
Modelling Git Operations as
Planning Problems

Bachelor Thesis

Faculty of Science of the University of Basel

Department Mathematics and Computer Science

Artificial Intelligence Research Group

ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Florian Pommerening

Tim Bachmann

tim.bachmann@stud.unibas.ch

15-916-299

Januar 20, 2021

Acknowledgments

First and foremost, I want to thank my supervisor Florian Pommerening for providing a

great deal of guidance and feedback during the four months of writing this thesis. I would

also like to thank Prof. Dr. Malte Helmert for giving me the opportunity to work on such an

interesting topic. Additionally, I would like to thank my mother and partner for encouraging

me along the way.

Abstract

Version control systems use a graph data structure to track revisions of files. Those graphs

are mutated with various commands by the respective version control system. The goal of

this thesis is to formally define a model of a subset of Git commands which mutate the

revision graph, and to model those mutations as a planning task in the Planning Domain

Definition Language. Multiple ways to model those graphs will be explored and those models

will be compared by testing them using a set of planners.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Overview of Git . 3

2.1.1 Git Commit . 4

2.1.2 Git Branch . 5

2.1.3 Git Checkout . 6

2.1.4 Git Merge . 7

2.1.5 Git Rebase . 8

2.2 Planning . 10

2.3 Introduction to the Problem Domain Definition Language 11

3 Modelling Git Operations 14

3.1 Modeling Git States in PDDL . 14

3.2 Modeling Git Actions . 15

3.2.1 Git Commit . 16

3.2.2 Git Branch . 16

3.2.3 Git Checkout . 17

3.2.4 Git Merge . 17

3.2.5 Git Rebase . 19

3.3 Other Ways of Modelling the Domain . 22

3.3.1 Without Derived Predicates . 23

3.3.2 With Ordered Nodes and Branches . 24

4 Evaluation 26

4.1 Problem generation . 26

4.2 Benchmark setup . 26

4.3 Results . 28

4.3.1 Planning time . 28

4.3.2 Axioms . 31

Table of Contents v

5 Conclusion 33

Bibliography 34

1
Introduction

Git is a version control system (VCS) that uses a graph to track file changes. Every time the

user commits their file changes a new node gets added to the graph. A node represents the

state of all files and their content at one point in time. The edges connect the nodes to their

parent nodes. Many Git commands will mutate the graph in various ways: For example, the

command git commit will add a new node to the graph and add an edge between it and

the previously active node. Using the whole graph as a single state in a state-space and the

mutations of the graph as transitions from one state to the next, finding a series of commands

to mutate one graph into another can be modeled as a state space search problem. Planners

are used to solve problems like this, and are the subject of active scientific research. To test

and further optimize planners, sets of problems, so-called benchmarks are used. Models of

the Git graph could prove to be an interesting benchmark for further planning research.

Understanding the many commands of Git can be an overwhelming task for new users.

Allowing them to find a sequence of commands to transition from the current graph to a

different graph can make it easier to use and learn. Multiple ways from a source graph to a

destination graph can be found, where some ways are longer than others. Especially working

with branching and rebasing can be very difficult for a novice Git user. In this thesis we

will model the graph structure of Git in the Planning Domain Definition Language. Using

this model any compatible planners such as the planners from the Fast Downward planning

system [7] can be used to find more efficient paths to the desired result graph.

Git is a very complex piece of software, dealing not only with the graph but also with the

state of the file system, synchronization between different computers, and more. Modeling

all Git functionality would therefore go beyond the scope of this thesis and only a subset of

Git will be discussed in this work. Namely, commands that modify the Git revision graph.

One of the difficulties for new users of Git is keeping track of what Git commands are used

to make certain changes to the graph. This is made even more complicated due to different

behaviors of the same Git commands under varying circumstances.

We will formally define the Git behavior that modifies the Git graph, namely the commit,

branch, checkout, merge and rebase commands which already cover a wide set of Git func-

tionality. Other functionality of Git that does not relate to the Git graph like the contents

of the nodes, the file state, merge conflicts, and similar will not be covered here.

Introduction 2

We will explore how to model a complex graph as well as mutations on that graph as a

domain in the Planning Domain Definition Language. Additionally to a reference model,

multiple variants of this domain will be created and compared on how problems on those

domains perform on a set of planners. The reference domain will mimic the internal workings

of Git as close as possible. Then we will create a modified version of this domain without

derived predicates and a variant of each of those domains with where all objects are ordered.

To compare the domains, a suite of equivalent problems for each of the domains will be

created to test and compare the performance of the domains on a set of planners. The time

improvement, amount of generated axioms, and plan costs of the equivalent problems in

each domain will be used as criteria for the comparison of the domain variants.

2
Background

It is important to explain the concepts and terminology used in this thesis. An in-depth

overview of the used Git mechanics, as well as a short overview of planning and the Planning

Domain Definition Language follows.

2.1 Overview of Git
The Git version control system stores file system revisions in a graph data structure. The

user can submit changes on the file system to Git as a new revision. This creates a so-called

commit, which is stored as a node in the Git revision graph. In the rest of this document,

the term node will be used to refer to a commit in the graph. Exactly one node is always the

HEAD node. When the graph is initialized and no commits have been made yet, we assume

the HEAD points to a root node. The HEAD node represents the one revision that the user

is currently working on. If the user decides to switch to a different node and work on that,

then the other node will become the HEAD node. A node has references to its parents,

which are the nodes it is dependent on. Usually, this will be a single node, the node that

was the HEAD when the current node was committed. In the case of a merge, the node can

also have two parents: the previous HEAD node and the node that was merged (see 2.1.4).

A Git graph can contain copies of nodes, which are a result of the rebase command. Git

does not keep track of a copy relation explicitly, but our model introduces this relation to

reason about graphs that contain copies. The Git graph also has a set of pointers: the

HEAD pointer and branches. A branch always points to one node. Most Git commands

will move the branch pointer if a new node is created. In contrast to the branches there

exists exactly one HEAD pointer. It can either point to a branch or a node. If the HEAD

pointer points to a node, this node is called the HEAD node and the graph is in a “detached

HEAD state”. If it points to a branch this branch is called the HEAD branch and the node

it points to is the HEAD node. Most Git actions will modify the graph based on the HEAD

node. There also exists another type of pointer: the tag. But since tags are mostly static

and meant as a human-readable name for a node this will not be discussed further in this

thesis.

We define a Git state as a tuple G = 〈G,B,C, b, h〉. The tuple G = 〈N,E〉 is a rooted

Background 4

directed acyclic graph with nodes N and edges E. The set B contains all branch names.

The set C is the copy relation 〈n1, n2〉 ∈ C where the node n1 is a copy of the node n2. The

function b : B → N maps each branch name to a node. The value h ∈ N ∪B is the node or

branch where the HEAD pointer is currently pointing to. For convenience we define nh ∈ N
as the HEAD node:

nh =

h if h ∈ N

b(h) if h ∈ B.

An action maps from one Git state to a next one.

We will visualize Git states with a picture as shown in Figure 2.1. The round graph nodes

correspond to commits (nodes in N), while the rectangle graph nodes are branches. A black

arrow between two graph nodes ni, nj denotes the edge 〈ni, nj〉 ∈ E between the nodes,

where the arrow points from the child node to the parent. In this example the newest node

n7 is at the bottom. The arrow from a branch to a node signifies that the branch points

to the node. The HEAD pointer is signified by the colored background, in the example of

the branch b0. A copy of a node is visualized by a gray dashed arrow from the copy to

the source node. In this example the nodes and branches are numbered in sequence of their

creation.

b0 n7

n6

n5

b1 n1

n0

n4 n3

n2

Figure 2.1: An example Git state.

2.1.1 Git Commit
Git commit is one of the most used Git commands that modifies the revision graph. It

appends a new node to the HEAD node. The HEAD pointer is moved to the new node if

the HEAD pointer points to the HEAD node directly. If it points to a branch, the branch

will be moved to the new node. An example of the second case is shown in Figure 2.2. The

git commit command can modify the HEAD node to change or update the files without

Background 5

adding a new node with the --amend flag. This behavior is not modeled, since this does

not result in any change in the graph.

We define the git commit action commit : G → G as

commit(〈G,B,C, b, h〉) = 〈G′, B,C, b′, h′〉.

The graph G′ = 〈N ′, E′〉 contains the nodes N ′ = N ∪ {n∗} and edges E′ = E ∪ {〈n∗, nh〉},
where n∗ 6∈ N is the new node. The function b′ is defined as

b′(x) =

n∗ if x = h

b(x) otherwise.

This implies that if the HEAD is a node then b′ is the same as b. We define the new HEAD

element as

h′ =

n∗ if h ∈ N

h otherwise.

b0 n1

n0

(a) The initial Git state G.

b0 n2

n1

n0

(b) The Git state G′ = commit(G).

Figure 2.2: An example of the git commit command.

2.1.2 Git Branch
The command git branch creates a new branch. By default, the new branch will point to the

HEAD node. It is also possible to specify a different node where the branch should point to.

Git also allows the user to move a branch to point to an arbitrary node or to delete a branch.

We only model the default behavior of creating a new branch pointing to a node, because it

is the idiomatic way to use Git. Instead of moving the branch to an arbitrary node, a new

branch should be created instead. We also will not model any deletion of branches or nodes

from the graph to keep the model as simple as possible. Likewise, functionality that alters

the branch metadata like the human-readable name, upstream branch, or description are

not covered here, because they do not impact the Git state. Figure 2.3 shows an example

of the branch action.

The default branch action is defined as

branchn(〈G,B,C, b, h〉) = 〈G,B′, C, b′, h〉

Background 6

with n ∈ N , where the set of branches B′ = B∪{b∗} contains the additional branch b∗ 6∈ B,

and where the function b′ is defined as

b′(x) =

n if x = b∗

b(x) otherwise

which points the new branch to the node n while keeping all other branch pointers as-is. By

writing branch(G) without the parameter n we assume that n = nh.

b0 n2

n1

n0

(a) The initial Git state G.

b0 n2

n1

b1

n0

(b) The Git state G′ = branchn2(G).

Figure 2.3: An example of the git branch command.

2.1.3 Git Checkout
The git checkout command will move the HEAD pointer to a branch or commit. It is

also possible to check out a branch that does not yet exist. In that case, Git will create

the branch either pointing to a specified node or to the HEAD node if none is specified.

This is equivalent to the branch action with an additional checkout and is therefore not

modeled. It’s also possible to check out a new branch that does not point to an existing

node. Committing while the HEAD points at a so-called orphan branch results in a node

with no parents. This allows for multiple independent histories in the same Git graph.

Requiring the use of this orphan branch is rare and not modeled because it is most often

avoided in practice.

The checkout action is modeled as

checkoutx(〈G,B,C, b, h〉) = 〈G,B,C, b, x〉

where x ∈ N ∪ B is the new HEAD node or branch. Figure 2.4 shows an example of the

checkout action.

Background 7

b0 n1

n0

b1 n2

(a) The initial Git state G.

b0 n1

n0

b1 n2

(b) The Git state G′ = checkoutb0(G).

Figure 2.4: An example of the git checkout command.

2.1.4 Git Merge
Git merge incorporates the changes made to the file system in one branch back into another

branch. This makes working with Git branches powerful because independent work can

be made in parallel on separate branches and merged back together. The merge command

behaves differently depending on if the two branches are in an ancestor relation. A node n1

is an ancestor of another node n2 if the node n1 is reachable in the graph starting from n2.

Likewise for two branches pointing to two nodes, the same ancestor relation holds between

the branches as between the nodes. Figure 2.5(a) shows an example where the branch b0

is an ancestor of b2.

In the first case, when merging two branches bh, b2 which point to n1, n2 where bh is the

HEAD branch and neither branch is in an ancestor relation with the other branch, then

a new node will be added to the graph. This new node has two parents n1, n2 and can

contain changes made in both parent nodes. An example for this behavior can be seen in

Figure 2.5(b).

In the second case, if the branch bh is an ancestor of the other branch b2, the merge command

will move the branch bh to point to the same node as b2 instead of creating a new node,

because the node n2 already contains changes made in n1 and n2. An example of this can

be seen in Figure 2.5(c).

In the final case, when the branch b2 is an ancestor of bh, the merge command will not

modify the graph at all. This is the case because the node n2 = b(b2) already contains all

the changes.

All three cases of the merge action are defined as

mergey(〈G,B,C, b, h〉) =


merge ay(〈G,B,C, b, h〉) if 〈h, y〉 ∈ AG

〈G,B,C, b, h〉 if 〈y, h〉 ∈ AG

merge ny(〈G,B,C, b, h〉) otherwise.

The branch y ∈ B is the branch to merge and the set AG is the ancestor relation in the

graph G as defined above. Git requires that b(y) 6= nh which means it is not allowed to

merge a branch with itself. The sub-action merge a is defined as

Background 8

merge ay(〈G,B,C, b, h〉) = 〈G,B,C, b′, h〉

with

b′(x) =

nh if x = y

b(x) if x 6= y.

The other sub-action merge n is defined as

merge ny(〈G,B,C, b, h〉) = 〈G′, B,C, b′, h〉

with G′ = 〈N ′, E′〉, where N ′ = N ∪ {n∗} and E′ = E ∪ {〈n∗, nh〉, 〈n∗, b(y)〉} with n∗ 6∈ N
being the new node and b′ being the same function as defined above for the sub-action

merge a.

b0 n1

n0

b1n3

b2 n2

(a) The initial Git state G where 〈b0,b2〉 ∈ AG,
and b1 and b2 are not in the ancestor relation.

b0n4

n3n1 b1

n0

b2 n2

(b) The Git state
G′ = mergeb1

(G) = merge nb1
(G).

b2 n2

n1 b1n3

n0

b0

(c) The Git state
G′′ = mergeb2

(G) = merge ab2
(G).

Figure 2.5: Examples of the git merge command where (b) the HEAD branch is not in an
ancestor relationship with the merged branch and where (c) the HEAD branch is an ancestor
of the merged branch.

2.1.5 Git Rebase
The Git rebase command serves a similar purpose as the merge command of integrating

changes from one branch to another branch. Although the way this is accomplished is

different. Git rebase copies nodes of one branch and inserts them as children of another

branch. This means that the Git graph now contains copies of the same node in multiple

Background 9

places, but no merge commit is created. An example the rebase command this is shown

in Figure 2.6. A copy of a node is denoted by a gray dotted arrow from the copy to the

source node. Git will occasionally garbage-collect all nodes that are no longer referenced

by a branch or by other nodes, which essentially transforms the copy operation to a move

operation. In Figure 2.6, the subgraph with the root n3 will eventually be deleted by

garbage-collection. We will not model garbage-collection. The rebase command is invoked

on the destination node nd. The lowest common ancestor [1] of the HEAD node nh and nd

will be called nlca . For this document the lowest common ancestor of the nodes ni, nii is

not defined if 〈ni, nii〉 ∈ AG or 〈nii, ni〉 ∈ AG. The subgraph Gs of G with the root node

nlca and with all nodes reachable from nh is copied over as a child of nd with the exception

of the node nlca which is the node n1 in Figure 2.6. However by default all merge commits

in Gs are ignored and the subgraph is converted to a linear path from nh to nlca . For this

thesis, we assume that the order of the nodes during linearization is only constrained by

the fact that all ancestor relations between any nodes in Gs must still hold. Git lets the

user choose from two different rebase backends, which are two rebase implementations with

slightly different behaviors in edge cases such as when dealing with empty commits and

merge commits. In this model of Git, all commits including the merge commits are copied.

Furthermore, we only model the rebase action for nodes that are not ancestors of each other.

The behavior of Git in the case that nh and nd are ancestors of each other can be replicated

using the merge command.

We define the rebase command as

rebasend
(〈G,B,C, b, h〉) = 〈G′, B,C ′, b′, h〉.

We define a subgraph Gs = 〈Ns, Es〉 of G with the root node nlca which is the lowest common

ancestor of nh and nd. The nodes of the subgraph are defined as Ns = {nlca} ∪ {n ∈ N :

〈nlca , n〉 ∈ AG and not 〈h, n〉 ∈ AG}, meaning all nodes in N that have nlca as an ancestor

but do not have h as an ancestor. The set of edges Es contains all edges 〈n1, n2〉 ∈ E where

n1, n2 ∈ Ns. The copy relation is defined as C ′ = C∪C∗ where C∗ = {〈n′s, ns〉} where all n′s

are different nodes with n′s 6∈ N for all ns ∈ Ns \ {nlca}. The graph G′ = 〈N ′, E′〉 contains

the nodes N ′ = N ∪N∗, where N∗ = {n∗ : 〈n∗, n〉 ∈ C∗} is the set of nodes containing all

copies of the nodes in Ns, and edges E′ = E ∪E∗, where E∗ is a set of edges which forms a

path p = 〈n∗1, n∗2, . . . 〉 from the last copied node nlc, where nlc is a copy of nh, to the node

n∗c which is the copy of the root node of the subgraph. The path p maintains all ancestor

relations between node copies from the subgraph.

The function b′ is defined as

b′(x) =

y where 〈y, nh〉 ∈ C∗ if x = h

b(x) otherwise.

Background 10

n5

n3

n6

n7

b0 n8

n1

n2

(a) The initial Git state G.

n4

n3

n5

n6

n10

n9

n8

n11

b0n12

n7

n2

n1

(b) The Git state G′ = rebasen2(G).

Figure 2.6: An example of the git rebase command with a merge commit n7 in the copied
subgraph.

2.2 Planning
A planning task is defined as a tuple Π = 〈V,O, sI , s∗, cost〉. V is a finite set of variables

V ∈ V. Every variable V has a domain dom(V), a finite non-empty set of values that can

be assigned to this variable. This is done with a partial variable assignment p. A partial

variable assignment maps a value v ∈ dom(V) to some or all variables V ∈ V. The tuple

〈V, v〉 is called a fact. It is considered true for a partial assignment p if the assignment

assigns a value v = p[V] to the variable V . A variable assignment of all variables is a state.

The set of all possible states is denoted by S. A partial variable assignment p is consistent

with a state s if all variables assigned in p have the same value as the respective variable

assigned in s. The finite set O contains operators o ∈ O with a precondition pre(o) and

an effect eff (o). The precondition and the effect are both a partial variable assignments.

An operator o is applicable in a given state s if the precondition pre(o) is consistent with

s. Applying an operator o to a state s is only possible if the precondition is met. This

results in the next state s′ = sJoK. The state s′ assigns all variables that are assigned by

eff (o) to the same values as eff (o), and any other variables to the values of s. Operators

can be chained together to form a sequence π = 〈o1, . . . , on〉 of operators. For a sequence of

states 〈s0, . . . , sn〉, the operator sequence is applicable on the state s0 if every operator oi is

applicable on the state si−1, resulting in the state si. The state sI is the initial state, and

the goal description s∗ is a partial variable assignment. If the goal description is consistent

Background 11

with a state s, this state is called a goal state. The function cost : O → R determines

the cost of an operation. The cost of a sequence of operators 〈o1, o2, . . . , on〉 is the sum∑n
i=1 cost(oi).

A planning problem induces a state space 〈S, A, cost, T, sI , s∗〉, where S is a finite set of

states as defined above, A is a finite set of actions corresponding to set of operators O as

described above, the function cost : A → R determines the cost of every action equal to

the cost of the corresponding operator, T ⊆ S × A × S is the transition relation, where

T = {〈s, sJoK〉 : s ∈ S and o ∈ O is applicable in s}, the states sI , s∗ ∈ S are the initial

and goal states as defined above. The states and the transition relation induce a labeled

directed graph, with every state being a node and every transition being an edge between

nodes. Finding a series of actions from the initial state to one of the goal states is equivalent

to finding a path in the graph from the initial state to one of the goal states. A shortest path

between the initial state and one of the goal states is also an optimal plan of the planning

task. Many algorithms exist for finding paths in a graph, an example of one of the most

popular ones is the A* algorithm [5].

2.3 Introduction to the Problem Domain Definition Language
The Problem Domain Definition Language (PDDL) is a language specifically designed to

model planning tasks as defined above. PDDL splits the definition of a task into two

parts, the domain file, and the problem file. The domain is modeled in PDDL by a set of

predicates and a set of actions. To make defining larger state spaces less verbose, PDDL has

the notion of objects and parameters. Predicates can have parameters. A predicate with

an object assigned to each of the parameters is an atom which is equivalent to a variable

with the domain {true, false}. Therefore each assignment of those values to the predicates

is a state. Using predicates with parameters it is possible to write a large number of atoms

compactly. As an example of how predicates with parameters can be used, we assume

we have a problem domain with a list of predicates for the position of a vacuum cleaner

like (in_room_A) (in_room_B) Instead of manually specifying each predicate

for every room, it is enough to define the predicate with a parameter (in_room ?room),

where in_room is the predicate and ?room is the parameter. The problem file has a section

to define objects, in this case: A B C ... representing all rooms. The planner will then

create the set of atoms (in_room A) (in_room B) ... by assigning each object to

every parameter.

PDDL has the notion of types of objects to restrict what objects will be assigned to predicate

parameters. The default type is object. Types behave in a hierarchical manner, similar

to classes in object-oriented programming. Every type implicitly inherits from the type

object. A type can only inherit from one other type, but multiple types can inherit from

the same parent type. Types allow the author of a domain to classify the objects defined

in the problem file without having to introduce a predicate for each type which in turn has

to be set for every object of that type in the problem file. An example of possible types

for a logistics simulation domain would be the type vehicle - object representing any

kind of vehicle and the types car train - vehicle representing the two types for car

Background 12

objects and train objects which in turn are also vehicle objects.

To transition from one state to the next state, PDDL lets the domain define a set of actions.

Every action has a precondition and an effect. The precondition describes a valid partial

assignment of the atoms for the action to be applicable. Actions can have parameters, which

allows them to dynamically specify what atoms are relevant in the precondition. The effect

describes the partial assignment of the atoms as a result of the action. The preconditions

and effects of an action can be mapped to the preconditions and effects of operators as de-

fined in Section 2.2. Instead of directly specifying partial atom assignments as preconditions

and effects, PDDL permits the use of predicates as well as logical operators. Preconditions

are predicate logic formulas with the most used operators being (and (expr) ...),

(or (expr) ...) and (not (expr)). PDDL also supports both quantifiers: The ex-

istential quantifier (exists (?o - type) (condition)) is evaluated to true if at

least one object exists, which inserted in the condition results in the condition being evalu-

ated to true. This is equal to the to the existential quantifier in predicate logic

∃o ∈ type, where (condition).

The universal quantifier (forall (?o - type) (condition)) is evaluated to true

if all objects of type type result in the condition being evaluated to true. This is equal to

the universal quantifier in predicate logic

∀o ∈ type, (condition).

Notably, just like in predicate logic, the following expression with the universal quanti-

fier (forall (?o) (not(pred ?o))) and the expression with the existential quantifier

(not (exists (?o) (pred ?o))) are equivalent and can be used interchangeably. An

example for the use of the universal quantifier would be to make sure every person has left

an elevator before it closes the door: (forall (?p - person) (not (in elevator

?p))).

An example of a simple domain with just a single predicate would be a light switch [6].

The predicate in this domain could be (switch_on ?room) and the actions would be

turn_switch_on and turn_switch_off with the parameters ?room. The first action

turn_switch_on would have the precondition (not (switch_on ?room)), and the

effect (switch_on ?room). In this example the check that the light switch is off in the

room is redundant because in case the light is already on, the state does not change. The

planner would never apply this action. It is best practice to set this precondition anyway

as it makes it easier for humans to read and interpret the action, especially in complex

domains.

Some predicates are not necessary to describe a state, and are derivable from other predi-

cates. PDDL has a construct called derived predicates. In contrast to normal predicates,

they can not be explicitly set in an effect. Instead, they are derived from the assignment of

the other predicates. Derived predicates are defined the same way as a precondition, using

logical operators as well as predicates and even other derived predicates. A derived pred-

icate can be recursively defined: An example for such a derived predicate is the notion of

an ancestor relation in a rooted directed acyclic graph. Without using a derived predicate,

Background 13

any action that modifies this graph has to update the predicate that models this ancestor

relation. But since the ancestor relation of a graph is a function of this very graph it is

redundant for the state-space and therefore it is not necessary to keep track of it manu-

ally. Instead, this relation could be derived from an is_parent predicate, which could

be a predicate with two parameters ?parent and ?child, and which induces a directed

graph. The ancestor relation could be modeled in the following way: The derived predicate

(is_ancestor ?n1 ?n2) is true when either ?n1 is a parent of ?n2 or when another

node ?n3 exists which is the parent of ?n2 and has ?n1 as an ancestor. This recursive

definition is solved by the planner by assuming the default assignment of all atoms of the

derived predicate is false and iteratively applying the rules of the derived predicates. Derived

predicates do not expand the set of possible domains that can be modeled using PDDL [6]

but they make some domains more compact and convenient.

The equality operator (= ?x ?y) behaves like a built-in derived predicate which is true

for any two parameters that are the same object. Like real derived predicates it can only

be used in preconditions and other derived predicates.

Contrary to preconditions, effects can only consist of a subset of predicate logic. Specifically

disjunctions and the existential quantifier can’t be used in effects. The universally quanti-

fied effect (forall (?o - type) (effects)) uses the same keyword as the universal

quantifier. All predicates in the universal quantified effect that use the specified parameter

are assigned to all objects of the specified type. Those atoms will then be assigned to a

specified value. The conditional effect (when (condition) (effects)) allows an ac-

tion to only apply some effects in case the condition is evaluated as true. It can either be

used by itself or can be especially useful if used as an effect of the universal quantified effect.

By default actions in PDDL have a cost of one. It is possible to define a domain with

custom action costs by defining a function called total-cost. There are many ways to

define action costs based on the state and the action, but in this thesis we only work with

zero cost actions and actions of cost one. To indicate the cost of an action being one we

add the statement (increase (total-cost) 1) to the effect of an action. To indicate

a zero-cost action we will not add this statement.

3
Modelling Git Operations

The model of Git as defined in Section 2.1 can be translated to PDDL in multiple ways. This

first model aims to encode the semantics in the most intuitive way possible, disregarding

any compatibility constraints of planners. We opted to use as many PDDL features as

necessary to create the PDDL domain as legible and understandable as possible. We will

also implement a modification of the model without derived predicates. Thereafter we will

modify both models to include an ordering of PDDL objects.

3.1 Modeling Git States in PDDL
To model the mutation of the Git state 〈G,B,C, b, h〉 as a state space problem in PDDL,

Git states must be modeled with predicates. Since graphs G are directed, they can be mod-

eled with a predicate (n_is_parent ?n_parent ?n_child - node). This predicate

represents the edge between any two nodes in our graph, in this case PDDL objects of type

node. This is equivalent to our formal definition of the Git graph in Section 2.1, where the

objects of type node are the elements of the set N and the tuple of objects for which the

predicate is true are elements of the set E. We use PDDL objects to represent nodes and

branches. The PDDL types node and branch extend the type graphobj which is used

for predicates and action parameters that accept both nodes as well as branches.

Every node, including the ones that will be used during the solution, has to be specified as

an object in the problem file. Therefore only a finite, predefined amount of nodes can be

used to find a plan. Unlike in the formal model, all nodes are predefined and exist from the

start. The predicate (is_in_graph ?nb - graphobj) is needed to flag all nodes and

branches that are already in the graph (i.e. they are elements of the set N ∪B).

As discussed in Section 2.1, a Git state consists of more than just the graph. It also contains

branch pointers and the HEAD pointer. Because it is possible to have an arbitrary amount

of branch pointers, they must be defined in the problem file as objects of type branch.

The function b of the Git state is represented by the predicate (b points to ?branch

- branch ?node - node). The HEAD pointer is modeled as the predicate (is head

?bn - graphobj), which is set for exactly one node or branch. Figure 3.1 shows a Git

state and the equivalent atoms that model it. The copy relation C is modeled with the

Modelling Git Operations 15

predicate (n is copy of ?n1 ?n2).

b0 n2

n1

b1 n4

n3

n0

(a) Visual representation of Git state G.

(: in i t
(n i s p a r e n t n0 n1)
(n i s p a r e n t n1 n2)
(n i s p a r e n t n1 n3)
(n i s p a r e n t n3 n4)
(b po i n t s t o b0 n2)
(b po i n t s t o b1 n4)
(i s h ead b1)
(i s i n g r a ph b0)
(i s i n g r a ph b1)
(i s i n g r a ph n0)
(i s i n g r a ph n1)
(i s i n g r a ph n2)
(i s i n g r a ph n3)
(i s i n g r a ph n4)

)

(b) List of atoms describing Git state G.

Figure 3.1: An example Git state.

The graph structure of the Git graph also exhibits some properties which are not directly

accessible from the predicates defined above, but that are necessary for the implementation

of the Git commands as PDDL actions. We model them as derived predicates.

The easiest one of those properties is the HEAD node. We could introduce a separate

predicate to flag a node as the HEAD node but then every action that modifies the HEAD

has to keep track of it manually. Instead, this flag is implemented as the derived predicate

(n is head ?n - node). It is set for any node ?n where the property (is head ?n)

is set or where the branch ?b exists with the properties is head ?b and (b points to

?b ?n). This directly corresponds to the node nh as defined in Section 2.1.

The ancestor relation is a very important property of the Git graph. Depending on the

ancestor relation some Git commands exhibit completely different behaviors. It is defined

as the derived predicate (n_is_ancestor ?ancestor ?base - node). It is set for

any pair of nodes with at least one of the following two properties: The node ?ancestor is

a parent of the node ?base, or a node ?n exists where ?n is the parent of the node ?base

and the node ?ancestor is an ancestor of ?n.

The last derived predicate represents the lowest common ancestor of two nodes. It is defined

as the derived predicate (n is first common ancestor ?n common ?n1 ?n2). It is

set for the three nodes ?n_common, ?n1 and ?n2 if the following conditions are met: The

node ?n_common must be an ancestor of both ?n1 and ?n2. The nodes ?n1 and ?n2 can

not be the same node. No node ?n_child can exist that is a child of ?n_common and

an ancestor of both ?n1 and n2. This derived predicate depends on the previously defined

derived predicate (n_is_ancestor) which is valid in PDDL.

3.2 Modeling Git Actions
Using the predicates defined in Section 3.1 it is now possible to model Git commands as

defined in Section 2.1 as actions in PDDL. Not all Git commands can be implemented as a

Modelling Git Operations 16

single action. Some commands like merge need more than one action to be able to model

the behavior of the command entirely. The rebase command is modeled in such a way that

the multiple rebase actions have to be applied in a certain order. To make sure no other

actions can be applied while the rebase is taking place, the predicate mode_rebase is set

to signify that a rebase is in progress. Every action has a precondition that checks if this

predicate is set.

3.2.1 Git Commit
Recall from Section 2.1.1 that the commit action is defined as the function commit(G) =

〈G′, B,C, b′, h′〉, where G′ contains a new node n∗ with the edge 〈n∗, nh〉, the branch pointer

b′(h) = n∗, and the HEAD pointer h′ = n∗ if h ∈ N . As seen in Figure 3.2, the commit

action in PDDL gets the following parameters: The HEAD node nh as ?n_h, the HEAD

branch h as ?h and a free node n∗ as ?n_star. The preconditions check that the pa-

rameters are correct: The free node must not be in the graph, and the branch ?h must

be the HEAD branch and point to the HEAD node. The effect of the action flags the

node ?n_star as being in the graph, which is equivalent to n∗ ∈ N ′ in the model. The

effect also marks the node ?n_h as a parent of the node ?n_star and moves the HEAD

branch pointer to point to?n_star, as defined in the model, when h ∈ B. A second Git

action commit-no-branch allows the planner to make a commit in the detached HEAD

state where h ∈ N . It is implemented the same as the commit action as just described,

except it has no parameter for the HEAD branch, the precondition makes sure the HEAD

pointer points to the node ?n_h directly. The effect directly moves the HEAD pointer to the

node ?n_star instead of moving the branch pointer. Only one of the actions commit and

commit-no-branch is applicable in all situations because either the precondition h ∈ B
of the commit action is met or the precondition h ∈ N of the commit-no-branch is met.

(: action commit : parameters (? n h ? n s t a r - node ?h - branch)
: precondition (and

(not (i s i n g r a ph ? n s t a r))
(i s h ead ?h)
(b po i n t s t o ?h ?n h)
(not (mode rebase)))

: ef fect (and
(i s i n g r a ph ? n s t a r)
(n i s p a r e n t ?n h ? n s t a r)
(b po i n t s t o ?h ? n s t a r)
(not (b po i n t s t o ?h ?n h))
(increase (t o t a l - co s t) 1)))

Figure 3.2: The PDDL commit action.

3.2.2 Git Branch
As in Section 2.1.2, the branch action is defined as branchn(G) = 〈G,B′, C, b′, h〉 with B′

containing the new branch b∗, and b′(b∗) = n. As shown in Figure 3.3 the action branch has

the parameters n as ?n and b∗ as ?b_star. The precondition makes sure that the branch

object ?b_star is not in the graph. The effect of the action flags the branch ?b_star

as being in the graph, which corresponds to b∗ ∈ B′, and points it to the node ?n, which

corresponds to b′(b∗) = n in the model. This action is always applicable and is equivalent

Modelling Git Operations 17

to the action branchn(G).

(: action branch : parameters (?n - node ? b s t a r - branch)
: precondition (and

(not (i s i n g r a ph ? b s t a r))
(not (mode rebase)))

: ef fect (and
(i s i n g r a ph ? b s t a r)
(b po i n t s t o ? b s t a r ?n)
(increase (t o t a l - co s t) 1)))

Figure 3.3: The PDDL branch action.

3.2.3 Git Checkout
The checkout action, as shown in Section 2.1.3, is defined as checkoutx(G) = 〈G,B,C, b, x〉
with x being the new HEAD node or new HEAD branch. Figure 3.4 shows the PDDL code

of the checkout action. The action checkout has the parameters h as ?h and x as ?x. Both

parameters are of type graphobj, which allows them to be both node- as well as branch

objects. The precondition checks that ?h is the current HEAD node or HEAD branch and

that ?x is a node or branch that is already in the graph. The effects of the action specify

that the predicate (is_head ?nb) is assigned to false for the current HEAD ?h, and

instead set to true for the next HEAD ?x. This is equivalent to replacing h in the model

with the new value x. The planner can potentially apply this action with (= ?h ?x), In

which case the state does not change, just like in the model. This is because of the so-called

add-after-delete semantics, which ensures that the effect (not (is head ?h)) is applied

before the effect (is head ?h). Since this results in the same state, the planner will never

apply this action. This is consistent with the behavior of Git when checking out the current

HEAD.

(: action checkout : parameters (?h ?x - graphobj)
: precondition (and

(i s h ead ?h)
(i s i n g r a ph ?x)
(not (mode rebase)))

: ef fect (and
(not (i s h ead ?h))
(i s h ead ?x)
(increase (t o t a l - co s t) 1)))

Figure 3.4: The PDDL checkout action.

3.2.4 Git Merge
Recall from Section 2.1.4, the merge action is defined as

mergey(G) =


merge ay(G) if 〈h, y〉 ∈ AG

G if 〈y, h〉 ∈ AG

merge ny(G) otherwise.

The merge action has three different behaviors depending on the parameter and the Git state.

We model the behaviors as separate actions in PDDL. The first case, where 〈h, y〉 ∈ AG,

is modeled by the PDDL action merge-ancestor shown in Figure 3.5. The second case,

where 〈y, h〉 ∈ AG, does not need to be modeled as a PDDL action because the Git state

Modelling Git Operations 18

does not change. An action without any effects would never be applied by the planner

because it adds to the plan cost without getting closer to a goal state. The third case is

modeled by the action merge shown in Figure 3.6.

As described in Section 2.1.4, the merge action where h is an ancestor of y is defined as

merge ay(G) = 〈G,B,C, b′, h〉 where b′(y) = nh. The corresponding PDDL action called

merge-ancestor has the parameters nh as ?n_h, b(y) as ?y, and the branches y as ?y

and h as ?h. The first preconditions make sure that ?h is the HEAD branch and points

to the node ?n_h and that ?y points to ?y b. The next precondition models the case

condition of the definition: it makes sure that ?n_h is an ancestor of ?y. The effects of

the action set the branch pointer for the branch ?h to the node ?y and removes it from the

node ?n_h. Just as in the definition, the action merge-ancestor is applicable exactly

when ?n_h is an ancestor of ?y for the current HEAD node and any other branch ?y.

(: action merge - ance s to r : parameters (? n h ?y b - node ?y ?h - branch)
: precondition (and

(i s h ead ?h)
(b po i n t s t o ?h ?n h)
(b po i n t s t o ?y ? y b)
(n i s a n c e s t o r ?n h ?y b)
(not (mode rebase)))

: ef fect (and
(b po i n t s t o ?h ? y b)
(not (b po i n t s t o ?h ?n h))
(increase (t o t a l - co s t) 1)))

Figure 3.5: The PDDL merge ancestor action.

As seen in Section 2.1.4 the merge action when y and h are not ancestors of each other is

defined as merge ny(G) = 〈G′, B,C, b′, h〉 where the graph G′ has a new node n∗ with the

parents nh and b(y), and where b′(y) = nh. The PDDL action merge has the parameters:

nh as ?n_h, b(y) as ?y_b, n∗ as ?n_star and the branches y as ?y and h as ?h. The

first four preconditions make sure the parameters are as just defined: ?n_h must be the

HEAD node, the node ?n_star must not be in the graph and the branches ?y and ?h

must point to the nodes ?y b and ?n_h respectively. The next two preconditions codify

the case condition of the mergey action by checking that y and h are not the ancestors of

each other. The next precondition makes sure that the HEAD node and b(y) are not the

same node. The effects of the merge action set the is_in_graph flag for the new node

?n_star, and set its parents as ?n_h and ?y. It also moves the branch pointer for the

HEAD branch to the new node ?n_star.

Just as required by the definition, exactly one or none of the actions merge and merge-

ancestor are applicable in any case.

Modelling Git Operations 19

(: action merge : parameters (? n h ?y b ? n s t a r - node ?y ?h -
branch)

: precondition (and
(n i s h ead ?n h)
(not (i s i n g r a ph ? n s t a r))
(b po i n t s t o ?h ?n h)
(b po i n t s t o ?y ? y b)
(not (n i s a n c e s t o r ? y b ?n h))
(not (n i s a n c e s t o r ?n h ?y b))
(not (= ?n h ?y b))
(not (mode rebase)))

: ef fect (and
(i s i n g r a ph ? n s t a r)
(n i s p a r e n t ?n h ? n s t a r)
(n i s p a r e n t ? y b ? n s t a r)
(b po i n t s t o ?h ? n s t a r)
(not (b po i n t s t o ?h ?n h))
(increase (t o t a l - co s t) 1)))

Figure 3.6: The PDDL merge action.

3.2.5 Git Rebase
The rebase action is the most complex action covered in this work. This is because it does

not operate on a fixed, predefined number of nodes. Recall from Section 2.1.5, the rebase

action is defined as rebasend
(G) = 〈G′, B,C ′, b′, h〉 where G′ contains a copy of the subgraph

Gs without the node nlca , where Gs is the subgraph with the root nlca and containing the

nodes reachable from ns. Copying a subgraph in PDDL can not be accomplished with a

single action. To copy a subgraph we need to iterate over the nodes and copy the nodes

sequentially, while always updating the pointers to the next source and target nodes as

visualized in Figure 3.8. PDDL does have universally quantified effects, notably the forall

clause shown in 2.3 that allows an action to have an effect that modifies an arbitrary amount

of nodes. But effects of an action are applied to the state and not executed like code.

This means it is impossible to maintain and update a destination pointer for each inserted

node. For this reason, the implementation of the rebase command is split into multiple

PDDL actions: The action rebase, shown in Figure 3.7(a) saves all parameters for the

rebase and sets the mode_rebase flag, so no other actions can be applied until the rebase

is done. The action rebase copy, shown in Figure 3.7(b), copies a single node from

the subgraph Gs to the target node. The action rebase end, shown in Figure 3.7(c),

will reset all predicates that are used to save parameters for the rebase, as well as the

mode_rebase flag. All predicates that are only used for rebasing are prefixed with the

string rebase_. The following predicates are used exclusively for the rebase actions: The

predicate (rebase_state ?head ?target - node) saves the HEAD node and the

current target node, which is the parent of the next node that will be copied. This predicate

is only set for exactly one pair of nodes for the entire duration of the rebase. The predicate

(rebase_to_copy ?n) represents the set of all nodes that are yet to be copied. This

predicate is only set for a single node if the subgraph Gs consists of a single path. Otherwise,

the predicate can temporarily be set for multiple nodes. If the predicate is not set for

any nodes, all nodes have been copied and the rebase is done. The rebase_copy action

receives one node from this predicate as a parameter and copies it. The last predicate

is (rebase_is_copied ?n - node) which is set for all nodes that already have been

copied. This is used to make sure no node can be copied more than once in a single rebase.

Modelling Git Operations 20

(: action rebase : parameters (? n h ?n d ? n l c a - node)
: precondition (and

(n i s h ead ?n h)
(n i s f i r s t c ommon anc e s t o r ? n l c a ?n h ?n d)
(not (n i s a n c e s t o r ?n h ?n d))
(not (n i s a n c e s t o r ?n d ?n h))
(not (mode rebase)))

: ef fect (and
(mode rebase)
(r e b a s e s t a t e ?n h ?n d)
(f o r a l l (?n - node) (when (and

(n i s p a r e n t ? n l c a ?n)
(or (n i s a n c e s t o r ?n ?n h)

(= ?n ?n h)))
(r eba s e to copy ?n)))

(increase (t o t a l - co s t) 1)))

(a) The PDDL rebase action.

(: action r ebase copy : parameters (? n h ? n ta rg e t ? n next ? n s t a r - node)
: precondition (and

(mode rebase)
(r e b a s e s t a t e ?n h ? n ta rg e t)
(r eba s e to copy ? n next)
(not (i s i n g r a ph ? n s t a r)))

: ef fect (and
(i s i n g r a ph ? n s t a r)
(n i s p a r e n t ? n ta rg e t ? n s t a r)
(n i s c o p y o f ? n s t a r ? n next)
(r e b a s e i s c o p i e d ? n next)
(f o r a l l (?n - node) (when (and

(n i s p a r e n t ? n next ?n)
(not (r e b a s e i s c o p i e d ?n))
(or (n i s a n c e s t o r ?n ?n h)

(= ?n ?n h)))
(r eba s e to copy ?n)))

(not (r eba s e to copy ? n next))
(not (r e b a s e s t a t e ?n h ? n ta rg e t))
(r e b a s e s t a t e ?n h ? n s t a r)))

(b) The PDDL rebase copy action.

(: action r ebase end : parameters (? n h ? n l c - node ?h - branch)
: precondition (and

(mode rebase)
(r e b a s e s t a t e ?n h ? n l c)
(i s h ead ?h)
(not (e x i s t s (?n - node)

(r eba s e to copy ?n))))
: ef fect (and

(not (mode rebase))
(not (r e b a s e s t a t e ?n h ? n l c))
(f o r a l l (?n - node) (not (r e b a s e i s c o p i e d ?n)))
(not (b po i n t s t o ?h ?n h))
(b po i n t s t o ?h ? n l c)))

(c) The PDDL rebase end action.

Figure 3.7: The PDDL actions corresponding to the rebase action.

The responsibility of the rebase action is to make sure a rebase is applicable in the current

state and to save parameters to the predicates for the other actions rebase copy and

rebase end to use. The action has the parameters nh as ?n_h, nd as ?n_d and nlca as

?n_lca. The first two preconditions make sure the parameters ?n_h is the HEAD node

and ?n_lca is the first common ancestor of ?n_h and ?n_d using the derived predicate

n is first common ancestor defined in Section 2.1. The next two preconditions make

sure ?n_h is not an ancestor of ?n_d and vice versa, because in that case no lowest com-

mon ancestor exists as defined in Section 2.1.5. The last precondition makes sure we are not

already rebasing. The effect of this action sets the mode_rebase flag to ensure only the

rebase copy and rebase end actions are applicable until the rebase is completed. It

Modelling Git Operations 21

n3

n0

n1

b0n2 n4 n2

n1n3

b0

n0

n5

n4 n2

b0

n1n3

n0

Figure 3.8: Example of steps to perform a rebase to the node n3. Nodes that are marked
as to copy are colored in pink, the current node ?target for every step is colored light
blue.

also stores the parameters ?n_h and ?n_d in the predicate (rebase_state ?head ?end).

Last, all children of the node ?n_lca, which are in the subgraph that is being copied are

flagged with the predicate (rebase to copy ?n), which requires the use of the PDDL

features “Universally Quantified Effects” and “Conditional Effects”. Using those features

it is possible to formulate the following effect: We mark all nodes ?n with the predicate

(rebase_to_copy ?n) that meet the conditions, ?n is a child of ?n_lca and either an

ancestor of, or the same node as ?n_h. These conditions are the same as the conditions

for the parameter ?n_next in the action rebase and make sure only nodes are marked as

rebase_to_copy if they are in the subgraph Gs.

The rebase action is the only action for the rebase command that has a cost. This makes

sure the rebase command is considered with the same cost as any other command, regardless

of how many nodes are copied.

The action rebase copy copies a single node from the subgraph Gs to the target node

and marks all children of the copied node that are in the subgraph Gs to be copied as well,

by setting the predicate (rebase_to_copy ?n) for all child nodes that are not copied

yet. The parameters of the action are nh as ?n_h, the node ?n_target which will be the

parent node of the copy, the node ?n_next which is the node that will be copied by this

action, as well as the node ?n_star which is a new node that will be used as the copy.

The first precondition checks that the current state is in rebase mode by checking the flag

mode_rebase. The next preconditions check that the parameters ?n_h and ?n_target

match the ones specified in the rebase_state predicate, that ?n_next is one of the nodes

that is flagged by the predicate (rebase_to_copy ?n), and that the node ?n_star is

not yet in the graph. The effect of this action copies the the node ?n_next, flags all children

of ?n_next which are in the subgraph Gs with the predicate (rebase_to_copy ?n) and

updates the predicate rebase_state. This is accomplished in the following way: Copying

the node ?n_next is done similarly to inserting a new node in the commit action as shown

in Section 3.2.1. The node ?n_star is marked as being in the graph and its parent node

is set to ?n_target. Additionally the predicate (n_is_copy_of ?n_star ?n_next)

Modelling Git Operations 22

is set to signify that the new node is a copy of the node ?n_next, and the predicate

(rebase_is_copied ?n_next) is set to prevent the node ?n_next to be copied multi-

ple times in case the subgraph contains a merge. Flagging all children of the node ?n_next,

which are in the subgraph that is being copied, is done similarly as in the action rebase.

Additionally to the requirement for any node ?n being a child of ?n_next, and being ei-

ther an ancestor of, or the same node as ?n_h, it must also not have been copied yet. The

copied node ?n_next is removed from the rebase_to_copy predicate. The final effect

of the action is to update the predicate (rebase_state ?head ?target) by unsetting

the old values and setting the predicates with the values ?n_h and ?n_new. This ensures

that the predicate is set for always exactly one pair of nodes. The action is applicable ex-

actly as long as there is at least one node marked as rebase_to_copy. By lazily marking

nodes as ?to_copy we implement a graph traversal algorithm which uses the predicate

rebase_to_copy as an open list and the predicate rebase_is_copied as a closed list.

Contrary to the definition of the rebase command, the action rebase copy can be ap-

plied to a subgraph Gs in a way that the resulting copy G∗ does not respect all ancestor

relations from Gs. This means that the planner can find a plan for a problem that should

be unsolvable. This could be resolved by ordering the nodes in the open list. This could be

achieved using a predicate (rebase copy after ?n1 ?n2) orders the nodes according

to this relation, and checking that a node ?n1 must be copied before the next node n2.

The action rebase end is applied when all nodes are copied and will perform cleanup on

the rebase predicates as well as move the HEAD branch to point to the last copied node. The

parameters of the action are nh as ?n_h, the last copied node ?n_lc as well as the HEAD

branch as ?h. The action has the following preconditions: The first precondition is checking

if we are currently in rebase mode. The next two preconditions check that ?h is the HEAD

branch and that ?n_h and ?n_lc correspond are the nodes that are flagged by the predicate

rebase_state. The rebase_state predicate was previously updated with the HEAD

node and the target node by the action rebase copy. Because rebase copy builds a lin-

ear graph, the target node always corresponds to the last copied node in this graph. The last

precondition makes sure that no node ?n can exist with the flag (rebase_to_copy ?n).

This makes sure every node in the subgraph has been copied over. The effect of this action

will reset the predicates (mode_rebase), (rebase_state ?head ?target) and, us-

ing universally quantified effects, the predicate (rebase_is_copied ?n). It will also

move the branch pointer of the HEAD branch to the last copied node ?n_lc. While in

rebase mode either the action rebase copy or rebase end is always applicable, be-

cause either there are nodes flagged as rebase_to_copy, in which case the copy action is

applicable, or there are none, in which case the end action is applicable.

3.3 Other Ways of Modelling the Domain
A PDDL domain can be modeled in multiple ways, for example with a different subset of

PDDL features resulting in domains that model the same state-space. Some features of

PDDL are computationally easier for planners to process and/or have better support across

multiple planners. We will create domain variations based on the domain Dref which is

Modelling Git Operations 23

the reference domain and defined in Section 3.1. The first variation will be a domain Dnd

without derived predicates. A second variation Do will use new nodes and branches in a

predefined order. The last variation Dnd,o will combine both modifications and therefore

remove the derived predicates as well as introduce ordered nodes and branches.

3.3.1 Without Derived Predicates
Most PDDL planners do not support the whole feature set of PDDL. One of the more

rarely implemented features is axioms. While not explicitly a feature of PDDL, axioms

are being used in the internals of planners to represent some PDDL constructs such as

derived predicates and conditional effects. The goal of eliminating derived predicates is to

possibly expand the set of planners that can use the domain, as well as to compare the

performance of planners that support both domains with and without derived predicates.

The domain without derived predicates will be called Dnd . Derived predicates are not the

only PDDL features that require the planner to use axioms, but removing derived predicates

and therefore potentially reducing the number of axioms is a necessary first step to creating

an equivalent domain without axioms.

As shown in Section 3.1, the derived predicates used in the domain are (n_is_head),

(n is ancestor) and (n is first common ancestor).

The derived predicate (n_is_head ?n) is trivially replaced in the preconditions of ac-

tions. The action merge already has the parameter ?h of type branch, which is the HEAD

branch. So to make sure the parameter ?n_h is indeed the HEAD node, it suffices to re-

place the precondition (n_is_head ?n_h) with the check that either (is_head ?n_h)

or (is_head ?h) is set. The action rebase does not have a parameter for the HEAD

branch. One approach could be to add this parameter and check if either ?n_h is the

HEAD node or the branch ?h is the HEAD branch and points to ?n_h. The drawback

of this approach is that due to the action with the additional parameter the plans are no

longer compatible. To keep both domains as close as possible we used another approach of

checking if either the parameter ?n_h is the HEAD node, or using existential preconditions

checking if a branch ?b exists that is the HEAD branch and points to the node ?n_h. This

way no additional parameter has to be added to the action and plans from both domains

are directly comparable. A third approach could be to split the action in two and have one

accept the HEAD branch and the other accept the HEAD node.

The derived predicate (n_is_ancestor ?ancestor ?base) is not removed completely

but instead turned into a normal, non-derived predicate. This means no modifications have

to be made in the preconditions that check the ancestor relation but instead, every action

that adds a node to the graph has to add the ancestor relation to all ancestors of that graph,

which is the case for the actions commit, commit-no-branch and rebase copy. Be-

cause no actions exist that remove nodes from the graph, the ancestor relation is monotonic,

meaning tuples of nodes will only ever be added and never removed. All actions that need to

modify the ancestor predicate already have a parameter for the parent ?n_h of the newly in-

serted node ?n_star. The first step is to mark the node ?n_h as an ancestor of ?n_star.

For all nodes that are ancestors of the parent node, the ancestor predicate can be set for the

Modelling Git Operations 24

node ?n_star using a universal quantified effect. The action merge does not only have

one parent node, but two. In this case, both parent nodes are marked as ancestors, as well

as any ancestors of either parent node. This approach has the drawback that the problem

files of the domain Dref are not compatible with problem files of the domain Dnd . The

reason is that the problem files of the Dnd must contain all ancestor relations in the initial

state, whereas this would result in an error in the domain Dref because derived predicates

can not be explicitly set in the initial state.

The derived predicate (n is first common ancestor ?n common ?n1 ?n2 - node)

is only used in the action rebase. Because it is not recursively defined, its usage can be

replaced by its definition.

3.3.2 With Ordered Nodes and Branches
In both previously discussed domains Dref and Dnd , the nodes and branches have no par-

ticular order. This means that in every action that needs to use a new node or branch the

planner has the option to use any one of the available ones. The planner can not reason

that any one of those results in an equivalent state with just other names. Therefore the

planner has to compute a large number of states which are, for our purpose, equivalent. To

limit the number of states we introduce a branch order and a node order. This forces the

planner to use the free node n1 before n2 and n3 and so on, limiting the planner to exactly

one branch or node that can be inserted to the graph at any time.

To model this in PDDL we introduce the predicate (next_obj ?o1 ?o1) which repre-

sents the order of objects and the predicate (cur_obj ?o) which represents the object

that will be used next. Both predicates are not typed, which means they can be used with

node- as well as branch objects. All actions that use a new node or branch have a precon-

dition that checks if this new object is flagged with (cur_object ?o). This limits the

planner to exactly this object. The effect of these actions updates the current object to the

next object according to the next_obj predicate. Using universally quantified effects we

can write the effect as

(not (cur_obj ?cur))

(forall (?o) (when (next_obj ?cur ?o) (cur_obj ?o)))

Where ?cur is the node or branch that was inserted in the graph in the current action.

To avoid the universally quantified effect it would also be possible to add an additional

parameter to those actions. All problem files must specify the order for all nodes and

branches, as well as the first node that is not used in the initial state.

This model has the drawback in that is no longer equivalent to the previous models. This is

the case because problems that can be solved in the other domains may become unsolvable

if the goal state uses nodes or branches in an arrangement that is incompatible with the

order of those objects. An example of a problem that is unsolvable in this domain is the

following: All nodes are ordered in ascending order of their names. The initial state consists

of the graph with the single node n0. The goal state consists of the graph

n0← n2← n1.

Modelling Git Operations 25

This problem is unsolvable in this domain because the planner can not apply the action

commit with the new node n2 before the new node n1. To remedy this we would have to

find a way to define the shape of the graph without using the names of nodes and branches

directly. For example using existentially quantified goals.

It is also possible to apply the modification from the domain Do to the domain Dnd . This

will result in the domain Dnd,o , which does not have any derived predicates but has an

order for nodes and branches.

4
Evaluation

After modelling a subset of Git in multiple domain variants it is time to compare the

domains and see how the modified domains Dnd , Do and Dnd,o , performed in comparison

to the reference domain Dref .

4.1 Problem generation
To analyze the performance and behavior of multiple planners on the previously described

domains it is necessary to provide a big enough set of problem files. Some of the problem

files are taken from the game Learn Git Branching [3] which inspired this work in the first

place. But it was necessary to create a substantially bigger set of problem files to gather

enough data for any meaningful comparison between the domain variants. For this purpose

a Python script was developed which can generate an arbitrary amount of random problem

files. To generate a random problem file it has to generate an initial and a goal state.

Multiple initial states are predefined in the script and one is selected randomly. To generate

a goal state it is not enough to randomly create any directed acyclic graph, because this

resulting state has a high chance of not being reachable from the initial state. Therefore

we opted to implement the previously described Git commands in Python. To generate a

solvable problem we select one of the predefined initial states, apply a set amount of Git

commands to it and serialize the resulting graph as a PDDL problem file for each domain

variant. This way we ensure that our generated problems are solvable and that we create

equivalent problems in the different domain variants. The problems in all domains must

be equivalent for any meaningful comparison of the run-time characteristics of the domain

variants. We generated problem files two up to fifteen PDDL nodes.

4.2 Benchmark setup
To compare the performance of the domains we let a set of planners solve each problem of

each domain. This must be done in a reproducible manner on dedicated hardware to prevent

other processes from interfering with the results. The run of a planner with a problem while

collecting its run-time metrics is called a benchmark. The collected metrics let us compare

Evaluation 27

multiple aspects of the domains.

All benchmarks were run on the infai nodes of the SciCORE scientific computing cluster at

the University of Basel. The nodes have 4 GiB of RAM per core and are running Intel Xeon

E5-2660 2.2 GHz processors. No more than a single process was run on every processor core

at any time.

We use the Downward Lab [9] Python package to inspect metrics of different planners

on the domain variants. It simplifies the creation of experiments using multiple planners

and benchmarks and directly interfaces with the slurm workload manager which runs on

the SciCORE cluster. Downward Lab runs all specified planners on all problem files and

collects run-time data from the generated log output. This allows the comparison of the

performance and behavior of planners on a suite of benchmark problems. Downward Lab

has features builtin to help with the comparison of different planners while developing and

optimizing them but it lacks features for comparing domains. Due to the extendability of the

library it was possible to implement the necessary missing features, which include support

for multiple domain variants either from Git revisions or from multiple folders. Downward

Lab has built-in mechanisms to generate various types of reports, notably scatter plots

comparing two revisions of the same planner. To compare properties of the runs of multiple

domains we extended the scatter plot functionality accordingly.

To analyze the differences in the domain variants we used a set of planners. The set consists

of one optimal planner, four non-optimal planners, and a planner configuration that outputs

increasingly better solutions over time. The optimal planner uses the A* algorithm [5] with

a blind heuristic “astar-blind”. This planner will find the shortest possible plan if one exists

and if enough time and memory is available. The next two planner use the A* algorithm

with the goal count heuristic [4] “astar-goalcount” and the hmax heuristic [2] “astar-hmax”.

The goalcount heuristic is neither admissible nor consistent, so this planner will not yield

optimal plans. The hmax heuristic is not admissible for our domain because it contains

axioms, and will therefore not yield optimal plans either. For our purpose of measuring

differences in our domain, finding optimal plans is not required. We also use a planner

that uses an eager greedy algorithm with the goal count heuristic “eager-goalcount”. This

planner is not optimal. Lastly, we used the LAMA [8] planner “lama”. This planner consists

of a list of progressively closer to optimal planners which are run in sequence until either an

optimal solution has been found or the time runs out, in which case the best solution will

be returned. This configuration is used to find the best solution in a given timeframe. The

“lama-first” planner consists of the first iteration done by LAMA and is its fastest but least

optimal planner.

To compare metrics of a domain with a base domain we use “relative” scatter plots, where

every point (x, y) in the scatter plot represents the values of a single problem on both

domains. The x-value is the absolute value of the metric for the base domain. The y-value

is the relative value where x ∗ y yields the value of the metric of the compared domain. As

a result, if the y value of a point is one, the problem performed the same in both domains.

If the value is less than one the metric of this problem in the compared domain is smaller

than in the base domain. This allows the visualization of even small differences between

both domains.

Evaluation 28

Dref Dnd Do Dnd,o

lama 50.59 34.80 24.50 18.45
lama-first 8.35 3.54 1.18 0.73
astar-hmax 25.81 24.76 7.36 11.88
astar-blind 37.43 39.43 17.75 6.19
astar-goalcount 10.80 9.68 7.06 3.56
eager-goalcount 24.58 15.70 12.33 6.07

Table 4.1: Comparing the mean time it took the planners to solve problems in the domains.
Problems that could not be solved by the planners are not taken into consideration for
calculating the mean time.

4.3 Results
Using the benchmarks we compared metrics from the planners solving the problems for each

domain. We will discuss the results.

4.3.1 Planning time
The goal of creating multiple domain variants was to analyze the performance characteristics

of them. We measure the time it took every planner to find a plan for each problem. A

domain performs better if the time to find a plan is smaller.

The domain Dnd performed generally better than the domain Dref in terms of total time

to find a problem solution. The big majority of problems were solved faster in the Dnd

domain, which was expected. As shown in Table 4.1 the mean of the time it took to solve all

problems in the domain Dref is less than half compared to the domain Dnd for the planner

“lama-first”. All other planners except “astar-blind” were faster in the domain Dnd but

not by this big of a factor. A likely reason for the improvement of most planners is that

axioms, and in turn, derived predicates, have to be calculated for every expanded state. By

reducing the number of axioms we also reduce the amount of work that needs to be done

on each expanded state. By moving those calculations to the precondition and effects of the

few actions that either depend on them, or change the state in such a way that an update

of the predicates is necessary, this work has to be done only when one of those actions is

applied. Another reason could be the difference in the quality of the heuristic values, which

could depend on the presence of axioms. The Figure 4.1(a) shows the relative amount of

time that was needed to solve each problem in the domain Dnd compared to the time in the

domain Dref . Throughout our experiment, some problems did not finish successfully in the

given time and memory constraints. Table 4.2 shows a summary of how many problems were

solved successfully in each domain. Runs that were aborted due to a timeout or reaching

the memory limit are not included in the figures. None of the planners succeeded to solve

a problem with more than eleven PDDL objects. Which shows how quickly the size of the

state-space grows even for this relatively small amount of nodes and branches.

Evaluation 29

Dref Dnd Do Dnd,o

Success 616 613 633 629
Out of Time 143 126 40 39
Out of Memory 12 15 3 7
No Solution 46 63 138 144
fail 5 5 8 3

Table 4.2: Summary of results of all domains. A run is considered failed if an unexpected
error happens during the solve. For example when the planner exits with a segmentation
fault or if it outputs a log file bigger than 10 MiB, which is the maximum Lab will try to
parse. In total 822 runs were conducted per domain.

10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

Dref

D
n
d

astar-blind
astar-goalcount
astar-hmax
eager-goalcount
lama
lama-first

(a) Comparing the total time used to solve
each problem in the domain Dnd compared

to the time used in the domain Dref .

10−2 10−1 100 101 102 103

10−2

10−1

100

Dref

D
o

astar-blind
astar-goalcount
astar-hmax
eager-goalcount
lama
lama-first

(b) Comparing the total time used to solve
each problem in the domain Do compared

to the time used in the domain Dref .

10−2 10−1 100 101 102 103

10−2

10−1

100

Dref

D
n
d
,o

astar-blind
astar-goalcount
astar-hmax
eager-goalcount
lama
lama-first

(c) Comparing the total time used to solve
each problem in the domain Dnd,o compared

to the time used in the domain Dref .

10−2 10−1 100 101 102 103

10−2

10−1

100

Dnd

D
n
d
,o

astar-blind
astar-goalcount
astar-hmax
eager-goalcount
lama
lama-first

(d) Comparing the total time used to solve
each problem in the domain Dnd,o compared

to the time used in the domain Dnd .

Figure 4.1: Relative scatter plots comparing the time a planner took to find a plan for a
problem in one domain (y-axis) compared to a base domain (x-axis).

Evaluation 30

100 101 102 103 104 105 106 107

10−4

10−3

10−2

10−1

100

101

102

Dref

D
o

(a) Relative number of expansion in the
domains Do to those in the domain Dref .

100 101 102 103 104 105 106 107

10−5

10−4

10−3

10−2

10−1

100

101

102

Dref

D
n
d

(b) Relative number of expansion in the
domains Do to those in the domain Dref .

100 101 102 103 104 105 106 107

10−4

10−3

10−2

10−1

100

101

Dref

D
n
d
,o

(c) Relative number of expansion in the
domains Do to those in the domain Dref .

Figure 4.2: Relative scatter plots comparing the amount of states expanded by the planner
for problems in one domain (y-axis) compared to a base domain (x-axis).

By comparing the total planning times of problems in the domains Dref and Do it is clear

that reducing the search space significantly reduces the time to solve most of the problems.

As seen in Figure 4.1(b), the problems of the domain Do get solved significantly faster than

those of domain Dref , with a duration between slightly more than 14% for “lama-first” up to

70% for “astar-goalcount”. The amount of states expanded was reduced significantly, as can

be seen in Figure 4.2(b). The mean number of expansions for all problems is approximately

52471 in the domain Dref and 6990 in the domain Do , which is a reduction by a factor of

12.17%. We expect the combination of the optimizations used in the domains Dnd and Do to

yield even better performance metrics in the domain Dnd,o . As shown in Figure 4.1(c) this

is indeed the case for all planners except “astar-hmax”. The performance improvements by

ordering the objects potentially orthogonal to the performance improvements by removing

the derived predicates. This means that ordering the objects in the domain Dref results

Evaluation 31

in comparable time improvements as ordering the objects in the domain Dnd as shown in

Figure 4.1(d). This can also be seen in the improvement of the mean time for each problem as

seen in Table 4.1. Interestingly, the planner “astar-blind” which exhibited no improvement

from Dref to Dnd , had a run time of about 35% for the domain Dnd,o compared to the

domain Do , which is the highest improvement over all planners.

The planner configuration “lama” is the only one of the planners used, that will deliver

increasingly optimal plans, the longer it runs. We expect that the cost of the plans will

generally be lower for the domains with lower problem solve duration. The mean cost

of all plans for the domain Dref is 4.02, whereas the mean cost for the domain Dnd,o is

marginally better with 3.88. Interestingly, the mean cost for the domain Do is about the

same 3.86. The probable cause of this is that the timeout of the planner was high enough

to reach optimal or almost optimal plans for most problems of the domains Do and Dnd,o .

Therefore no improvements can be made, even for problems where the planner finishes before

the timeout.

4.3.2 Axioms

103 104 105 106

10−1

100

Dref

D
n
d

Figure 4.3: Relative number of axioms in the domains Dnd compared to those in the domain
Dref .

The goal of removing derived predicates from the domain was to expand the number of

planners that support all features needed to solve problem files for the domain. Derived

predicates are internally transformed to axioms in the translation step of the planner, which

in turn are not fully supported by all planners. To remove the derived predicates we used

PDDL features that also introduce axioms, such as conditional effects. Figure 4.3 shows

by how much the number of axioms was reduced by removing derived predicates. Even

though new axioms were introduced the total number of axioms was reduced significantly,

for some problems even up to an order of magnitude. The number of axioms can potentially

be further reduced by modifying the domain to remove other features that result in axioms.

For example by replacing conditional effects by duplicating the action and introducing the

Evaluation 32

condition as a precondition. Removing conditional effects inside of a universal quantified

effect could be achieved in much of the same way the rebase command was implemented in

Section 3.2.5, by introducing a predicate which marks the state as in a “forall-mode” and an

action that is only applicable in this mode, which performs the same effect as the original

quantified effect it replaces. Using those techniques it should be possible to create a domain

that will not have any axioms and therefore be compatible with a bigger set of planners.

5
Conclusion

The goal of this thesis was to formally define Git states, and model them as a domain

in PDDL. Variants of this domain were created, one without derived predicates, one with

ordered nodes and branches, and one where both modifications were applied simultaneously.

We compared the characteristics of those domains on a set of planners.

At the beginning of this thesis, we expected to be able to solve problems with git states the

size encountered in real-world projects. It became clear quickly that the state space with

hundreds or even just a few more than ten PDDL objects were not realistically solvable

in our domain variants. However, we found out that removing derived predicates already

has a substantial positive performance impact on most tested planners. An even greater

performance boost can be achieved by manually restricting the state space as much as

possible by ordering the nodes and branches.

Even though the derived predicates used in the reference domain were used for their con-

venience to keep the PDDL domain as close as possible to the formal definition, and could

easily be removed by hand, they had a substantial impact on the search time of most tested

planners. This begs the question if it were possible for planner authors to implement a

feature to compile away derived predicates, just as we were able to by hand.

We found out that the modeled domain still uses a great number of axioms, even when

removing the derived predicates. Further work could try to create other domain variants

to remove all PDDL features that require axioms and compare those axiom-free domains to

the variants introduced in this thesis.

Bibliography

[1] Michael A. Bender, Mart́ın Farach-Colton, Giridhar Pemmasani, Steven Skiena, and

Pavel Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal

of Algorithms, 57(2):75–94, 2005.

[2] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129

(1):5–33, 2001.

[3] Peter Cottle. Learn Git Branching. 2020. https://github.com/pcottle/learnGitBranching,

accessed 2020-10-05.

[4] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3):189–208, 1971.

[5] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuris-

tic determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[6] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Intro-

duction to the Planning Domain Definition Language. Morgan & Claypool Publishers,

2019.

[7] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[8] Silvia Richter and Matthias Westphal. The LAMA Planner: Guiding Cost-Based Any-

time Planning with Landmarks. Journal of Artificial Intelligence Research, 39:127–177,

2010.

[9] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017.

https://doi.org/10.5281/zenodo.790461

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Overview of Git
	2.1.1 Git Commit
	2.1.2 Git Branch
	2.1.3 Git Checkout
	2.1.4 Git Merge
	2.1.5 Git Rebase

	2.2 Planning
	2.3 Introduction to the Problem Domain Definition Language

	3 Modelling Git Operations
	3.1 Modeling Git States in PDDL
	3.2 Modeling Git Actions
	3.2.1 Git Commit
	3.2.2 Git Branch
	3.2.3 Git Checkout
	3.2.4 Git Merge
	3.2.5 Git Rebase

	3.3 Other Ways of Modelling the Domain
	3.3.1 Without Derived Predicates
	3.3.2 With Ordered Nodes and Branches

	4 Evaluation
	4.1 Problem generation
	4.2 Benchmark setup
	4.3 Results
	4.3.1 Planning time
	4.3.2 Axioms

	5 Conclusion
	Bibliography

