
Factored Mappings as Knowledge Compilation for Symbolic Search

Leonhard Badenberg <leonhard.badenberg@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

June 14, 2021

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Motivation

Symbolic Search

Approach to classical planning
Processes sets of states at a time

Knowledge Compilations

Represent knowledge bases as compact data structure
Used for symbolic search (e.g. BDDs)

Factored Mappings

Also called merge-and-shrink representations
Represent functions that map variable assignments to a set of values

Factored Mappings as Knowledge Compilation for Symbolic Search 2

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Motivation

Symbolic Search

Approach to classical planning
Processes sets of states at a time

Knowledge Compilations

Represent knowledge bases as compact data structure
Used for symbolic search (e.g. BDDs)

Factored Mappings

Also called merge-and-shrink representations
Represent functions that map variable assignments to a set of values

Factored Mappings as Knowledge Compilation for Symbolic Search 2

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Motivation

Symbolic Search

Approach to classical planning
Processes sets of states at a time

Knowledge Compilations

Represent knowledge bases as compact data structure
Used for symbolic search (e.g. BDDs)

Factored Mappings

Also called merge-and-shrink representations
Represent functions that map variable assignments to a set of values

Factored Mappings as Knowledge Compilation for Symbolic Search 2

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Motivation

Symbolic Search

Approach to classical planning
Processes sets of states at a time

Knowledge Compilations

Represent knowledge bases as compact data structure
Used for symbolic search (e.g. BDDs)

Factored Mappings

Also called merge-and-shrink representations
Represent functions that map variable assignments to a set of values

Can we use Factored Mappings as knowledge compilation for symbolic search?

Factored Mappings as Knowledge Compilation for Symbolic Search 3

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Background

Canonicity

Operations on Factored Mappings

Symbolic Search Algorithm

Factored Mappings as Knowledge Compilation for Symbolic Search 4

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Planning Task

A planning task is given by 〈V , I ,O, γ〉 where

V is a finite set of state variables,

I is a valuation over V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.

Propositional: α : V → {T,F}
Finite-domain representation (FDR): α : V →

⋃
v∈V dom(v)

Factored Mappings as Knowledge Compilation for Symbolic Search 5

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Factored Mappings

A Factored Mapping (FM) σ over V is either

atomic with associated variable v ∈ V , or

a merge of two components σL and σR

Atomic FM tables: σtabv spanned by dom(v)

Merge FM tables: σtabm spanned by the values of its two components

Component tables σtabi are filled with arbitrary different entries

Root table σtabroot is filled with 0 and 1

Can we use FMs for symbolic search on FDR planning tasks?

Factored Mappings as Knowledge Compilation for Symbolic Search 6

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Factored Mappings

σvwx

v w

x

Underlying merge tree
T (V)

σtabvwx 0 1 2

0 0 0 0

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

σtabvw 0 1 2

0 0 1 2

1 3 4 5

2 6 7 8

σtabv 0 1 2

- 0 1 2

σtabw 0 1 2

- 0 1 2

σtabx 0 1 2

- 0 1 2

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 7

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Background

Canonicity

Operations on Factored Mappings

Symbolic Search Algorithm

Factored Mappings as Knowledge Compilation for Symbolic Search 8

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Requirements

1. FMs over V have the same underlying merge tree T (V)

2. Component tables σtabi are filled with fixed value order 0, 1, . . . , n − 1

This leads to A(σ) = A(γ) ⇐⇒ σ = γ.

Factored Mappings as Knowledge Compilation for Symbolic Search 9

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Reducing FMs

σtabvwx 0 1 2

0 0 0 0

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

σtabvw 0 1 2

0 0 1 2

1 3 4 5

2 6 7 8

σtabv 0 1 2

- 0 1 2

σtabw 0 1 2

- 0 1 2

σtabx 0 1 2

- 0 1 2

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 10

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Reducing FMs

σtabvwx 0 1 2

0 0 0 0

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

σtabvw 0 1 2

0 0 1 0

1 0 0 0

2 0 0 0

σtabv 0 1 2

- 0 1 2

σtabw 0 1 2

- 0 1 2

σtabx 0 1 2

- 0 1 2

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 11

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Reducing FMs

σtabvwx 0 1 1

0 0 0 0

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

σtabvw 0 1 2

0 0 1 0

1 0 0 0

2 0 0 0

σtabv 0 1 2

- 0 1 2

σtabw 0 1 2

- 0 1 2

σtabx 0 1 2

- 0 0 1

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 12

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Reducing FMs

σtabvwx 0 1 1

0 0 0 0

1 0 0 1

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

σtabvw 0 1 2

0 0 1 0

1 0 0 0

2 0 0 0

σtabv 0 1 2

- 0 1 1

σtabw 0 1 2

- 0 1 0

σtabx 0 1 2

- 0 0 1

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 13

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Reducing FMs

σtabvwx 0 1

0 0 0

1 0 1

σtabvw 0 1

0 0 1

1 0 0

σtabv 0 1 2

- 0 1 1

σtabw 0 1 2

- 0 1 0

σtabx 0 1 2

- 0 0 1

A(σ) = {α} = {{v 7→ 0,w 7→ 1, x 7→ 2}}

Factored Mappings as Knowledge Compilation for Symbolic Search 14

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Background

Canonicity

Operations on Factored Mappings

Symbolic Search Algorithm

Factored Mappings as Knowledge Compilation for Symbolic Search 15

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Building Basic Factored Mappings

False (⊥): A(σ) = ∅
Fills all entries in all tables with zeroes

True (>): A(σ) = A(V)

Fills all entries in all tables with zeroes

Sets entry in root table to 1

σtabvwx 0

0 0

σtabvw 0

0 0

σtabv 0 1 2

- 0 0 0

σtabw 0 1 2

- 0 0 0

σtabx 0 1 2

- 0 0 0

A(σ) = ∅

Atom (v = c): A(σ) = {α | α[v] = c}
Fills σtab

v with 0 and 1
Fills all other atomic tables with zeroes
Keeps different values distinct until the root table

Factored Mappings as Knowledge Compilation for Symbolic Search 16

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Building Basic Factored Mappings

False (⊥): A(σ) = ∅
Fills all entries in all tables with zeroes

True (>): A(σ) = A(V)

Fills all entries in all tables with zeroes

Sets entry in root table to 1

σtabvwx 0

0 0

σtabvw 0

0 0

σtabv 0 1 2

- 0 0 0

σtabw 0 1 2

- 0 0 0

σtabx 0 1 2

- 0 0 0

A(σ) = ∅

Atom (v = c): A(σ) = {α | α[v] = c}
Fills σtab

v with 0 and 1
Fills all other atomic tables with zeroes
Keeps different values distinct until the root table

Factored Mappings as Knowledge Compilation for Symbolic Search 16

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Building Basic Factored Mappings

False (⊥): A(σ) = ∅
Fills all entries in all tables with zeroes

True (>): A(σ) = A(V)

Fills all entries in all tables with zeroes

Sets entry in root table to 1

σtabvwx 0

0 0

1 1

σtabvw 0

0 0

1 1

σtabv 0 1 2

- 0 1 0

σtabw 0 1 2

- 0 0 0

σtabx 0 1 2

- 0 0 0

A(σ) = {α | α[v] = 1}

Atom (v = c): A(σ) = {α | α[v] = c}
Fills σtab

v with 0 and 1
Fills all other atomic tables with zeroes
Keeps different values distinct until the root table

For all of these: O(n · Dmax), where n = |V | and Dmax = maxv∈V |dom(v)|

Factored Mappings as Knowledge Compilation for Symbolic Search 17

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Boolean Tests

Includes (I |= φ): Is α ∈ A(σ)?

Follows the assignment from leaves to root
Checks if entry in root node is 1
O(n)

Equals (φ ≡ ψ): Is A(σ) = A(γ)?

Because FMs are canonical: A(σ) = A(γ) ⇐⇒ σ = γ
Checks every entry in σ and γ for equality
O(n(Tmax

σ + Tmax
γ))

Where n = |V |, and Tmax
σ and Tmax

γ is the maximum over all table sizes of σ and γ
respectively

Factored Mappings as Knowledge Compilation for Symbolic Search 18

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Combine

Combines two FMs σ and γ into one FM δ

Combines component table pairs σtabi and γtabi directly into δtabi

δtabi is initially filled with 2-dimensional entries

We combine atomic leaf node tables differently than merge node tables

Factored Mappings as Knowledge Compilation for Symbolic Search 19

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Combining Leaves

σtabl 0 1 2 3

- 0 1 0 2

γtabl 0 1 2 3

- 0 1 2 0

δtabl 0 1 2 3

- (0,0) (1,1) (0,2) (2,0)

Two leaf node tables σtab
l and γtabl get combined to one δtabl with 2-dimensional values.

Factored Mappings as Knowledge Compilation for Symbolic Search 20

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Combining Merges

σtabm 0 1 2

0 0 1 2

1 3 4 5

2 0 2 3

γtabm 0 1 2

0 0 1 0

1 0 1 2

2 1 2 3

δtabm (0,0) (1,1) (0,2) (2,0)

(0,0) (0,0) (1,1) (0,0) (2,0)

(1,1) (3,0) (4,1) (3,2) (5,0)

(2,2) (0,1) (2,2) (0,3) (3,1)

δtabmL
0 1 2 3

- (0,0) (1,1) (2,2) (0,0)

δtabmR
0 1 2 3

- (0,0) (1,1) (0,2) (2,0)

Factored Mappings as Knowledge Compilation for Symbolic Search 21

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Combining Merges

σtabm 0 1 2

0 0 1 2

1 3 4 5

2 0 2 3

γtabm 0 1 2

0 0 1 0

1 0 1 2

2 1 2 3

δtabm 0 1 2 3

0 (0,0) (1,1) (0,0) (2,0)

1 (3,0) (4,1) (3,2) (5,0)

2 (0,1) (2,2) (0,3) (3,1)

δtabmL
0 1 2 3

- 0 1 2 0

δtabmR
0 1 2 3

- 0 1 2 3

Factored Mappings as Knowledge Compilation for Symbolic Search 22

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Set Operations

Union (φ ∨ ψ): A(σ) ∪ A(γ)

Uses Combine to create δ
Maps entries (x , y) in δtabroot to 1 if x = 1 or x = 1
O(n · Tmax

σ · Tmax
γ)

Intersection (φ ∧ ψ): A(σ) ∩ A(γ)

Uses Combine to create δ
Maps entries (x , y) in δtabroot to 1 if x = 1 and x = 1
O(n · Tmax

σ · Tmax
γ)

Complement (¬φ): A(σ) = A(σ)

Swaps all zeroes and ones in the root table
O(Tmax

σ)

Where n = |V |, and Tmax
σ and Tmax

γ is the maximum over all table sizes of σ and γ
respectively

Factored Mappings as Knowledge Compilation for Symbolic Search 23

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Background

Canonicity

Operations on Factored Mappings

Symbolic Search Algorithm

Factored Mappings as Knowledge Compilation for Symbolic Search 24

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Symbolic Search Algorithm

Algorithm 1 Progression Breadth-first Search

1: function BfsProgression(V , I ,O, γ)
2: goalStates ← Models(γ)
3: reached0 ← {I}
4: i ← 0
5: loop
6: if reachedi ∩ goalStates 6= 0 then
7: return solution found
8: reachedi+1 ← reachedi ∪ Apply(reached i ,O)
9: if reachedi+1 = reachedi then

10: return no solution exists
11: i ← i + 1

Factored Mappings as Knowledge Compilation for Symbolic Search 25

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Symbolic Search Algorithm

Algorithm 1 Progression Breadth-first Search

1: function BfsProgression(V , I ,O, γ)
2: goalStates ← Models(γ)
3: reached0 ← {I}
4: i ← 0
5: loop
6: if reachedi ∩ goalStates 6= 0 then
7: return solution found
8: reachedi+1 ← reachedi ∪ Apply(reached i ,O)
9: if reachedi+1 = reachedi then

10: return no solution exists
11: i ← i + 1

Factored Mappings as Knowledge Compilation for Symbolic Search 26

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Formula and Singleton

Formula

Converts formulas φ into FMs σ, representing Models(φ)

Uses the introduced operations and their combinations

Can take exponentially long

Singleton

Converts the single assignment I into an FM σ, representing {I}
Uses Intersection and Atom

{I} := {{v 7→ 0,w 7→ 1, x 7→ 2}} = {α | α[v] = 0} ∩ {α | α[w] = 1} ∩ {α | α[x] = 2}

Factored Mappings as Knowledge Compilation for Symbolic Search 27

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Symbolic Search Algorithm

Algorithm 1 Progression Breadth-first Search

1: function BfsProgression(V , I ,O, γ)
2: goalStates ← Models(γ)
3: reached0 ← {I}
4: i ← 0
5: loop
6: if reachedi ∩ goalStates 6= 0 then
7: return solution found
8: reachedi+1 ← reachedi ∪ Apply(reached i ,O)
9: if reachedi+1 = reachedi then

10: return no solution exists
11: i ← i + 1

Factored Mappings as Knowledge Compilation for Symbolic Search 28

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

The Apply function

Computes the set of states that can be reached by applying operators o ∈ O in
states s ∈ reached

Stores it as set of assignments inside an FM

Needs transition relation TV (O) = Formula(
∨

o∈O τV (o))

TV (O) needs variables from V and from V ′ to describe transitions

For all FMs σ: σL over V and σR over V ′

Computes intersection between reached and TV (O)

Reorders and renames the state variables, so the new states over V ′ will be over V

Factored Mappings as Knowledge Compilation for Symbolic Search 29

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

The Apply function

Computes the set of states that can be reached by applying operators o ∈ O in
states s ∈ reached

Stores it as set of assignments inside an FM

Needs transition relation TV (O) = Formula(
∨

o∈O τV (o))

TV (O) needs variables from V and from V ′ to describe transitions

For all FMs σ: σL over V and σR over V ′

Computes intersection between reached and TV (O)

Reorders and renames the state variables, so the new states over V ′ will be over V

Factored Mappings as Knowledge Compilation for Symbolic Search 29

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

The Apply function

Computes the set of states that can be reached by applying operators o ∈ O in
states s ∈ reached

Stores it as set of assignments inside an FM

Needs transition relation TV (O) = Formula(
∨

o∈O τV (o))

TV (O) needs variables from V and from V ′ to describe transitions

For all FMs σ: σL over V and σR over V ′

Computes intersection between reached and TV (O)

Reorders and renames the state variables, so the new states over V ′ will be over V

Factored Mappings as Knowledge Compilation for Symbolic Search 29

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

The Apply function

Computes the set of states that can be reached by applying operators o ∈ O in
states s ∈ reached

Stores it as set of assignments inside an FM

Needs transition relation TV (O) = Formula(
∨

o∈O τV (o))

TV (O) needs variables from V and from V ′ to describe transitions

For all FMs σ: σL over V and σR over V ′

Computes intersection between reached and TV (O)

Reorders and renames the state variables, so the new states over V ′ will be over V

Time complexity of O(n · Tmax
TV (O) · T

max
reached)

Factored Mappings as Knowledge Compilation for Symbolic Search 30

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Algorithm 2 Progression breadth-first search for a FDR planning task using FMs

1: function BfsProgFinal(V , I ,O, γ)
2: TV (O)← Formula(

∨
o∈O τV (o)) . Only needs to be computed once

3: goalStates ← Formula(γ) . Only needs to be computed once
4: reached0 ← Singleton(I) . Only needs to be computed once
5: i ← 0
6: loop
7: if reachedi ∩ goalStates 6= 0 then . Use Intersection, Equals and False
8: return solution found
9: reachedi+1 ← reachedi ∪ Apply(reached i ,TV (O)) . Use Union

10: if reachedi+1 = reachedi then . Use Equals
11: return no solution exists
12: i ← i + 1

Factored Mappings as Knowledge Compilation for Symbolic Search 31

Conclusion

Operations inside loop run in polynomial time

Usable search algorithm for FDR planning tasks using FMs

We can use FMs as knowledge compilation for symbolic search on FDR planning tasks.

Questions?

leonhard.badenberg@stud.unibas.ch

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Factored Mappings

A Factored Mapping (FM) σ over V has

a finite value set vals(σ),

an associated table σtab, and

can be atomic or a merge.

Atomic: σtab : dom(v)→ vals(σ)

Merge: σtab : vals(σL)× vals(σR)→ vals(σ)

Factored Mappings as Knowledge Compilation for Symbolic Search 34

Background Canonicity Operations on Factored Mappings Symbolic Search Algorithm

Building Basic Factored Mappings

False (⊥): A(σ) = ∅
Fills all entries in all tables with zeroes

True (>): A(σ) = A(V)

Fills all entries in all tables with zeroes

Sets entry in root table to 1

σtabvwx 0

0 1

1 0

σtabvw 0

0 0

1 1

σtabv 0 1 2

- 0 1 1

σtabw 0 1 2

- 0 0 0

σtabx 0 1 2

- 0 0 0

A(σ) = {α | α[v] = 0}

Atom (v = c): A(σ) = {α | α[v] = c}
Fills σtab

v with 0 and 1, where σtab
v (c) 6= σtab

v (d) for all d 6= c
Fills all other atomic tables with zeroes
Swaps root table entries if σtab

v (c) = 0

For all of these: O(n · Dmax), where n = |V | and Dmax = maxv∈V |dom(v)|

Factored Mappings as Knowledge Compilation for Symbolic Search 35

	Background
	Canonicity
	Operations on Factored Mappings
	Symbolic Search Algorithm

