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Motivation

Motivation

framework for describing information about the search space l

@ combining information from different sources
~~ creating stronger heuristics

@ decoupling the derivation and exploitation of information

~> split work between different experts ‘ .
LTL Framework
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Linear Temporal Logic on Finite Traces (LTLj)

@ evaluated over a linear sequence of worlds
(= variable assignments)
@ extends propositional logic with:

Op  Always w ___________ (i@

Oyp  Eventually @ ________ @cp_____,@

Op  Next w ___________ @
P

ol Until v
R ORT D
@Ry Release ¥ YA

last  Lastworld — = ,@



LTLs in Classical Planning
0®00000

Progression

What if we only know the beginning of the sequence?

Definition (Progression)

For an LTL; formula ¢ and a world sequence (wy, ..., wy) with
n > 0 it holds that (wi, ..., wy,) |= progress(y, wp) iff
(wo, - - ., wn) E .

progress(a A Oe AO(c V d) A (b Ud),{a,d}) =eAO(cVd)
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LTL; Formulas in the Search Space

variable <> STRIPS variable or action
world <> node in search space (with incoming action)
world sequence <> path to a goal node

LTL; formulas associated to nodes
— express conditions all optimal paths to a goal need to fulfill

O @
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Feasibility for Nodes

Definition (Feasibility for nodes)

An LTL formula ¢ is feasible for n if for all paths p such that
@ p is applicable in n,
o the application of p leads to a goal state (G C s[p]), and
° g(n)+c(p) = h*

it holds that wy |= ¢.

(where w3 = ({a1} U sfa], {az} Usl(ar, as)], ... {an} U s[o], slp]))



LTLs in Classical Planning
0000e00

Adding and Propagating Information during the Search

How can we add/propagate information while preserving
feasibility?
@ new information during the search
directly added to the corresponding node with conjunction
@ formulas can be propagated with progression to
successor nodes

Let ¢ be a feasible formula for a node n, and let n’ be the
successor node reached from n with action a. Then
progress(p, {a} U s(n')) is feasible for n’.
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Adding and Propagating Information during the Search

How can we add/propagate information while preserving
feasibility?
© duplicate elimination: conjunction of formulas of
“cheapest” nodes is feasible

Let n and n’ be two search nodes such that g(n) = g(n’) and
s(n) = s(n’). Let further @, and @, be feasible for the respective
node. Then p, A p, is feasible for both n and n'.
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Example

Example

Qa A (bUd) A (cVe)

q
i

()
OmGm




LTLs in Classical Planning
[eleTelolele] }

Example

Example

Qa A (bUd) A (cVe)

<>a/\(bZ/ld) @

®
G%G%é




LTLs in Classical Planning
[eleTelolele] }

Example

Qa N (bU) A (cVe)
(2
@

Oa

Qa A (bUA)

OnOn0




Motivation LTLf in Classical Planning
o [eleTelolele] }

Example
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Example

Example
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Example
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Example
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Encoding Information in LTL; Formulas

Possible sources of information:
@ domain-specific knowledge
@ temporally extended goals
@ here: information used in specialized heuristics

o Landmarks and their orderings
(Hoffmann et al. 2004, Richter et al. 2008)
o Unjustified Action Applications
(Karpas and Domshlak 2012)
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Landmarks

Fact Landmark: A fact that must be true at some point in every
plan (Hoffmann et al. 2004)
— In LTLy: OI

Further information about landmarks:
o First achievers: [V \/, gy Oa
e Required again: (OL)U!
e Goal: /\QEG ((()g)u /\gleG g/)
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Unjustified Action Applications

If an action is applied, its effects must be of some use
(Karpas and Domshlak 2012)

@ one of its effects is necessary for applying another action

@ one of its effects is a goal variable (that is not made false again)

Yo = \/ ((en /\ —a"\U \/ a)Vv

e€add(a)\G a’ €A with a’ €A with
e€add(a’) e€pre(a’)
\/ ((en /\ —a" U (last v \/ a'))
e€add(a)NG a’ €A with a’ €A with

ecadd(a’) ecpre(a’)
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Heuristics

@ Very rich temporal information possible
— heuristics can use different levels of relaxation
@ Proof of concept heuristic extracts landmarks from
node-associated formulas
— looses temporal information between landmarks
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Extracting Landmarks from the Formula

@ Convert formula into positive normal form
(“=" only before atoms)

e can be computed efficiently
e progression preserves positive normal form

@ Transform formula into implied formula where ¢ in front of
every literal, no other temporal operators

© Transform formula into CNF
@ Dismiss clauses which are true already in current state

© Extract disjunctive action landmarks from individual clauses
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Experiment Setup

Configurations:
@ hpa: standard admissible landmark heuristic
(Karpas and Domshlak 2009)
@ A& LTL landmark extraction heuristic with sources:
o Landmarks (First achievers, Required again, Goal)
Q KYTUAAITL landmark extraction heuristic with sources:

o Landmarks (First achievers, Required again, Goal)
e Unjustified Action Applications

@ all heuristics use BJOLP landmark extraction and optimal cost
partitioning

@ search algorithm: hpa uses LM-A™, the others a slight variant we
call LTL-A*



Coverage

hra | RRY | REYTUAA

airport (50) 31 28 26
elevators-08 (30) 14 14 13
floortile (20) 2 2 4

freecell (s0) 52 51 50
mprime (35) 19 19 20
nomystery (20) 18 17 16
openstacks-08 (30) 14 12 12
openstacks-11 (20) 9 7 7

parcprinter-08 (30) 15 14 14
parcprinter-11 (20) 11 10 10
pipesworld-tan (s0) 9 10 10
scanalyzer-08 (30) 10 9 9

sokoban-08 (30) 22 21 22
tidybot (20) 14 14 13
other domains (931) || 483 | 483 483
Sum (139) 723 | 711 709

Experiments
0®00
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Memory Consumption

h1.a looses no task due to memory limit, but A5} 11 in total
@ airport: over 300% of memory usage compared to hya

@ average: 120%
@ approx. half the domains < 100%
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Impact of Unjustified Action Applications

Comparison of expansions between hkl}j[ and hkl}jHUAA:
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Conclusion

@ associate nodes in the search space with LTL formulas
— conditions for optimal plan

@ separation between finding information and
exploiting information
@ allows to easily combine information from different sources

@ concrete examples in this paper:

e finding information: landmarks and
unjustified action applications
o exploiting information: extracting landmarks
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Future Work

@ better informed heuristics (less relaxation)
o describe other kinds of information
o PDDL 3 trajectory constraints
o flow-based heuristics (van den Briel et al. 2007; Bonet 2013;
Pommerening et al. 2014)
e mutex information
@ strengthening other heuristics with the information of
LTLy trajectory constraints
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