Salomé Simon Gabriele Röger

University of Basel, Switzerland

HSDIP 2015

Motivation

Motivation

Goal

framework for describing information about the search space

- combining information from different sources
- decoupling the derivation and exploitation of information
 - → split work between different experts

Linear Temporal Logic on Finite Traces (LTL_f)

- evaluated over a linear sequence of worlds (= variable assignments)
- extends propositional logic with:

•000000

What if we only know the beginning of the sequence?

Definition (Progression)

For an LTL $_f$ formula φ and a world sequence $\langle w_0,\ldots,w_n\rangle$ with n>0 it holds that $\langle w_1,\ldots,w_n\rangle\models \operatorname{progress}(\varphi,w_0)$ iff $\langle w_0,\ldots,w_n\rangle\models \varphi.$

Example

 $\mathsf{progress}\big(a \land \bigcirc e \land \Box(c \lor d) \land (b \ \mathcal{U}d), \{a, d\}\big) = e \land \Box(c \lor d)$

LTL_f Formulas in the Search Space

variable	\leftrightarrow	STRIPS variable or action
world	\leftrightarrow	node in search space (with incoming action)
world sequence	\leftrightarrow	path to a goal node

LTL_f formulas associated to nodes

ightarrow express conditions all optimal paths to a goal need to fulfill

Definition (Feasibility for nodes)

An LTL_f formula φ is feasible for n if for all paths ρ such that

- ullet ρ is applicable in n,
- ullet the application of ho leads to a goal state $(G\subseteq s[
 ho])$, and
- $g(n) + c(\rho) = h^*$

it holds that $w_{\rho}^{s} \models \varphi$.

(where $\boldsymbol{w_{a}^s} = \langle \{a_1\} \cup s[a_1], \{a_2\} \cup s[\langle a_1, a_2 \rangle], \dots, \{a_n\} \cup s[\rho], s[\rho] \rangle$)

Adding and Propagating Information during the Search

How can we add/propagate information while preserving feasibility?

- new information during the search directly added to the corresponding node with conjunction
- of formulas can be propagated with progression to successor nodes

$\mathsf{Theorem}$

Let φ be a feasible formula for a node n, and let n' be the successor node reached from n with action a. Then $\operatorname{progress}(\varphi, \{a\} \cup s(n'))$ is feasible for n'.

Adding and Propagating Information during the Search

How can we add/propagate information while preserving feasibility?

4 duplicate elimination: conjunction of formulas of "cheapest" nodes is feasible

$\mathsf{Theorem}$

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Encoding Information in LTL_f Formulas

Possible sources of information:

- domain-specific knowledge
- temporally extended goals
- here: information used in specialized heuristics
 - Landmarks and their orderings (Hoffmann et al. 2004, Richter et al. 2008)
 - Unjustified Action Applications (Karpas and Domshlak 2012)

Landmarks

Fact Landmark: A fact that must be true at some point in every plan (Hoffmann et al. 2004)

$$\rightarrow$$
 In LTL_f: $\Diamond l$

Further information about landmarks:

- First achievers: $l \vee \bigvee_{a \in \mathit{FA}_l} \lozenge a$
- Required again: $(\lozenge l)\mathcal{U}l'$
- Goal: $\bigwedge_{g \in G} ((\lozenge g) \mathcal{U} \bigwedge_{g' \in G} g')$

Unjustified Action Applications

If an action is applied, its effects must be of some use (Karpas and Domshlak 2012)

- one of its effects is necessary for applying another action
- ② one of its effects is a goal variable (that is not made false again)

$$\begin{split} \varphi_a &= \bigvee_{e \in add(a) \backslash G} \left((e \land \bigwedge_{\substack{a' \in A \text{ with } \\ e \in add(a')}} \neg a') \mathcal{U} \bigvee_{\substack{a' \in A \text{ with } \\ e \in pre(a')}} a' \right) \lor \\ \bigvee_{\substack{e \in add(a) \cap G}} \left((e \land \bigwedge_{\substack{a' \in A \text{ with } \\ e \in add(a')}} \neg a') \mathcal{U} \big(\text{last} \lor \bigvee_{\substack{a' \in A \text{ with } \\ e \in pre(a')}} a' \big) \big) \end{split}$$

Heuristics

- Very rich temporal information possible
 - → heuristics can use different levels of relaxation
- Proof of concept heuristic extracts landmarks from node-associated formulas
 - → looses temporal information between landmarks

Extracting Landmarks from the Formula

- Convert formula into positive normal form ("¬" only before atoms)
 - can be computed efficiently
 - progression preserves positive normal form
- ② Transform formula into implied formula where ◊ in front of every literal, no other temporal operators
- Transform formula into CNF
- Oismiss clauses which are true already in current state
- 5 Extract disjunctive action landmarks from individual clauses

Experiment Setup

Configurations:

- $h_{\rm LA}$: standard admissible landmark heuristic (Karpas and Domshlak 2009)
- b_{AL}^{LM} : LTL landmark extraction heuristic with sources:
 - Landmarks (First achievers, Required again, Goal)
- f b $h_{
 m AL}^{
 m LM+UAA}$: LTL landmark extraction heuristic with sources:
 - Landmarks (First achievers, Required again, Goal)
 - Unjustified Action Applications
 - all heuristics use BJOLP landmark extraction and optimal cost partitioning
 - ullet search algorithm: $h_{
 m LA}$ uses ${
 m LM-A^*},$ the others a slight variant we call ${
 m LTL-A^*}$

Coverage

	$h_{ m LA}$	$h_{ m AL}^{ m LM}$	$h_{ m AL}^{ m LM+UAA}$
airport (50)	31	28	26
elevators-08 (30)	14	14	13
floortile (20)	2	2	4
freecell (80)	52	51	50
mprime (35)	19	19	20
nomystery (20)	18	17	16
openstacks-08 (30)	14	12	12
openstacks-11 (20)	9	7	7
parcprinter-08 (30)	15	14	14
parcprinter-11 (20)	11	10	10
pipesworld-tan (50)	9	10	10
scanalyzer-08 (30)	10	9	9
sokoban-08 (30)	22	21	22
tidybot (20)	14	14	13
other domains (931)	483	483	483
Sum (1396)	723	711	709

Memory Consumption

 $h_{
m LA}$ looses no task due to memory limit, but $h_{
m AL}^{
m LM}$ 11 in total

- ullet airport: over 300% of memory usage compared to h_{LA}
- average: 120%
- approx. half the domains < 100%

Impact of Unjustified Action Applications

Comparison of expansions between $h_{
m AL}^{
m LM}$ and $h_{
m AL}^{
m LM+UAA}$:

Conclusion

- ullet associate nodes in the search space with LTL $_f$ formulas
- ightarrow conditions for optimal plan
- separation between finding information and exploiting information
- allows to easily combine information from different sources
- concrete examples in this paper:
 - finding information: landmarks and unjustified action applications
 - exploiting information: extracting landmarks

Future Work

- better informed heuristics (less relaxation)
- describe other kinds of information
 - PDDL 3 trajectory constraints
 - flow-based heuristics (van den Briel et al. 2007; Bonet 2013; Pommerening et al. 2014)
 - mutex information
- strengthening other heuristics with the information of LTL_f trajectory constraints