
Exploiting the Rubik’s Cube 12-edge PDB by
Combining Partial Pattern Databases and Bloom Filters

Nathan R. Sturtevant
Dept. of Computer Science

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Ariel Felner
Dept. of Information System Engineering

Ben Gurion University
Beer-Sheva, Israel

felner@bgu.ac.il

Malte Helmert
Dept. of Math. and Computer Science

Universität Basel
Basel, Switzerland

malte.helmert@unibas.ch

Abstract

Pattern Databases (PDBs) are a common form of abstraction-
based heuristic which are often compressed so that a large
PDB can fit in memory. Partial Pattern Databases (PPDBs)
achieve this by storing only layers of the PDB which are close
to the goal. This paper studies the problem of how to best
compress and use the 457 GB 12-edge Rubik’s cube PDB,
suggesting a number of ways that Bloom filters can be used
to effectively compress PPDBs. We then develop a theoret-
ical model of the common min compression approach and
our Bloom filters, showing that the original method of com-
pressed PPDBs can never be better than min compression. We
conclude with experimental results showing that Bloom filter
compression of PPDBs provides superior performance to min
compression in Rubik’s cube.

Introduction
Heuristic search algorithms such as A* (Hart, Nilsson, and
Raphael 1968) and IDA* (Korf 1985) are guided by the cost
function f(n) = g(n) + h(n), where g(n) is the cost of
the current path from the start node to node n and h(n) is a
heuristic function estimating the cost from n to a goal node.
If h(n) is admissible (i.e., a lower bound on the true cost)
these algorithms are guaranteed to find optimal paths.

A large variety of techniques have been used to build
heuristics. A prominent class of heuristics are abstraction-
based heuristics usually designed for exponential (implicit)
domains. These heuristics abstract the search space and then
solve the abstract problem exactly. The distances in the ab-
stract state space are used as heuristic estimates for the orig-
inal state space. Pattern databases (PDBs) (Culberson and
Schaeffer 1998) are memory-based heuristics where exact
distances to the goal from all of the abstract states are stored
in a lookup table. These distances are then used during the
search as h-values.

A key feature of PDBs is that they are designed to fit into
memory, ensuring fast random access. When a PDB is too
large to fit in memory, a number of techniques have been de-
veloped to compress it into memory. The main direction is
denoted by min compression (Felner et al. 2007) where the
PDB is compressed by a factor of k by dividing the PDBs
into buckets of size k and only storing the minimum value
for each bucket, preserving the admissibility of the heuris-
tic. Another direction is called partial pattern databases

(PPDBs) (Anderson, Holte, and Schaeffer 2007) where only
entries up to a given value V are stored in memory, and V +1
can be admissibly used for those abstract states that are not
in memory. PPDBs use a hash table where each item stores
the key (i.e., an explicit description of the abstract state), its
associated value, and possible a pointer to the next abstract
state in the same entry. Thus, PPDBs are inefficient in their
constant memory needs per entry. By contrast, regular and
min-compressed PDBs can directly map states into PDB en-
tries, and thus only need to store the PDB values.

This paper focuses on the Rubik’s cube 12-edge PDB,
one of the largest PDBs built, with 981 billion entries. Our
challenge is to find the best way to compress the PDB to
fit into RAM. To do this, we introduce new techniques for
compressing PDBs by combining the ideas of Bloom fil-
ters and PPDBs. Bloom filters (Bloom 1970) are an efficient
data structure for performing membership tests on a set of
data, where all members of the set are correctly identified,
and non-members are identified with some chance of a false
positive. We present two ways of compressing PDBs into
Bloom filters. The first is called a level-by-level Bloom filter
where states at each depth of the PDB are stored in a separate
Bloom filter. The second is called a min Bloom filter where
states at all depths are stored in the same Bloom filter.

Anderson, Holte, and Schaeffer (2007) originally sug-
gested a method for compressing a PPDB to improve mem-
ory efficiency. We show that their idea is a degenerative ver-
sion of the min Bloom where only 1 hash function is present.
Furthermore, we show that compressed PPDBs are function-
ally equivalent to min compressed PDBs.

We continue by providing a theoretical analysis for pre-
dicting the average value of a PDB compressed by min com-
pression and by level-by-level Bloom filters. Based on this
we introduce a new measure that quantifies the loss of infor-
mation within a compressed PDB. We conclude with exper-
imental results on Rubik’s cube showing that Bloom filters
combined with PPDBs are more effective than min compres-
sion and are the most efficient way to compress the large
12-edge PDB into current memory sizes.

Background: Pattern Database Heuristics
Admissible heuristics provide an estimate of the distance to
the goal without overestimation. A heuristic function h(·)
is admissible if h(a) ≤ c(a, g) for all states a and goal



(a) (b)

Figure 1: Abstraction applied to Rubik’s Cube.

states g, where c(a, b) is the minimal cost of reaching b
from a. Consistent heuristics also have the property that
h(a)− h(b) ≤ c(a, b).

A pattern database (PDB) is an admissible heuristic that
is built through an exhaustive search of an abstracted state
space. We demonstrate this with Rubik’s cube. Figure 1(a)
shows the 3×3×3 Rubik’s cube puzzle, which has 4.3×1019
states and cannot be fully enumerated and stored by current
computers. Now assume that all of the edges (cubies with
two faces) are blacked out and rendered identical, as shown
in Figure 1(b). This 2 × 2 × 2 cube is an abstraction of the
original which only has 8.8× 107 states. Because the corner
pieces must be solved in order to solve the full puzzle, the
distance in the abstract state space is a lower bound on the
cost of the full solution, and thus is an admissible heuristic
for the original 3× 3× 3 puzzle.

PDBs are usually built through backwards breadth-first
searches from the abstract goal states until all abstract states
are reached and the optimal distance to all these abstract
states is stored in a lookup table – the pattern database.

When the search in the original 3 × 3 × 3 state space
reaches a new state n, n is abstracted by blacking out the
edges to reach an abstract state, n′. n′ is used as the in-
dex into the PDB, and its distance to the abstract goal is
looked up. That distance is used as the h-value for the origi-
nal state n. This is called a pattern database lookup. In per-
mutation domains, PDBs can be stored compactly in mem-
ory (in a table with M entries, one entry per state) because
they can be efficiently enumerated and indexed by a rank-
ing function (Myrvold and Ruskey 2001) that uniquely and
compactly maps the states to integers. Thus, from a descrip-
tion of the state, we can calculate the index into the PDB
entry that contains the corresponding h-value. This is called
a compact mapping.

The work in this paper is motivated by recent research
that has built large PDBs, including for the sliding-tile puz-
zle (Döbbelin, Schütt, and Reinefeld 2013) and Rubik’s
cube (Sturtevant and Rutherford 2013). These PDBs are
hundreds of gigabytes in size, and so won’t fit into the mem-
ory of most machines. In fact, even when the PDBs do fit
in RAM, they won’t necessarily reduce the time required
to solve a problem compared to a smaller PDB because the
constant time per lookup is expensive when the PDB is ex-
tremely large. For instance, no gain in time was reported1

1Confirmed via personal communication with the authors.

over smaller PDBs when using PDBs up to 1 TB in size
on the sliding-tile puzzle (Döbbelin, Schütt, and Reinefeld
2013). Thus, compression techniques for PDBs are an im-
portant area of study.

Compressing Pattern Databases
Existing compression techniques for PDBs can character-
ized as lossless or lossy (Felner et al. 2007).

Lossless Compression
Assume that the original PDB includes M entries, and that
each entry needs B bits. In lossless compression the exact
information of the M entries of the PDB is stored using less
than B bits per entry on average.

Felner et al. (2007) suggested a lossless compression tech-
nique that groups k entries together into a single entry con-
taining the minimum, m, of the k entries; a second small
table for each entry stores the delta above m for each of the
states that map to that entry.

Breyer and Korf (2010) introduced 1.6 bit pattern
databases which only need 1.6 bits per entry. The main idea
is to store the PDB value modulo 3. They showed that if the
heuristic is consistent, then we only need to know the ac-
tual heuristic of the start state. The 1.6 bit PDB will tell us
whether each child’s heuristic increased or decreased, allow-
ing us to infer the other heuristic values.

A more effective technique, particularly on domains with
large branching factor and significant structure is Alge-
braic Decision Diagram (ADD) compression (Ball and Holte
2008). This approach was able to compress the PDBs for
many domains by several orders of magnitude, although it is
not universally effective.

Lossy Compression
Lossy compression techniques may lose information by the
compression and they must be carefully created to maintain
admissibility. Despite the loss of information, lossy com-
pression can often provide far greater compression than loss-
less compression in practice. Lossy compression techniques
can also result in inconsistent (but admissible) heuristics.
The main challenge with lossy compression is to minimize
the loss of information.

Samadi et al. (2008) used an Artificial Neural Network
(ANN) to learn the values of the PDBs. This ANN is in fact a
lossy compression of the PDB. To guarantee admissibility a
side table stores the values for which the ANN overestimated
the actual PDB value.

A simple form of PDB compression (Felner et al. 2007) is
what we denote by min compression. To compress the PDB
with M entries by a factor of k the entire PDB is divided
into M/k buckets, each of size k. The compressed PDB is
only of size M/k and only stores one value for each bucket.
To guarantee admissibility, the minimum value from each
bucket in the original PDB is stored. We illustrate how one
bucket is compressed in Figure 2. The top row represents one
bucket of original PDB values. In this example we perform
8× compression, and all the entries map into a single value
which is the minimum value among the original 8 values, 4



7 9 6 12 4 8 7 11

4

Original

Compressed

Figure 2: Example showing min compression

in our case. Min compression is a lossy operation because in-
formation from the original PDB is lost as all abstract states
in this bucket will return 4.

Felner et al. (2007) showed that the key to minimize the
loss of information is to analyze the original PDB and to
group values that are as similar as possible. One way of do-
ing this is to group together cliques (or set of nodes with
small diameter). In some cases nearby entries in the PDBs
exhibit this behavior and then a simple DIVk operation on
the original PDB provides a simple yet strong way to com-
press the PDB into buckets while maintaining a small rate of
loss of information. However, achieving this best-case be-
havior is domain-dependent and will not be applicable in
all domains. This approach worked very well for the 4-peg
Towers of Hanoi, for instance, but its success for the sliding
tile puzzles was limited and no significant advantage was
reported for the Top-Spin domain (Felner et al. 2007).

Despite this detailed study, no theoretical model of min
compression has been proposed. We will propose a novel
model which predicts the average performance of min com-
pression. We then suggest a metric for quantifying the loss
of information by a given compression method.

Partial Pattern Databases
Partial Pattern Databases (PPDBs) (Anderson, Holte, and
Schaeffer 2007) perform a lossy compression by only stor-
ing the first D levels (i.e., depths from the goal) of the
original PDB instead of all levels. Edelkamp and Kissmann
(2008) also use this approach for compression of symbolic
PDBs. Such a PPDB is denoted PPDBD. When looking up
an abstract state t, if PPDBD includes t then its h-value
PPDBD(t) (which is ≤ D) is retrieved and used. If t is not
in the PPDB, D + 1 is used as an admissible heuristic for
t. This compression technique is lossy because all values
larger than D are now treated as D + 1.

Full PDBs are usually stored with compact mappings
from abstract states into PDB entries based on a ranking of
the abstract states. Since PPDBs only store part of the PDB,
a compact mapping cannot be used as appropriate ranking
functions are not known. Therefore, the simplest PPDB im-
plementation uses a hash table. Each item in the hash table
contains the key of the state (i.e., its description) and its as-
sociated heuristic value. This is very inefficient because the
extra memory overhead of storing the keys. In addition, the
number of entries in a hash table is usually larger than the
number of items stored in it to ensure low collision rate. Fi-
nally, the common way to deal with collisions is to have a
linked list of all items in a given entry. Thus, we also store a
pointer for each of the items. Therefore, the constant mem-

Depth # States Bloom Size Hash Size
0 1 0.00 MB 0.00 MB
1 18 0.00 MB 0.00 MB
2 243 0.00 MB 0.00 MB
3 3240 0.00 MB 0.05 MB
4 42807 0.05 MB 0.65 MB
5 555866 0.66 MB 8.48 MB
6 7070103 8.43 MB 107.88 MB
7 87801812 104.67 MB 1339.75 MB
8 1050559626 1252.36 MB 16030.27 MB
9 11588911021 13.49 GB 172.69 GB

10 110409721989 128.53 GB 1645.23 GB
11 552734197682 643.47 GB 8236.38 GB
12 304786076626 354.82 GB 4541.67 GB
13 330335518 393.79 MB 5040.52 MB
14 248 0.00 MB 0.00 MB

Total 980,995,276,800 1,142 GB 14,618 GB

Table 1: Number of states at each depth of the 12-edge Ru-
bik’s Cube PDB plus approximate sizes for a Bloom filter
(10 bits/state) and hash table (128 bits/state)

ory per item in a PPDB can be much larger than that of a
compactly mapped PDB, which only stores the h-value for
each abstract state. As a result, Anderson, Holte, and Scha-
effer (2007) concluded that ‘partial PDBs by themselves are
not an efficient use of memory’, but that ‘compressed partial
PDBs are an efficient use of memory’. We will describe their
compression approach below and show that their technique
can be seen as a degenerative case of our min Bloom filter.
Furthermore, we also show that this compression approach
can never outperform regular min compression (Felner et al.
2007). On the other hand, we will show that PPDBs can be
very effective when implemented by level-by-level Bloom
filters.

PPDBs for Rubik’s Cube
To validate the general approach of PPDBs for Rubik’s cube,
we first perform an analysis of their potential performance
using the full 12-edge PDB which has 981 billion states and
requires 457 GB of storage with 4 bits per abstract state.
This PDB is too large for RAM, but we obtained a copy
from Sturtevant and Rutherford (2013) and stored it on a
solid state drive (SSD). While it is not as fast as RAM it is
fast enough to benchmark problems for testing purposes.

Table 1 provides details on the distribution of the h-values
of the states in this PDB. The second column counts the
number of states at each depth. More than half the states are
at level 11, about 12% are at level 10, and less than 2% of
the total states can be found at levels 0 through 9. If we want
a PPDB to return a heuristic value between 0 and 10, we
only need to store states at levels 0 through 9 in the PPDB
(PPDB9); states which are not found are known to be at least
10 steps away from the goal. The question is, how can this
PPDB be stored efficiently? Estimating that a hash table will
require 128 bits per state (for the keys, values, and pointers),
this PPDB would need 172 GB of memory, larger than the



Depths # States (billions) Nodes Time
PPDB9 12.7 51,027,608 8,615.6
PPDB10 123.1 25,567,143 4,477.7
Full PDB 981.0 24,970,537 4,379.4

Table 2: Nodes generated by a perfect PPDB.

memory of any machine available to us. Bloom filters, de-
scribed below, are estimated to use around 10 bits per state,
suggesting that they may be far more efficient than regu-
lar hash tables for implementing PPDBs. These values are
shown in the last columns of Table 1.

We evaluated a number of PPDBs built on this PDB using
a 100-problem set at depth 14 from the goal as used by Fel-
ner et al. (2011). We solve these problems using IDA* (Korf
1985) using the full 12-edge PDB stored on our SSD. We
also stored the 8-corner PDB in RAM and took the maxi-
mum among the two for the h-value for IDA*. Table 2 pro-
vides the total number of generated nodes for solving the
entire test suite with various levels of a PPDB. To reiter-
ate, this approach is slow because it uses disk directly; these
numbers are simply for validating the general approach. The
results show that PPDB10 (which returns 11 if the state is
not found in the PPDB) only increases the total number of
node generations by 2% compared to the full PDB, while
using about 13% of the PDB entries. PPDB9 increases the
number of nodes by a factor of two (from 24.97 to 51.03
million nodes), but requires less than 1% of the memory of
the full PDB. From this, we can conclude that the general
notion of a PPDB is effective for Rubik’s cube.

We have demonstrated the potential of PPDBs, but using
an ordinary hash table will require too much memory to be
effective. Thus, a more efficient idea for storing PPDB is
needed. This issue is addressed below by our new Bloom
filter approach.

Bloom Filters
Bloom filters (Bloom 1970) are a well-known, widely used
data structure that can quickly perform membership tests,
with some chance of a false positive. By tuning the pa-
rameters of a Bloom filter, the false positive rate can be
controlled, and false positive rates under 1% are common.
Bloom filters are memory efficient because they do not store
the keys themselves; they only perform membership tests on
the keys which were previously inserted.

A Bloom filter is defined by a bit array and a set of q hash
functions hash1, . . . , hashq . When a key l is added to the
Bloom filter we calculate each of the hashi functions on l
and set the corresponding bit to true. A key l is looked up in
the Bloom filter by checking whether all the q bits associated
hashi(l) of a state are true. A false positive occurs if all q
hash functions are set for a state that is not in the Bloom
filter. This means that q other items share one or more hash
values with l. As a result, a Bloom filter can return a false
positive – identifying that an item is in the set while it isn’t
actually there. However, it cannot return false negatives. Any
item that it says is not in the set is truly not in the set.

Given m bits in the bit array, n keys in the filter, and

q (uniform and independent) hash functions per state, the
probability that a given bit is set to 1 is (Mitzenmacher and
Upfal 2005):

pset = 1−
(
1− 1

m

)qn

(1)

Now assume that an item is not in the Bloom filter. The
probability that all its q bits are set (by other items), i.e., the
probability for a false positive (denoted pfp) is2:

pfp = (pset)
q (2)

Thus, if a Bloom filter has 50% of the bits set and it uses 5
hash functions, the false positive rate will be 3.125%.

Next we describe two methods for using Bloom filters to
store PPDBs. The first method stores the PPDB level-by-
level, while the second method uses a form of Bloom filters
to store the entire PPDB.

Level-by-level Bloom Filter for PPDB
The result of a lookup in a PPDB is the depth of an abstract
state, but Bloom filters can only perform membership tests.
Thus, a natural application of Bloom filters would be to build
a Bloom filter for every level of the PPDB. Thus, PPDBD

will have D Bloom filters for levels 1–D. The Bloom fil-
ter for level i is denoted by BF(i). Then, given an item t,
we perform a look-up for item t in BF(i) for each level i
in sequential order, starting at BF(1). If the answer is true
for level i, then the look-up process stops and i is used as
h(t). In case of a false positive, this is smaller than the ac-
tual value, but it is still admissible. If the answer is false we
know for sure that the PDB value of t is not i and we pro-
ceed to the next level. If we look up the abstract state in all
D Bloom filters and never receive a true answer, D + 1 is
used as an admissible heuristic.

This method is a form of lossy compression of the PPDB
(which itself has loss of information from the original PDB)
– when a false positive occurs, we return a value which is
lower than the true heuristic value. However, we can tune
the memory and number of hashes for each level to minimize
the false positive rate as defined in Equation 2.

Hybrid Implementation In practice, this process will be
time-consuming because up to D lookups may be required
for each state. Instead, we can use a hybrid between ordi-
nary hash functions and Bloom filters as follows. We store
the first x levels of the PPDB directly in a hash table, and
then use Bloom filters to store later levels of the PPDB. This
is especially efficient if the number of abstract states at each
depth grows exponentially, as happens in the Rubik’s Cube
12-edge PDB (see Table 1). Thus, the memory used in the
first x levels will be limited. In this hybrid implementation,
the lookup process requires 1 hash lookup to check whether
the state is in the first x levels. If the answer is no, then
at most D − x Bloom filter lookups will be performed. In

2It should be noted that this isn’t strictly correct (Bose et al.
2008; Christensen, Roginsky, and Jimeno 2010), but it is sufficient
for our purposes.



Figure 3: A min Bloom filter

our experiments below, we used this hybrid implementation.
Levels 1–7 were stored in a hash table and levels 8 and 9
were stored in Bloom filters. Furthermore, since the under-
lying PPDB is consistent, we can use the parent heuristic
value to reduce the number of Bloom filter queries required
at each state. For instance, if the parent heuristic is 10, we
only need to query if the child heuristic is in the depth-9
Bloom filter to know the heuristic value.

Single Min Bloom Filter for PPDBs
The previous approach will require multiple lookups to de-
termine the heuristic value for a state. We propose a novel
use of Bloom filters, denoted as a min Bloom filter, where
only a single Bloom filter lookup is performed to determine
an admissible heuristic. In a min Bloom filter, we no longer
use a bit vector for testing membership and no longer build
a different Bloom filter for each level. Instead, we use only
one Bloom filter and for each abstract state, we store its h-
value directly in that Bloom filter. The Bloom filter is first
initialized to a maximum value higher than any value that
will be stored. An abstract state t and its h-value h(t) is
added to a min Bloom filter by, for each hash function, stor-
ing the minimum of h(t) and the value already stored in that
entry. Each entry will now have the minimum of the h-values
of all abstract states that were mapped to that entry and is
thus admissible. When looking up an abstract state t in the
min Bloom filter, we lookup in all its associated hashi en-
tries and the final h-value for t is the maximum over all these
entries. This is admissible as we are taking the maximum of
a number of admissible heuristics.

We illustrate this in Figure 3, where si is at depth i for i =
1, 2, 3. An arrow is drawn from each state to the locations
associated with each hash function. Looking up s1, we see
that all its associated entries in the Bloom filter are 1, so a
value of 1 is used. Looking up s2, we see values of 1 and 2.
We can take the max of these, so the value used is 2. For s3,
some entries are not set, so we assert that s3 is not in the min
Bloom filter and use D + 1 as h(s3).

As a trade-off to requiring fewer lookups, the min bloom
filter requires more memory, as values are stored instead of
bits indicating set membership.
Compressed PPDBs and Min Bloom Filters The original
PPDB paper proposed a form of compressed PPDBs (An-
derson, Holte, and Schaeffer 2007) where the key for each
entry is not stored. Instead, a hash function is used to map
abstract states to entries. If a number of states map to the
same entry, the min of these entries is stored. This is exactly
a min Bloom filter using only a single hash function. Un-
fortunately, as we will show later, the use of additional hash
functions did not improve performance in practice.

Compressed PPDBs vs. Min Compression While com-
pressed PPDBs are a special case of min Bloom filters, they
are also a special case of min compression using a random-
ized mapping instead of a structured one. In particular, min
compression is commonly performed on k adjacent entries.
If we were to use a general hash function to map all states
to an array of size M/k and then take the min of each entry,
we are still performing min compression, just with a differ-
ent mapping of states. This is effectively the approach being
used by compressed PPDBs. (Note that this is no longer true
when we use a min Bloom filter with more than one hash
function.)

If domain structure caused min compression using adja-
cent entries to perform poorly, this is an alternate approach
to improve performance. In Top-Spin, for instance, adjacent
entries did not compress well, and so entries with the same
index mod(M/k) were compressed together (Felner et al.
2007).

Theoretical Models
In this section we introduce theoretical models for the ef-
fectiveness of standard min compression of PDBs and for
level-by-level Bloom filter compression.

Theoretical Model for Min Compression
One crucial question when performing min compression is
the distribution of values within the PDB. In particular, if
the PDB contains regions with similar heuristic values, it
may be possible to compress the PDB with very little loss
of information (Felner et al. 2007). This demands a domain-
dependent analysis to find these mappings and is not possi-
ble for many domains. In particular, no such similar regions
are known for the 12-edge PDB for Rubik’s cube.

We build a theoretical model assuming that values are
sampled uniformly across the PDB entries. Thus, when k
entries are compressed into one bucket, the values in that
bucket are chosen uniformly from the PDB and have the
same distribution as the entire PDB. We simplify the anal-
ysis by sampling with replacement – ignoring that states
are removed from the PDB when compressed. The expected
value in the compressed PDB is determined by the expected
min of the k states selected.

Assume we are compressing by a factor of k and that
P (h = i) denotes the probability that a uniformly randomly
sampled state has an h-value of i in the uncompressed PDB.
(This is simply the number of abstract states at depth i di-
vided by the total number of abstract states.) P (h ≥ i) de-
notes the probability of obtaining an h-value of at least i,
i.e., P (h ≥ i) =

∑
j≥i P (h = j).

Let P (v = i) be the probability that the minimum of k
random selections has a value of i. We can rewrite this as
follows using a reformulation of Bayes’ Rule:

P (v = i) =
P (v ≥ i)

P (v ≥ i | v = i)
· P (v = i | v ≥ i) (3)

We always have P (v ≥ i | v = i) = 1, so we can drop
this term from the remaining equations.



k L Pred. IPR Actual IPR H
15 9.79 9.94 0.89 10.10 0.90 11.17
20 9.71 9.81 0.88 9.99 0.89 11.17
25 9.64 9.72 0.87 9.90 0.89 11.17
30 9.57 9.66 0.86 9.83 0.88 11.17
35 9.50 9.60 0.86 9.77 0.87 11.17
40 9.43 9.55 0.85 9.72 0.87 11.17
45 9.36 9.50 0.85 9.68 0.87 11.17
50 9.29 9.46 0.85 9.64 0.86 11.17

Table 3: Predicted vs actual min compression in the 12-edge
PDB with various compression factors (k).

The probability that v ≥ i is easy to compute as it is:

P (v ≥ i) = P (h ≥ i)k (4)

The probability that v = i given that v ≥ i is 1 minus the
probability that all choices are strictly greater than i given
that they are at least i:

P (v = i | v ≥ i) = 1−
(
P (h ≥ i+ 1)

P (h ≥ i)

)k

(5)

Putting these together, we get:

P (v = i) = P (h ≥ i)k ·

(
1−

(
P (h ≥ i+ 1)

P (h ≥ i)

)k
)

= P (h ≥ i)k − P (h ≥ i)k
(
P (h ≥ i+ 1)

P (h ≥ i)

)k

= P (h ≥ i)k − P (h ≥ i+ 1)k (6)

If all h-values in the PDB are finite, the expected heuristic
value in the compressed PDB is then:3

E[v] =
∑
i≥0

i · P (v = i) =
∑
i≥0

i−1∑
j=0

P (v = i)

=
∑
j≥0

∑
i≥j+1

P (v = i)

=
∑
j≥0

∑
i≥j+1

(P (h ≥ i)k − P (h ≥ i+ 1)k)

(∗)
=
∑
j≥0

P (h ≥ j + 1)k =
∑
i≥1

P (h ≥ i)k (7)

Step (*) exploits that
∑b

i=a(P (h ≥ i)k−P (h ≥ i+1)k)
is a telescopic sum that simplifies to P (h ≥ a)k − P (h ≥
b+ 1)k and that limb→∞ P (h ≥ b+ 1)k = 0.

3If they are not all finite, there is a nonzero chance of obtaining
v = ∞, and hence E[v] = ∞.

Mem pfp(8) pfp(9) h (Pred.) h (Act.) IPR
11 GB 2.8 3.7 9.895 9.894 0.89
16 GB 2.8 1.3 9.918 9.918 0.89

21.3 GB 1.4 0.6 9.952 9.951 0.89
31.6 GB 0.8 0.2 9.968 9.967 0.89

Table 4: Predicted and actual heuristic values for various
false-positive rates.

A Metric for the Loss of Information
We now propose a metric that measures the loss of infor-
mation of a given compression method. In the best case,
there would be no loss of information and the expected
value of the compressed heuristic would be the same as the
uncompressed heuristic, denoted as H . In the worst case,
with pathological compression, all entries could be com-
bined with the goal state to return a heuristic of 0. If a com-
pressed PDB has an average value of v the information pre-
serving rate (IPR) is IPR = v

H . This is a value in [0, 1] and
indicates how much the information is preserved. The loss
of information rate can be defined as 1− v

H .
Table 3 shows the heuristic predicted by Equation 7 and

actual heuristic values for various min compression factors
of the 12-edge Rubik’s cube PDB. L indicates the lowest
possible heuristic achievable from min compression, and H
is the highest possible heuristic. We also show the predicted
heuristic value as well as the actual heuristic value for each
compression factor. While the predicted value is lower than
the actual value, suggesting that the items are not stored
completely at random with our ranking function, the differ-
ence is approximately 0.18 for all rows of the table.

Level by Level Bloom Filter Theory
We now turn to predicting the expected heuristic value of
a Bloom filter. Using the false-positive rate of each level
(given in Equation 2), we would like to predict the chance
that a state is assigned a lower heuristic value than its true
value. Assume that the false-positive rate at level i is pfp(i).
Then, the probability of getting a heuristic value of i from
looking up a state which is at level d for i ≤ d is:

pd(i) = ptrue(i) ·
i−1∏
j=0

(1− pfp(j)) (8)

In Equation 8 the term ptrue(i) is the probability that we
will get a true value from a query at level i. For levels ≤ d
this is exactly the false positive term (i.e., ptrue(i) = pfp(i)
for i < d). For level d, we set ptrue(d) = 1 because at level
d we will surely get a positive answer (a true positive). The
expected h-value of a random state at depth d is:

E(h(·) = d) =

d∑
i=0

pd(i) · i (9)

The average compressed heuristic will then be:
n∑

i=0

E(h(·) = d) · P (h = i) (10)



k Memory Av. h Nodes Time
Full PDB (SSD)

1 457.0 11.17 24,970,537 4,379.00
min compression (RAM)

15 30.5 10.10 82,717,113 71.53
20 22.8 9.99 101,498,224 87.00
25 18.3 9.90 115,441,421 98.63
30 15.2 9.83 136,521,114 115.56
35 13.1 9.77 147,406,610 124.43
40 11.4 9.72 168,325,109 135.73
45 10.2 9.68 182,096,478 145.87
50 9.1 9.64 191,441,365 159.87

PPDB(9) 16.5 - 54,583,816 64.40

Table 5: Min Compression and PPDBs of the 12-edge PDB.

Actual results are in Table 4. The predicted values are al-
most identical to the values achieved in practice, and the IPR
does not vary significantly with the memory usage. We do
not derive the expected min Bloom heuristic value here due
to space limitations and the poor results they obtain below.

Experimental Results
We implemented all the ideas above for Rubik’s cube with
the 12-edge PDB; this section provides detailed results for
many parameters of the approaches described in this paper.
All results were run on a 2.6GHz AMD Opteron server with
64GB of RAM. All searches use IDA* (Korf 1985) with
BPMX (Felner et al. 2011).

Min Compression
Table 5 reports the results for standard min compression4

given the compression factor, k. It reports the number of
nodes generated, average heuristic value, and time to solve
the full problem set (same 100 problems). The h-value is the
average heuristic of the compressed 12-edge PDB, although
in practice we maximize these with the 8-corner PDB. The
bottom line of the table is for level-by-level bloom filter with
4 hash functions. Here we used the hybrid approach where
levels 1–7 were stored in a hash table5 while levels 8 and 9
were stored in a level-by-level Bloom filter. Our Bloom fil-
ter used Zobrist (Zobrist 1970) hashes The results show that
we can get the same CPU time as the min compression us-
ing half the memory, or nearly twice the time using the same
amount of memory.

Bloom Filter Parameters
We note that Equation 2 for false positive depends on the
following parameters: (1) m – the number of bits for the fil-
ter (2) q – the number of hash functions (3) n – the number

4Tests suggested that a hash table with levels 1–7 and min com-
pression of levels 8 and 9 would not improve performance.

5We used a standard library hash table for which we cannot
tune performance or reliably measure memory usage. As such, we
report the memory needed for the Bloom filters, which should be
the dominant factor.

Memory 1 hash 2 hash 3 hash 4 hash
Nodes (Millions)

10 GB 214 214 243 246
15 GB 166 151 162 183
20 GB 140 118 119 148
30 GB 133 86 80 80

Time (Seconds)
10 GB 147 204 265 366
15 GB 110 141 195 261
20 GB 94 113 149 192
30 GB 75 81 105 113

Table 7: Min Bloom filter results for different sizes of mem-
ory and different number of hash functions.

of items stored. Since n is fixed, we can only vary m and
q. Table 6 presents comprehensive results for the number of
nodes (Top) and the CPU time (Bottom) of different com-
binations for these parameters. Each row represents a dif-
ferent memory/hash parameter for the level 8 Bloom filter,
while each column represents a combination for the level 9
Bloom filter. In terms of nodes, four hash functions produce
the best results. However, this isn’t true for time. More hash
functions require more time, and so better timing results are
often achieved with fewer hash functions, even if the number
of nodes increases.

Min Bloom Filters
We also experimented with min Bloom filters. Here, all lev-
els of 1–9 were mapped to the same Bloom filter and each
entry in the Bloom filter stored the minimum among all the
values that were mapped to it. We used four bits per state
in the min Bloom filter (versus one bit per state in a regular
Bloom filter). We varied the number of hash functions and
the size of the memory allowed. Table 7 provides the results.

Each row is for a different amount of memory (in GB)
allocated for the Bloom filter while each column is for a
different number of hash functions. We report the number
of nodes (in millions) and the CPU time (in seconds). For
each amount of allocated memory we have the best value
in bold. Naturally, with more memory, the performance im-
proves. However, the effect of adding more hash functions is
more complex. Clearly, it adds more time to the process as
we now have to perform more memory lookups. This seems
to be very important in our settings and using only 1 hash
function was always the best option in terms of time. Adding
more hash functions has the following opposite effects on
the number of nodes: (1) Each abstract state is now mapped
into more entries so we take the maximum over more such
entries. (2) More items are mapped into the same entry so the
minimum in each entry decreases. In our settings, it turns out
that the first effect was more dominant with larger amounts
of memory while the second effect was more dominant with
smaller amounts of memory. The best CPU time was always
achieved with only 1 hash function. As explained previously,
this is identical to the compressed PPDBs idea suggested by
Anderson, Holte, and Schaeffer (2007).



Nodes generated (in Million)
Depth 9 Bloom filter

10 GB Storage 15 GB Storage 20 GB Storage 30 GB Storage
H 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

D
ep

th
8

B
lo

om
fil

te
r 1
G

B

1 125 99 92 89 110 88 83 81 102 84 80 79 95 81 79 78
2 105 80 74 71 91 70 66 64 84 66 63 62 76 64 62 61
3 100 76 69 67 86 66 61 60 79 62 59 58 72 59 57 57
4 98 74 68 66 85 64 60 58 78 61 57 56 70 58 56 56

1.
3

G
B

1 118 92 85 82 103 81 76 75 95 77 74 73 88 74 72 72
2 100 76 70 67 86 66 61 60 79 62 59 58 72 59 58 57
3 96 73 66 64 83 63 58 56 76 59 56 55 69 56 54 54
4 95 71 65 63 82 62 57 55 75 58 55 54 67 55 53 53

1.
6

G
B

1 113 87 81 78 98 77 72 70 91 73 70 69 83 70 68 68
2 98 74 67 65 84 64 59 58 77 60 57 56 70 57 56 55
3 95 71 65 63 81 61 57 55 74 58 54 53 67 55 53 53
4 94 70 64 62 80 61 56 54 73 57 54 53 66 54 52 52

CPU Time (in seconds)
Depth 9 Bloom filter

10 GB Storage 15 GB Storage 20 GB Storage 30 GB Storage
H 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

D
ep

th
8

B
lo

om
fil

te
r 1
G

B

1 131 112 110 103 107 88 86 88 110 85 84 85 93 81 82 84
2 115 91 84 93 93 73 71 72 85 76 75 77 78 73 72 74
3 113 88 90 91 102 79 76 78 93 67 72 73 84 70 70 72
4 115 89 91 91 92 82 69 70 84 67 65 66 85 70 70 71

1.
3

G
B

1 125 100 94 94 112 91 88 90 95 87 85 79 94 82 82 84
2 111 86 88 87 97 70 67 75 90 66 64 66 81 61 67 69
3 108 84 85 80 97 75 66 67 79 70 68 70 79 60 59 67
4 109 84 84 79 99 76 66 73 85 70 62 70 72 66 66 61

1.
6

G
B

1 119 95 89 90 107 79 84 79 90 74 73 82 82 77 77 79
2 108 84 77 77 97 67 65 66 79 63 61 63 78 65 65 67
3 107 82 76 76 95 73 64 65 77 68 66 67 70 58 64 60
4 107 82 76 76 98 74 64 64 88 69 67 68 78 58 64 66

Table 6: Nodes and time for solving different combinations of level 8 (vertical) and level 9 (horizontal) Bloom filters.

Min Bloom Filters
Min Compression
Bloom Filters (Lvl by lvl)

Ti
m

e 
(s

ec
)

50

100

150

Memory (GB)
10 15 20 25 30

Bloom Filters vs Min Compression

Figure 4: Comparison of min compression, level-by-level
Bloom filters and min Bloom filters.

Large Problems

To establish a comparison with previous research, we also
ran on 10 random instances (Korf 1997). Bloom filters of
size 1.6 GB and 15.0 GB for levels 8 and 9 respectively
could solve these problems using 6.4 billion generations as
opposed to 14.0 billion (Breyer and Korf 2010) using 1.2
GB. Our code takes on average 7135s to solve each problem;
using 30 GB for level 9 decreased the average time taken to
6400s.

Final Comparison
Finally, we compared the three approaches: min compres-
sion, level-by-level Bloom filter, and min Bloom filters for
various amounts of memory. With the Bloom filters we
selected the best settings from Tables 6 and 7. Figure 4
shows the average time needed to solve the test suite as a
function of the available memory. Level-by-level Bloom fil-
ters clearly outperform the other forms of compression. It
achieves near-optimal performance (defined by the best-case
PPDB) with far less memory than min compression.

The timing results for min Bloom filter and min compres-
sion are nearly identical with even a small advantage to min
Bloom filters that likely results from faster hash lookups.

Conclusions
The goal of this research was to study the Rubik’s Cube
12-edge PDB; our best performance was achieved with (hy-
brid) level-by-level Bloom filter PPDBs. But, we have only
touched the surface of the potential of Bloom filters by
demonstrating their benefits on our single test domain. In
the future we aim to continue by testing different sizes of
PDBs and different domains. We are also studying ways to
use more of the level 10 Rubik’s cube data to further improve
performance.



Acknowledgments
Computing resources were provided from machines used for
the NSF I/UCRC on Safety, Security, and Rescue.

This research was partly supported by the Israel Science
Foundation (ISF) under grant #417/13 to Ariel Felner.

This work was partly supported by the Swiss National
Science Foundation (SNSF) as part of the project “Ab-
straction Heuristics for Planning and Combinatorial Search”
(AHPACS).

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial pat-
tern databases. In Symposium on Abstraction, Reformulation
and Approximation (SARA), 20–34.
Ball, M., and Holte, R. 2008. The compression power of
symbolic pattern databases. In International Conference on
Automated Planning and Scheduling (ICAPS-08), 2–11.
Bloom, B. H. 1970. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM 13(7):422–426.
Bose, P.; Guo, H.; Kranakis, E.; Maheshwari, A.; Morin, P.;
Morrison, J.; Smid, M.; and Tang, Y. 2008. On the false-
positive rate of bloom filters. Inf. Process. Lett. 108(4):210–
213.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In AAAI Conference on Artificial Intelligence,
39–44.
Christensen, K.; Roginsky, A.; and Jimeno, M. 2010. A
new analysis of the false positive rate of a bloom filter. Inf.
Process. Lett. 110(21):944–949.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Döbbelin, R.; Schütt, T.; and Reinefeld, A. 2013. Build-
ing large compressed PDBs for the sliding tile puzzle.
In Cazenave, T.; Winands, M. H. M.; and Iida, H., eds.,
CGW@IJCAI, volume 408 of Communications in Computer
and Information Science, 16–27. Springer.
Edelkamp, S., and Kissmann, P. 2008. Partial symbolic
pattern databases for optimal sequential planning. In Den-
gel, A.; Berns, K.; Breuel, T. M.; Bomarius, F.; and Roth-
Berghofer, T., eds., KI, volume 5243 of Lecture Notes in
Computer Science, 193–200. Springer.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. Journal of Artificial
Intelligence Research 30:213–247.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175(9–10):1570–1603.
Hart, P.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4:100–
107.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.

Korf, R. E. 1997. Finding optimal solutions to Rubik’s cube
using pattern databases. In National Conference on Artificial
Intelligence (AAAI-97), 700–705.
Mitzenmacher, M., and Upfal, E. 2005. Probability and
computing - randomized algorithms and probabilistic anal-
ysis. Cambridge University Press.
Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79:281–284.
Samadi, M.; Siabani, M.; Felner, A.; and Holte, R. 2008.
Compressing pattern databases using learning. In European
Conference on Artificial Intelligence (ECAI-08), 495–499.
Sturtevant, N. R., and Rutherford, M. J. 2013. Minimiz-
ing writes in parallel external memory search. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
666–673.
Zobrist, A. L. 1970. A new hashing method with application
for game playing. Technical Report 88, U. Wisconsin CS
Department.


