452 1424 1417
Coverage 813 778 801 811 778 801 811 SCCdf
constr 1506 1532 1515 1514 1532 1515 1512 P

17/19

Experiments — Limiting Time

Partial Abstractions
[e]e]ele]]

single heuristic

maximum heuristic

base 450s 900s 1350s 450s 900s 1350s
Coverage 804 835 832 827 835 833 826
constr 1482 1595 1591 1568 1592 1590 1566 MIASMdfp
Coverage 802 835 835 835 836 836 835 SbMIASM
constr 1400 1637 1628 1616 1636 1628 1615
Coverage 813 844 844 840 844 845 840 scedf
constr 1506 1622 1620 1608 1622 1620 1610 P

18/19

Conclusions

@ Algorithmic view on merge-and-shrink for classical
planning

@ Efficient implementation in Fast Downward
@ Partial abstractions further push efficiency

19/19

	Motivation
	Efficient Implementation in Fast Downward
	Partial Abstractions

