
Factored Mappings as Knowledge
Compilation for Symbolic Search

Bachelor Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Research Group
https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert
Supervisor: Dr. Silvan Sievers

Leonhard Badenberg
leonhard.badenberg@stud.unibas.ch

2016-055-238

June 7, 2021

Acknowledgments

I want to thank my supervisor Dr. Silvan Sievers for his time and guidance. His advice and
feedback was always helpful and his patience greatly appreciated. I also want to thank Prof.
Dr. Malte Helmert for giving me the opportunity to do my bachelor thesis in the artificial
intelligence research group and providing me with such an interesting topic. Furthermore I
want to thank my family and friends for giving me nothing but encouragement and helpful
advice.

Abstract

Symbolic search is an important approach to classical planning. Symbolic search uses search
algorithms that process sets of states at a time. For this we need states to be represented by
a compact data structure called knowledge compilations. Merge-and-shrink representations
come a different field of planning, where they have been used to derive heuristic functions for
state-space search. More generally they represent functions that map variable assignments
to a set of values, as such we can regard them as a data structure we will call Factored
Mappings.
In this thesis, we will investigate Factored Mappings (FMs) as a knowledge compilation
language with the hope of using them for symbolic search. We will analyse the necessary
transformations and queries for FMs, by defining the needed operations and a canonical
representation of FMs, and showing that they run in polynomial time. We will then show
that it is possible to use Factored Mappings as a knowledge compilation for symbolic search
by defining a symbolic search algorithm for a finite-domain plannings task that works with
FMs.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3
2.1 Definitions . 4

3 Canonicity 6
3.1 Requirements . 6
3.2 Reducing Factored Mappings . 10

4 Operations on Factored Mappings 13
4.1 Building Basic Factored Mappings . 13

4.1.1 False . 13
4.1.2 True . 14
4.1.3 Atom . 14

4.2 Boolean Tests . 15
4.2.1 Includes . 15
4.2.2 Equals . 16

4.3 Set Operations . 16
4.3.1 Union . 17
4.3.2 Intersection . 21
4.3.3 Complement . 23
4.3.4 Difference . 23

5 Symbolic Search 24
5.1 Converting Formulas into Factored Mappings 25

5.1.1 Formula . 25
5.1.2 Singleton . 26

5.2 The Apply Function . 26
5.2.1 Reordering and Renaming . 27

5.3 Symbolic Search Algorithm for Factored Mappings 28

Table of Contents v

6 Conclusion 29

Bibliography 30

Declaration on Scientific Integrity 31

1
Introduction

Classical planning is an important part of artificial intelligence. It deals with finding a
satisfying or optimal solution for a given planning task through the use of planning algo-
rithms. Planning tasks compactly represent transition systems and are based on concepts
from propositional logic. There are propositional and finite-domain planning tasks. One
of "the big three" (Helmert and Röger [4]) approaches for classical planning algorithms is
symbolic search. The idea of symbolic search is to use a search algorithm that can pro-
cess sets of states at a time. For this, state sets have to be represented by more compact
data structures. We want these data structures to be able to represent exponentially large
state sets in polynomial size efficiently, so we can use search algorithms such as a symbolic
breadth-first search on this data structure. There are different compilation approaches to
represent knowledge bases as a compact data structure, called knowledge compilations.
Knowledge compilations hope to deal with intractability of problems like general proposi-
tional reasoning (Darwiche and Marquis 2002 [3]). Some knowledge compilation languages
like

• Negation Normal Form (NNF)

• Binary Decision Diagram (BDD)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF)

and many others are already well researched on their advantages, applications, and the
transformations they allow [3].
Binary decision diagrams (BDDs) are often used in classical planning as a knowledge compi-
lation for symbolic search. In the Planning and Optimization lecture by Helmert and Röger
(2020) [4], BDDs are established as reduced and ordered BDDs (Bryant 1985 [1]), to be
canonical. To be able to practically use BDDs for a symbolic breadth-first search algorithm
on a propositional planning task, it is important that all necessary transformations and
queries are defined for BDDs and run in polynomial time.

Introduction 2

Merge-and-shrink abstraction is a framework for deriving abstractions in factored state-
space search problems (Helmert et al. 2015 [5]). Merge-and-shrink abstractions have been
studied before as a generalization of pattern databases and have been primarily used as a
heuristic for optimal planning. Recently the merge-and-shrink framework has also been stud-
ied as a "toolbox" of transformations on factored transition systems (Sievers and Helmert
[6]). In this thesis, we investigate the merge-and-shrink representations as a knowledge
compilation language called Factored Mappings (FMs).

Can FMs be used as a knowledge compilation for symbolic search? To see if this is possible
we look at all properties necessary for BDDs to be used for a symbolic breadth-first search
algorithm and check if they can be achieved in a similar way for FMs. BDDs have to be
canonical and all necessary transformations and queries are defined and run in polynomial
time. This means that we have to find a canonical representation for FMs and define all
necessary operations in such a way that they run in polynomial time. This allows FMs to be
used for a similar symbolic breadth-first search algorithm. We will first define a canonical
representation of FMs and then look at a set of operations on FMs which are necessary to
convert propositional formulas to FMs. Then, we will define an apply function that stores
the states to which we can transition to using operations from our planning task in an FM.
With this, we will be able to construct a symbolic breadth-first search algorithm that uses
FMs as a knowledge compilation instead of BDDs. To construct the algorithm, we are going
to use similar methods as shown for BDDs in chapter B8 of the Planning and Optimization
lecture [4]. BDDs, however, have a distinct variable order to help achieve canonicity. This
is different to FMs, where we have no strict variable order but a fixed underlying merge tree
structure. This makes FMs much more similar to a Sentential Decision Diagram (SDD),
which is a knowledge compilation that has their variable order hidden inside of a vtree
(Darwiche 2011 [2]). Vtrees in SDDs show a strong resemblance to merge trees in FMs,
however SDDs will not be further discussed in this thesis, since we will focus more on
defining all transformations and queries necessary for symbolic search with FMs and their
time complexity. One advantage of using FMs for symbolic search is that their state variables
can have any finite domain and are easily usable on finite-domain (FDR) planning tasks on
top of propositional planning tasks. The symbolic search algorithm we construct for FMs
will therefore also work with FDR planning tasks.

2
Background

We will first give a bit of conceptual background and then show more relevant definitions
that we will be using during the thesis.

Planning tasks In chapter A4 of the Planning and Optimization lecture by Helmert and
Röger (2020) [4] planning tasks are introduced as compact representations of transition
systems that are suitable as inputs for planning algorithms. A planning task is given by
〈V, I,O, γ〉 where

• V is a finite set of state variables,

• I is a valuation over V called the initial state,

• O is a finite set of operators over V , and

• γ is a formula over V called the goal.

We distinguish between propositional planning tasks, in which all state variables can be only
true or false, and planning tasks in finite-domain representation (FDR), in which all state
variables can take any value within a finite domain.

Binary Decision Diagrams Ordered binary decision diagrams (BDDs) are a data struc-
ture used to represent Boolean functions inside of acyclic graphs (Bryant 1985 [1]). They
have a fixed variable order and can be used in a reduced form as a knowledge compilation for
symbolic search, where variables represent states which can be set to true or false. Therefore
they are well usable for propositional planning tasks.

Factored Mappings Factored Mappings (FMs), also called merge-and-shrink representa-
tions have been used in state-space search to represent functions that map states to numerical
heuristic values. More generally we can use them to represent functions that map variable
assignments to a set of values (Helmert et al. 2015 [5]). We regard FMs as a data structure
with an underlying merge tree and we will show that they can be used as a knowledge com-
pilation for symbolic search, where variables represent states which have a finite domain.

Background 4

This means that if we can use FMs for symbolic search for propositional planning tasks,
then we can use them for FDR planning tasks as well.

2.1 Definitions
Factored Mappings are directly based on the merge-and-shrink representations as seen in
Helmert et al. (2015) [5] and on their treatment as Factored Mappings as seen in Sievers
and Helmert [6]. The first six definitions follow directly from these papers.

Definition 1 (variable set). A variable set is a set V = {v1, . . . , vn} of different variables
with a finite domain. We write dom(v) for the domain of v ∈ V , which can be an arbitrary
finite set of values.1

Definition 2 (assignment). A partial assignment α is an assignment of a subset V ′ ⊆ V ,
where V is a variable set. It maps every v ∈ V ′ to some element α[v] ∈ dom(v). We write
vars(α) instead of V ′ for the set of variables on which α is defined. A partial assignment
with vars(α) = V is called an assignment.

Definition 3 (factored mappings). Factored Mappings (FMs) over a variable set V are
inductively defined as follows. An FM σ has an associated finite value set vals(σ) 6= ∅ and
an associated table σtab. σ is either atomic or a merge.

• If σ is atomic, then it has an associated variable v ∈ V . Its table is a partial function
σtab : dom(v) 7→ vals(σ).

• If σ is a merge, then it has a left component FM σL and a right component FM σR.
Its table is a partial function σtab : vals(σL)× vals(σR) 7→ vals(σ).

Definition 4 (set of assignments). A(V) = dom(v1) × . . . × dom(vn) is the set of all
assignments α over V .

Definition 5 (represented function). Let σ be an FM over a variable set V . It represents
the function [σ] : A(V) 7→ vals(σ) which is inductively defined as follows:

• If σ is atomic with associated variable v, then [σ](α) = σtab(α[v]).

• If σ is a merge, then [σ](α) = σtab([σL](α), [σR](α)).

Definition 6 (size of an FM). The size of an FM σ, written as |σ|, and the size of its table,
written as |σtab|, are defined inductively as follows:

• If σ is atomic with associated variable v, then |σtab| = |σ| = |dom(v)|.

• If σ is a merge, then |σtab| = |vals(σL)| · |vals(σR)| and |σ| = |σL|+ |σR|+ |σtab|

Remark. The underlying structure of FMs is given by merge trees. We will often use termi-
nology for trees on FMs.

1 It makes sense to assume dom(v) 6= ∅, else we would simply use the variable set V \ {v}.

Background 5

Definition 7 (merge tree). A merge tree T (V) is a binary tree over a variable set V . We
write T (σ) as the merge tree that is underlying to the FM σ.

Definition 8 (set of associated variables). Let V be a variable set. Every FM σ over V has
a set of associated variables vars(σ) ⊆ V .2

• If σ is atomic with associated variable v, then vars(σ) = {v}

• If σ is a merge, then vars(σ) = vars(σL) ∪ vars(σR)

In the merge tree T (V) every node u has a set of associated variables vars(u) ⊆ V .

• If u is a leaf node that refers to the singular variable v, then vars(u) = {v}

• If u is a parent node, then vars(u) = vars(uL) ∪ vars(uR), where uL is the left child
and uR the right child of u.

Remark. We often write the set of associated variables of an FM σ in its name to clarify
which FM component of σ the name stands for: vars(σvwx) = {v, w, x}. This helps to show
which FMs matches with which corresponding node in a merge tree.

Definition 9 (corresponds). A node u of an underlying merge tree T (σ) corresponds to an
FM σ if and only if vars(u) = vars(σ). If two FMs σ and γ correspond to the same node
such that vars(σ) = vars(γ), then σ corresponds to γ.

Atomic FMs correspond to leaf nodes and merge FMs to inner nodes. We call the FM
component of an FM σ that corresponds to the root node in T (σ) the root FM σroot and
its table function σtabroot the root table.

Definition 10 (orthogonal). An FM σ is called orthogonal if all atomic FMs of σ have
different associated variables. Then all leaf nodes of the merge tree T (σ) corresponding to
the atomic FMs of σ have different variables as well. T (σ) is also called orthogonal.

Definition 11 (full). An FM σ over V is called full if and only if vars(σ) = V . Then
vars(σroot) = V , where σroot corresponds to the root of the merge tree T (σ). T (σ) is also
called full.

Definition 12 (restriction on roots of FMs). The value set of the root of an FM σ is
restricted to: vals(σroot) := {0, 1}.

For our purposes we will use factored mappings to store variable assignments α. So a binary
representation in the root table to show if α is stored in the FM suffices.

Definition 13 (assignments of an FM). Let σ be an FM over a variable set V . A(σ) ⊆ A(V)

is the set of all assignments α stored in σ. α ∈ A(σ) if and only if [σ](α) = 1.

2 Not to be mistaken with vals(σ).

3
Canonicity

To use Factored Mappings in symbolic search we need to compare them for equality. For
this it is important that FMs representing the same set of assignments are identical.

Definition 14 (identity). For two FMs σ and γ to be identical (written σ = γ), the following
must be true:

• they have the same underlying merge tree: T (σ) = T (γ)

• for all σi and γi: if vars(σi) = vars(γi) then σtabi = γtabi .

where σi and γi are FM components of σ and γ respectively.

Remark. We want to achieve a canonical representation of FMs that satisfies: A(σ) = A(γ)

if and only if σ = γ.

3.1 Requirements
For the representation of Factored Mappings to be canonical, we need it to fulfill two re-
quirements. We will now introduce the requirements and then show why they are sufficient
(and necessary) to satisfy the property described above.

Since we will be using FMs for symbolic search within the context of a specific planning
task, all of our FMs will be over the same variable set V . We want them to have the same
underlying merge tree T (V), so we can compare corresponding FMs. Because all FMs share
the same T (V), they need to be full. It also does not make sense for any FM to have more
than one atomic FM per variable, because we cannot assign different values to the same
variable within one assignment α.

Requirement 1. All FMs defined over some variable set V must have the same underlying
merge tree T (V). Additionally, all FMs must be full and orthogonal, and therefore T (V) is
full and orthogonal as well.

Since tables of FM components, that are not the root table, are filled with arbitrary values
that represent different entries, we need to ensure that they are filled consistently.

Canonicity 7

Requirement 2. We want the tables σtabi for all non-root components σi of any FM σ to
map to the values vals(σi) = {0, 1, . . . , n− 1}, where

n =

|vals(σiL)× vals(σiR)| If σi is a merge

|dom(vi)| If σi is atomic with associated variable vi

We use a fixed order that always takes the smallest unused value to fill the tables from left to
right, top to bottom. The root FM σroot will still only map to 0 and 1 (see Definition 12).
Its table function σtabroot is given by the condition that [σ](α) = 1 if and only if α ∈ A(σ) (see
Definition 13).

Later we will consider reducing table entries and allow mappings to already used values, but
for now we stick with this naive mapping to n different values in order.

These two requirements are already enough to achieve the canonical representation of
FMs that we wanted.

Theorem 1. Let σ and γ be two FMs that follow Requirements 1 and 2. Then A(σ) = A(γ)

if and only if σ = γ.

Proof. First we show that if σ = γ then A(σ) = A(γ): From the definition of σ = γ (see
Definition 14) we know that they have the same merge tree and all table functions are equal.
That means that all entries in all tables are identical including the root table. It is trivial
to see that the same assignments have to be stored in σ and γ. Therefore it follows directly
from σ = γ that A(σ) = A(γ).
Now we show that if A(σ) = A(γ) then σ = γ: From Requirement 1 we know that T (σ) =
T (γ). Because the merge trees are orthogonal and full we know that for all variables v ∈ V ,
both FMs have exactly one atomic component referring to v. Requirement 2 fills the tables of
all atomic components with the same entries in the fixed value order from 0 to |dom(v)|−1.
Therefore all atomic FMs that refer to the same variable have identical entries. We can
see that merging already identical FM tables will create a parent table that is spanned by
the same values. For both FMs this parent table will also be filled with the same entries
given by the value order of Requirement 2. By induction, this holds for all tables up to
the root table, where it no longer holds. There σtabroot and γtabroot are still spanned by the
same values. Except in the root table the entries are given in such a way that [σ](α) = 1 if
α ∈ A(σ) and [γ](α) = 1 if α ∈ A(γ). Because all other components in σ and γ are identical,
the entry at σtabroot([σL](α), [σR](α)) and γtabroot([γL](α), [γR](α)) is at the same index. And
because A(σ) = A(γ) this entry in σtabroot and γtabroot must either be mapped to 1 if α ∈ A(σ),
or to 0. Therefore all entries in all tables of σ and γ are equal. This, with the fact that
T (σ) = T (γ), implies σ = γ by Definition 14.

We can show that these two requirements are also necessary, if we look at what happens
if one is not fulfilled for σ or γ. If Requirement 1 is not fulfilled and T (σ) 6= T (γ), then
Definition 14 directly tells us that σ and γ can never be identical. Let σ and γ be two
FMs, where σ follows Requirement 2 but γ differs from σ in one value of a component

Canonicity 8

FM, therefore γ does not fulfill Requirement 2. Let the value in which γ differs from σ

be an otherwise unused value. Since values can be arbitrary, as long as they represent
different entries, and the root tables of both FMs are still identical, they still store the same
assignments. Therefore A(σ) = A(γ), but because σ and γ differ in an entry, σ 6= γ.

If we look at the current canonical representation of FMs we are using, we can see that all
FMs will only ever differ inside of the root table. Filling every component table maximally
by giving each entry a different value, takes an exponential amount of space, because of the
repeated quadratic growth of each merge σm, for which we need space for X · Y different
entries, whereX = vals(σmL) and Y = vals(σmR). This is due to the naive way of filling the
table entries from Requirement 2. But it is not necessary for all entries to be differentiated,
because they sometimes get mapped to the same values in the parent table. Therefore,
we revisit Requirement 2 so that we can reduce FMs later on to save space and get rid of
redundant table entries.
Instead of filling all entries naively with all different values, we want to allow a value to be
used for multiple entries if they will map to equivalent rows/columns. Multiple rows/columns
are equivalent to each other if the entries at the same position have the same value. Because
the FM does not have to differentiate between them, they can be reduced to just one
row/column. In the root table we already allow multiple entries to be mapped to the same
value. There, we can already have multiple equivalent rows/columns. Reducing them to
one by using the same value in its children for the table entries whose old values were the
indices for the equivalent rows/columns. This can lead to new equivalent rows/columns in
the tables of the children, which then can be reduced themselves. This can be done for all
merge FMs recursively and will not change the assignments stored.

Requirement 3. The tables σtabi for all components σi of any FM σ map to the values
vals(σi) = {0, 1, . . .}. We fill the tables from left to right, top to bottom by using the smallest
unused value if the parent table has to differentiate between them, or using the same value
as the already filled entry that leads to an identical row/column in the parent table. As in
Requirement 2, the root FM σroot will still only map to 0 and 1 and its table function σtabroot
is given by the condition that [σ](α) = 1 if and only if α ∈ A(σ).

Table 3.1 is an example for different tables σtab, where σ is a merge of σL and σR. vals(σL) =
{0, 1, 2} and vals(σR) = {0, 1}. σtab : {0, 1, 2} × {0, 1} 7→ vals(σ) = {0, 1, . . . , n − 1} with
n ≤ 3 · 2:

σtab 0 1

0 0 1
1 2 3
2 4 5

R2 and R3

σtab 0 1

0 0 1
1 0 2
2 1 3

Only R3

σtab 0 1

0 0 1
1 0 3
2 2 1

Neither

Table 3.1: The first table fulfills Requirements 2 and 3, the second table just Requirement
3 and the third table fulfills neither.

Canonicity 9

Definition 15 (reduced). If the size of vals(σi) for each component σi in σ is minimal
among all possible FMs with the same represented function, then σ is called a reduced FM.

FMs that follow Requirement 3 have a minimal value set and are therefore always reduced.
If they also follow Requirement 1, we call them canonical and reduced.

Example Fig. 3.1 shows an example of a not yet reduced FM σ with variable set
V = {v, w, x} and dom(v) = dom(w) = dom(x) = {0, 1, 2}. Let A(σ) = {α} =
{{v 7→ 0, w 7→ 1, x 7→ 2}} be the set of assignments stored in σ. Given the underlying merge
tree T (V), we can draw the tables of the components and root of σ following the initial
Requirement 2:

σvwx

v w

x

σtabvwx 0 1 2

0 0 0 0
1 0 0 1
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

σtabvw 0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

σtabv 0 1 2

- 0 1 2

σtabw 0 1 2

- 0 1 2

σtabx 0 1 2

- 0 1 2

Figure 3.1: Colored entries represent the stored assignment α. Entries in σi are in the same
color as the index of their row/column in the parent table. The merge tree T (V) is shown
in the top left.

We can see that there are many rows (and two columns) in σtabvwx where each entry is a 0.
We want to reduce them to just one row (and one column), to get rid of these redundant
entries.

Canonicity 10

3.2 Reducing Factored Mappings
To reduce a Factored Mapping σ, we have to ensure that |vals(σi)| for each component σi
in σ cannot be further decreased without changing A(σ). For this we will map entries in
σi to the same value whenever the parent FM does not have to differentiate between them,
because they lead to equivalent rows/columns. To transform σ into the reduced σ′ that
follows Requirement 3 we can use Algorithm 1.

Time complexity of Reduce(σ) Reduce(σ) calls ComputeRowPartitioning(σ)

which goes over every row in σ and partitions them into lists of equivalent rows. For this it
has to check every entry in σ once, which are |σtab| = |vals(σL)| · |vals(σR)| checks. Then,
Reduce(σ) goes through all |vals(σL)| rows preparing their renaming and adding one per
equivalentRows to the new mapping σ̃tab. ApplyRenaming is called, which goes through
all |σtabL | entries once to apply the renaming. This leads to O(|σtab| + |vals(σL)| + |σtabL |)
operations for the rows of a merge node. For columns this is done analogously. Therefore we
have O(2 · (Tmax + Tmax + Tmax)) = O(Tmax) operations per merge node, where Tmax is
the maximum over all table sizes of σ (Helmert et al. 2015 [5]). Let n = |V | be the number
of all variables in V , then T (σ) has n − 1 merge nodes. Reduce(σ) therefore has a time
complexity of O((n− 1) · Tmax) = O(n · Tmax).

Remark. The size of σ can be estimated by adding Tmax for all 2n − 1 nodes: |σ| =
O((2n − 1) · Tmax) = O(n · Tmax) (Helmert et al. 2015 [5]). This means that Reduce(σ)

is linear in the size of the FM.

Example (continued) We revisit our example from before with variable set V = {v, w, x},
dom(v) = dom(w) = dom(x) = {0, 1, 2} and A(σ) = {{v 7→ 0, w 7→ 1, x 7→ 2}}. We see how
the unnecessary rows and columns of σ disappear in its reduced form:

σtabvwx 0 1 1

0 0 0 0
1 0 0 1
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

σtabvw 0 1 2

0 0 1 0
1 0 0 0
2 0 0 0

σtabv 0 1 2

- 0 1 1

σtabw 0 1 2

- 0 1 0

σtabx 0 1 2

- 0 0 1

Canonicity 11

Algorithm 1 Reducing an FM σ to fit Requirement 3.

1: function ComputeRowPartitioning(σ)
2: rowPartitioning ← []
3: visited is a list of size |vals(σL)| with each entry set to false
4: for row index i ∈ vals(σL) and not visited [i] do
5: equivalentRows ← []
6: append i to equivalentRows
7: visited [i]← true
8: for row index j ∈ vals(σL) with j > i and not visited [j] do
9: if σtab[i][y] = σtab[j][y] ∀y then

10: append j to equivalentRows
11: visited [j]← true
12: append equivalentRows to rowPartitioning
13: return rowPartitioning
14: function ComputeColumnPartitioning(σ)
15: columnPartitioning ← []
16: visited is a list of size |vals(σR)| with each entry set to false
17: for column index i ∈ vals(σR) and not visited [i] do
18: equivalentColumns ← []
19: append i to equivalentColumns
20: visited [i]← true
21: for column index j ∈ vals(σR) with j > i and not visited [j] do
22: if σtab[x][i] = σtab[x][j] ∀x then
23: append j to equivalentColumns
24: visited [j]← true
25: append equivalentColumns to columnPartitioning
26: return columnPartitioning
27: function ApplyRenaming(σ, renaming)
28: for entry ∈ σtab do
29: entry ← renaming[entry]
30: function Reduce(σ)
31: rowPartitioning← ComputeRowPartitioning(σ)
32: σ̃tab ← [][]
33: newRowIndex← 0
34: renaming is a list of size |vals(σL)| with each entry set to 0
35: for equivalentRows ∈ rowPartitioning do
36: for all y ∈ vals(σR) do
37: append σtab[equivalentRows[0]][y] to σ̃tab

38: for row index i ∈ equivalentRows do
39: renaming[i]← newRowIndex
40: newRowIndex← newRowIndex+ 1

41: σtab ← σ̃tab

42: ApplyRenaming(σL, renaming)
43: columnPartitioning ← ComputeColumnPartitioning(σ)
44: σ̃tab ← [][]
45: newColumnIndex← 0
46: renaming is a list of size |vals(σR)| with each entry set to 0
47: for equivalentColumns ∈ columnPartitioning do
48: for all x ∈ vals(σL) do
49: append σtab[x][equivalentColumns[0]] to σ̃tab

50: for column index i ∈ equivalentColumns do
51: renaming[i]← newColumnIndex
52: newColumnIndex← newColumnIndex+ 1

53: σtab ← σ̃tab

54: ApplyRenaming(σR, renaming)
55: if σL is not atomic then Reduce(σL)
56: if σR is not atomic then Reduce(σR)

Canonicity 12

σtabvwx 0 1

0 0 0
1 0 1

σtabvw 0 1

0 0 1
1 0 0

σtabv 0 1 2

- 0 1 1

σtabw 0 1 2

- 0 1 0

σtabx 0 1 2

- 0 0 1

All tables now store a minimal amount of different variables within a given table. σ is now
reduced. We will usually already work with canonical and reduced FMs and try to construct
them directly in that form. We only have to reduce FMs when we create redundancies within
them through an operation.

Canonical and reduced FMs still have the canonicity property that we want.

Theorem 2. Let σ and γ be two FMs that follow Requirements 1 and 3. Then, A(σ) = A(γ)

if and only if σ = γ.

Proof. If σ = γ then A(σ) = A(γ) still follows directly. We know that FMs that follow
Requirement 2 instead of Requirement 3 have the property that if A(σ) = A(γ) then σ = γ.
We need to show that this property is not lost by reducing them. This is true if σ always
reduces to the same σ′. Because reduce(σ) is a deterministic algorithm we know that given
the same σ as input it always reduces to the same σ′. Therefore A(σ) = A(γ) if and only if
σ = γ also holds when only working with canonical and reduced FMs.

We remark that we have two canonical representations of FMs that satisfy: A(σ) = A(γ) if
and only if σ = γ. The first one uses Requirement 2 to have a maximal amount of different
values stored. The second one uses Requirement 3 to have a minimal amount of different
values stored. For space saving purposes we will choose the latter canonical representation
and only work with canonical and reduced FMs. Any future FM is assumed to be canonical
and reduced unless specified otherwise.

4
Operations on Factored Mappings

We will now take a look at different operations for creating, querying and transforming
Factored Mappings. These operations will be used to convert propositional formulas to
FMs later (Section 5.1). First, we will look at how to create basic FMs that represent
logical atoms, then we will see how to perform Boolean tests as queries on FMs, and finally
we will see how to apply logical connectives by using FM transformations.
For all operations on Factored Mappings we always assume that all involved FMs are canon-
ical and reduced as described above.

4.1 Building Basic Factored Mappings
The first operations we look at are not operations on Factored Mappings but operations to
build some basic Factored Mappings directly. These operations will be used to represent
logical atoms when converting propositional formulas later (Section 5.1).
The FMs we create have the underlying merge tree T (V), which can be understood as a
global variable and can be derived from the the variable set V .

4.1.1 False
We want to create a Factored Mapping representing the empty set. The empty FM σF

with A(σF) = {} is created by filling all atomic leaf tables of σF with the same value. For
Requirement 3 this value has to be 0. This leads to all merge tables in σF only having one
entry, that is also 0. The root table will map its one entry to 0, so that no assignments are
stored.

Operations on Factored Mappings 14

Algorithm 2 Creating the empty FM σF

1: function False(V)
2: for node u ∈ T (V) do
3: σtabu ← [][]
4: if u is a leaf then
5: for y ∈ |dom(vars(u))| do
6: σtabu [y]← 0

7: σu ← atomic FM with the variable vars(u) with table σtabu
8: else
9: σtabu [0][0]← 0

10: σu ← merge FM with components σuL and σuR and with table σtabu
11: if u is the root node then
12: return σu

4.1.2 True
We can create a Factored Mapping σT that stores all assignments with the same process as
for the empty FM σF . The only difference is in the root table where we want to map the one
entry to 1 instead of 0. This way the full FM σT stores every assignment A(σT) = A(V).
Swapping the root table entries like this is a process that we will also use for the complement
later (Section 4.3.3). This can be seen intuitively because A(σF) = A(V) \A(σF) = A(V) \
{} = A(V) = A(σT).

Algorithm 3 Creating σT as the FM that stores all assignments

1: function True(V)
2: σT ← False(V) . see Algorithm 2
3: σtabT [0][0]← 1
4: return σT

Time complexity False(V) and True(V) both go through n leaf nodes with associated
variable v and create an atomic FM with |dom(v)| entries, where n = |V |. The other n− 1

node tables are filled with just one entry. Therefore, their time complexity is O(n ·Dmax +

(n− 1)) = O(n ·Dmax), where Dmax = maxv∈V |dom(v)| (Helmert et al. 2015 [5]).

4.1.3 Atom
We will now create a Factored Mapping σ that stores all assignments in which a variable v
is set to the specific value c ∈ dom(v). For this we fill all atomic tables σtabw where w 6= v

with zeroes as we did for the empty FM. σtabv has entries with two different values, one that
is used for the entry at the index of the c and one that is used for all other entries. The
entry σtabv (c) will map to 0 if c = mini∈dom(v) i, and to 1 otherwise. Due to Requirement 3
all other entries will map to 1 if σtabv (c) = 0 and to 0 if σtabv (c) = 1. Merge tables in σ have
either one zero entry or two entries (0 and 1) if one of its children had two different values.
This means that the only 1 we find in the root table comes from the partial assignment of
v 7→ c. The partial assignment of the other variables is meaningless because they all get
mapped to the same value 0. Therefore A(σ) = {α | α[v] = c}.

Operations on Factored Mappings 15

Algorithm 4 Creating the atom FM σ that stores all α with α[v] = c

1: function Atom(V, v, c)
2: for node u ∈ T (V) do
3: σtabu ← [][]
4: if u is a leaf then
5: for y ∈ |dom(vars(u))| do

6: σtabu [y]←

{
1 if vars(u) = {v} and c = mini∈dom(v) i

0 otherwise

7: if vars(u) = {v} then

8: σtabu [c]←

{
0 if c = mini∈dom(v) i

1 otherwise

9: σu ← atomic FM with the variable vars(u) with table σtabu
10: else
11: for x ∈ vals(σuL) do
12: for y ∈ vals(σuR) do
13: if x = 0 and y = 0 then
14: σtabu [x][y]← 0
15: else
16: σtabu [x][y]← 1

17: σu ← merge FM with components σuL and σuR and with table σtabu
18: if u is the root node then
19: return σu

Time complexity of Atom(V, v, c) As for computing the empty FM with False(V),
Atom(V, v, c) goes through n leaf nodes and creates an atomic FM with |dom(w)| entries,
where n = |V | and w is the associated variable of a leaf node. The other n − 1 node
tables are filled by going through a maximum of 1 × 2 or 2 × 1 entries and map them to a
maximum of two different entries (0 and 1). Therefore the time complexity of Atom(V, v, c)

is O(n ·Dmax + (n− 1) · 2) = O(n ·Dmax), where Dmax = maxw∈V |dom(w)|.

4.2 Boolean Tests
We will look at how to perform the following queries on Factored Mappings:

• Is an assignment α included in an FM σ?

• Are two FMs σ and γ equal to each other?

These operations will be used to perform Boolean tests on FMs when converting proposi-
tional formulas later (Section 5.1).

4.2.1 Includes
To see if an assignment α is stored in a Factored Mapping σ we have to check if α ∈ A(σ),
which is case if and only if [σ](α) = 1 (see Definition 13). The function [σ] is directly
represented by σ and the reason for the FM structure we use (see Definition 5). To check if
[σ](α) = 1 we need look up the value of every atomic table in σ at the entry for α[v], where

Operations on Factored Mappings 16

v is its associated variable and pass it on. Then, we use that value together with the value
that is passed on from the other child as indices for the entry of the parent table, for which
we look up its value and pass it on. We do this recursively up until the root node, where
we can check if the entry at the stored values is equal to 1 or not.

Algorithm 5 Checking if α is included in A(σ)

1: function GetValue(σ, α)
2: if σ is a merge FM then
3: x←GetValue(σL, α)
4: y ←GetValue(σR, α)
5: return σtab(x, y)
6: else
7: return σtab(α[vars(σ)])

8: function Includes(σ, α)
9: if GetValue(σ, α) = 1 then

10: return True
11: else
12: return False

Time complexity of Includes(α, σ) Includes(α, σ) calls GetValue(α, σ), which
recursively visits every component of σ once. We can directly return the entry of each
component without having to go through all entries. Therefore the time complexity is given
by O(2n− 1) = O(n), where n = |V |.

4.2.2 Equals
For two Factored Mappings σ and γ that share the same merge tree T (V) to be equal,
all entries of corresponding FM components must have the same tables (see Definition 14).
Therefore, we need to go through the whole FMs σ and γ and check every entry for equality.
This can be done using Algorithm 6.

Time complexity of Equals(σ, γ) It is easy to see that Equals(σ, γ) goes through
all entries of all tables in both FMs exactly once to compare them. It is clear that the time
complexity is basically the size of both FMs added. Therefore the time complexity is given
by O((2n − 1) · Tmaxσ + (2n − 1) · Tmaxγ) = O(n(Tmaxσ + Tmaxγ)), where n = |V | and Tmaxσ

and Tmaxγ is the maximum over all table sizes of σ and γ respectively.

4.3 Set Operations
We will now see how we can implement the set operations union, intersection, complement
and difference for Factored Mappings. These FM transformations will be used to apply
logical connectives when converting propositional formulas later (Section 5.1).

Operations on Factored Mappings 17

Algorithm 6 Testing if σ = γ

1: function Equals(σ, γ)
2: if σ and γ are merge FMs then
3: if |vals(σL)| 6= |vals(γL)| then
4: return False
5: if |vals(σR)| 6= |vals(γR)| then
6: return False
7: for x ∈ vals(σL) do
8: for y ∈ vals(σR) do
9: if σtab(x, y) 6= γtab(x, y) then

10: return False
11: leftTreeEquals ← Equals(σL, γL)
12: rightTreeEquals ← Equals(σR, γR)
13: return leftTreeEquals and rightTreeEquals
14: else
15: for entry i ∈ dom(vars(σ)) do
16: if σtab(i) 6= γtab(i) then
17: return False
18: return True

4.3.1 Union
Creating a union of two Factored Mappings σ and γ into one FM δ efficiently requires a
smarter approach than to manually figure out which assignments are stored in A(σ) and
A(γ), then creating a maximally filled FM with the union of the assignments, and finally
reducing the many redundancies. The simplest way to create a union is to directly compute
the combination for each component table pair σtabi and γtabi , with vars(σi) = vars(γi),
into the component table δtabi with vars(σi) = vars(δi). This combination δi has to keep
all information of σi and γi. We differentiate between two cases:

1. σi and γi are atomic.

2. σi and γi are merges.

We will look at how the union for these two cases is created. Creating the union for such
a table will leave us with 2-dimensional entries that we will get rid off when combining the
tables together to form a union of two complete FMs.

Combining leaves For the union of two corresponding atomic leaf node tables σtabl and
γtabl of an atomic FM with associated variable v, we use a function CombineLeaves(σtabl , γtabl).
CombineLeaves takes two atomic FM tables and creates a new table δtabl with vals(δl) =
vals(σl) × vals(γl). Its cells are filled by combining 1-dimensional entries in σtabl and γtabl
to 2-dimensional ones:

δtabl (x) 7→ (σtabl (x), γtabl (x))

Combining merges For the union of two corresponding merge node tables σtabm and
γtabm , we use a function CombineMerges(σtabm , γtabm , δmL

, δmR
). CombineMerges needs

Operations on Factored Mappings 18

σtabl 0 1 2 3

- 0 1 0 2

γtabl 0 1 2 3

- 0 1 2 0

δtabl 0 1 2 3

- (0,0) (1,1) (0,2) (2,0)

Figure 4.1: Two leaf node tables σtabl and γtabl get combined to one δtabl with 2-dimensional
values.

two merge tables and the already combined δmL
and δmR

3 and creates a new table δtabm ,
which is spanned by the 2-dimensional values in vals(δmL

) and vals(δmR
)4 with vals(δm) =

vals(σm)× vals(γm). Its cells are filled by combining the 1-dimensional entries in σtabm and
γtabm to 2-dimensional ones given by the 2-dimensional indices of the cell:

δtabm ((x1, x2), (y1, y2)) 7→ (σtabm (x1, y1), γ
tab
m (x2, y2))

σtabm 0 1 2

0 0 1 2
1 3 4 5
2 0 2 3

γtabm 0 1 2

0 0 1 0
1 0 1 2
2 1 2 3

δtabm (0,0) (1,1) (0,2) (2,0)

(0,0) (0,0) (1,1) (0,0) (2,0)
(1,1) (3,0) (4,1) (3,2) (5,0)
(2,2) (0,1) (2,2) (0,3) (3,1)

δtabmL
0 1 2 3

- (0,0) (1,1) (2,2) (0,0)

δtabmR
0 1 2 3

- (0,0) (1,1) (0,2) (2,0)

Figure 4.2: Two merge node tables σtabm and γtabm get combined to one δtabm with 2-dimensional
values. δtabm is spanned by its already combined children δtabmL

and δtabmR
with 2-dimensional

values. The colors show where in the tables of σtabm and γtabm the value for an entry in δtabm
can be found.

3 δmL and δmR have to be the result of CombineLeaves or CombineMerges of the corresponding children
of σm and γm.

4 This also means that δtabm can have a higher dimension than σtab
m and γtabm (more on this later).

Operations on Factored Mappings 19

Algorithm 7 Creating δ as the union of two FMs σ and γ

1: function Renaming2D(σ)
2: renaming is a list of size |vals(σ)| with each entry set to 0
3: newValue← 0
4: for value (x, y) ∈ vals(σ) do
5: renaming[(x, y)]← newValue
6: newValue← newValue+ 1

7: ApplyRenaming(σ, renaming) . see Algorithm 1
8: function Combine(σ, γ)
9: if σ and γ are merge FMs then

10: δL ← Combine(σL, γL)
11: δR ← Combine(σR, γR)
12: δtab ← CombineMerges(σ, γ, δL, δR)
13: δ ← merge FM with components δL and δR and with table δtab
14: Renaming2D(δL)
15: Renaming2D(δR)
16: else
17: δtab ← CombineLeaves(σ, γ)
18: δ ← atomic FM with the variable v = vars(σ) = vars(γ) with table δtab

19: return δ
20: function Union(σ, γ)
21: δ ←Combine(σ, γ)
22: for entry ∈ δtab with value (x, y) do
23: if x = 1 or y = 1 then
24: entry← 1
25: else
26: entry← 0

27: Reduce(δ) . see Algorithm 1
28: return δ

We will look at how Algorithm 7 works: Combine(σ, γ) performs a post-order traversal
of T (V). It therefore starts at the atomic FMs, where it combines all values from the atomic
leaf tables of σl and γl into 2-dimensional ones, keeping all information. Those tuples are
then given to the parent and are only renamed afterwards to fit Requirement 3. Combining
merge tables always ends in 2-dimensional entries as well. We allow merge tables δtabm to
increase in dimension, compared to the dimensions of the original components, so that they
can store all relevant combinations from σm and γm. Since merges also recursively give the
tuples to the parent before renaming them, no information about the assignments is lost.
In the root table δtab we end up with entries that have 2-dimensional values (x, y), where x
stores if the assignment was in σ and y if it was in γ. Union(σ, γ) then maps those entries
to 1 if one of the FMs stored the assignment (x = 1 or y = 1), or 0 otherwise. Therefore,
A(δ) = A(σ) ∪ A(γ), which means that δ is an FM that stores exactly the union of σ and
γ. Because δ could map entries that we differentiated before to the same value in the root
table and might create new redundancies, we need to reduce δ to ensure that it is canonical
and reduced.

Time complexity of Union(σ, γ) Union(σ, γ) calls Combine(σ, γ) which goes through
every node i in T (V). For leaf nodes it goes through all entries in σtabl and γtabl once

Operations on Factored Mappings 20

to create δtabl . Those are |σtabl | + |γtabl | entries per leaf node to go through. For merge
nodes, this is different since they can increase in dimension. Since δtabm is spanned by
vals(δmL

) and vals(δmR
), which have the 2-dimensional values of vals(σmL

) × vals(γmL
)

and vals(σmR
) × vals(γmR

), we see that |δtabm | = |vals(δmL
)| · |vals(δmR

)| = |vals(σmL
) ×

vals(γmL
)| · |vals(σmR

) × vals(γmR
)|. This means that Combine(σ, γ) has to go through

|δtabm | entries per merge node. For every non-root FM their parent calls Renaming2D(δi),
which goes through |vals(δi)| entries, corresponding to rows or columns in the parent FM,
to prepare their renaming. Then, ApplyRenaming is called, which goes through all |δtabi |
entries once. This leads to O(|σtabl | + |γtabl | + |vals(δl)| + |δtabl |) operations per leaf node,
O(|δtabm | + |vals(δm)| + |δtabm |) operations per non-root merge node, and O(|δtabm | for the
merge node. Let n = |V | be the number of variables, Dmax = maxv∈V |dom(v)| be the
maximum over the domains, and Tmaxσ and Tmaxγ be the maximum over all table sizes of
σ and γ respectively. We can see that |δtabm | ≤ Tmaxσ · Tmaxγ . Then, Combine(σ, γ) has
O(n(4 · Dmax) + (n − 2)(3 · Tmaxσ · Tmaxγ) + Tmaxσ · Tmaxγ) = O(n(Dmax + Tmaxσ · Tmaxγ))

operations. Because Tmaxσ ≥ Dmax, we see that Combine(σ, γ) has the time complexity of
O(n · Tmaxσ · Tmaxγ). Lastly, Union(σ, γ) calls Reduce(δ) which has the time complexity
of O(n · Tmaxδ) = O(n · Tmaxσ · Tmaxγ). This leads to the combined time complexity for
Union(σ, γ) of O(n · Tmaxσ · Tmaxγ + n · Tmaxσ · Tmaxγ) = O(n · Tmaxσ · Tmaxγ).

Example Let’s see Union(σ, γ) on an example. Let V = {v, w} be a variable set, and
dom(v) = dom(w) = {0, 1, 2, 3} be the domains of the variables. Let σ be the FM for the
assignments A(σ) = {{v 7→ 1, w 7→ 1}, {v 7→ 1, w 7→ 3}, {v 7→ 2, w 7→ 3}}. Let γ be the FM
for the assignments A(γ) = {{v 7→ 0, w 7→ 1}, {v 7→ 3, w 7→ 1}, {v 7→ 0, w 7→ 2},
{v 7→ 3, w 7→ 2}, {v 7→ 1, w 7→ 2}}. We will now compute the union of σ and γ into a new
FM δ:

σtabvw 0 1 2

0 0 0 0
1 0 1 1
2 0 0 1

σtabv 0 1 2 3

- 0 1 2 0

σtabw 0 1 2 3

- 0 1 0 2

γtabvw 0 1 2

0 0 1 1
1 0 0 1
2 0 0 0

γtabv 0 1 2 3

- 0 1 2 0

γtabw 0 1 2 3

- 0 1 2 0

First Union(σ, γ) calls Combine(σvw, γvw), which will call itself with δv = Combine(σv, γv)

and δw = Combine(σw, γw):

δtabv 0 1 2 3

- (0,0) (1,1) (2,2) (0,0)

δtabw 0 1 2 3

- (0,0) (1,1) (0,2) (2,0)

Then, Combine(σvw, γvw) creates the merge δvw, filling its table using CombineMerges(σtabvw , γtabvw , δv, δw),
and renaming the entries in δtabv and δtabw :

Operations on Factored Mappings 21

δtabvw (0,0) (1,1) (0,2) (2,0)

(0,0) (0,0) (0,1) (0,1) (0,0)
(1,1) (0,0) (1,0) (0,1) (1,0)
(2,2) (0,0) (0,0) (0,0) (1,0)

δtabv 0 1 2 3

- 0 1 2 0

δtabw 0 1 2 3

- 0 1 2 3

Union(σ, γ) then remaps the entries of δtabvw to 0 or 1 and reduces the FM if necessary:

δtabvw 0 1 2 2

0 0 1 1 0
1 0 1 1 1
2 0 0 0 1

δtabv 0 1 2 3

- 0 1 2 0

δtabw 0 1 2 3

- 0 1 1 2

This indeed gives us a new canonical FM δ that represents the union of the assignments
from σ and γ: A(δ) = {{v 7→ 1, w 7→ 1}, {v 7→ 1, w 7→ 3}, {v 7→ 2, w 7→ 3},
{v 7→ 0, w 7→ 1}, {v 7→ 3, w 7→ 1}, {v 7→ 1, w 7→ 2}}.

4.3.2 Intersection
To create an intersection of two Factored Mappings σ and γ into one FM δ we can use a
similar approach as for creating a union. We can use the same combine function as for the
union to get an FM that keeps all information about the assignments by combining A(σ)
and A(γ). The root table δtab will still have entries with 2-dimensional values (x, y), where x
stores if the assignment was in σ and y if it was in γ. The difference between the intersection
and the union comes in the remapping of those entries. The 2-dimensional values (x, y),
where x stores if the assignment was in σ and y if it was in γ, have to be mapped differently
than before. For the intersection, we want A(δ) to be equal to A(σ) ∩ A(γ). Therefore, we
map an entry in δtab to 1 if both of the FMs stored the assignment (x = 1 and y = 1), or 0
otherwise. This means that δ will be an FM that stores exactly the intersection of σ and γ.
Because δ could still map entries that we differentiated before to the same value in the root
table and might create new redundancies, we need to reduce δ to ensure that it is canonical
and reduced. This reduction can lead to drastically different looking FMs for the union and
the intersection, as can be seen in the example on page 22.

Operations on Factored Mappings 22

Algorithm 8 Creating δ as the intersection of two FMs σ and γ

1: function Intersection(σ, γ)
2: δ ←Combine(σ, γ) . see Algorithm 7
3: for entry ∈ δtab with value (x, y) do
4: if x = 1 and y = 1 then
5: entry← 1
6: else
7: entry← 0

8: Reduce(δ) . see Algorithm 1
9: return δ

Time complexity of Intersection(σ, γ) We can see that the time complexity of
Intersection(σ, γ) is the same as for Union(σ, γ), since they only differ in their mapping
of the root table. Therefore, Intersection(σ, γ) also has the time complexity of O(n ·
Tmaxσ · Tmaxγ), where n = |V | and Tmaxσ , and Tmaxγ is the maximum over all table sizes of σ
and γ respectively.

Example Let’s look at the same example that we used for the union again. Let V = {v, w}
be a variable set, and dom(v) = dom(w) = {0, 1, 2, 3} be the domains of the variables. Let σ
be the FM for the assignments A(σ) = {{v 7→ 1, w 7→ 1}, {v 7→ 1, w 7→ 3}, {v 7→ 2, w 7→ 3}}.
Let γ be the FM for the assignments A(γ) = {{v 7→ 0, w 7→ 1}, {v 7→ 3, w 7→ 1}, {v 7→
0, w 7→ 2}, {v 7→ 3, w 7→ 2}, {v 7→ 1, w 7→ 2}}. We will now compute the intersection of σ
and γ into a new FM δ:

δtabvw (0,0) (1,1) (0,2) (2,0)

(0,0) (0,0) (0,1) (0,1) (0,0)
(1,1) (0,0) (1,0) (0,1) (1,0)
(2,2) (0,0) (0,0) (0,0) (1,0)

δtabv 0 1 2 3

- 0 1 2 0

δtabw 0 1 2 3

- 0 1 2 3

This is still the same δ that was created by Combine(σ, γ) as in the union. But Intersection(σ, γ)

will now remap the entries in δtabvw differently than the union did:

δtabvw 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0

δtabv 0 1 2 3

- 0 0 0 0

δtabw 0 1 2 3

- 0 0 0 0

Lastly, Reduce(δ) will give us the intersection δ, which is the empty FM because σ and γ
do not share any assignments: A(δ) = {}.

Operations on Factored Mappings 23

4.3.3 Complement
Creating the complement σ of a Factored Mapping σ is pretty simple. We want A(σ) to
be equal to A(σ), where A(σ) = A(V) \ A(σ). For this, we need σ to store all assignments
that are not stored in σ. To achieve this, we only have to change the root table and swap
all zeroes and ones. Since this swap does not add any new redundancies, σ will still be
canonical and reduced, and store exactly the complement of σ.

Algorithm 9 Creating the complement of an FM σ

1: function Complement(σ)
2: for entry ∈ σtab do
3: if entry = 0 then
4: entry← 1
5: else
6: entry← 0

7: return σ

Time complexity of Complement(σ) Complement(σ) only goes through all entries
in the root table once. Its time complexity is given by O(|σtab|) = O(Tmax), where Tmax is
the maximum over all table sizes of σ.

4.3.4 Difference
Creating a Factored Mapping δ as the set difference of two FMs σ and γ requires A(δ) to
be equal to A(σ) \A(γ). Because

A(σ)\A(γ) = (A(σ)∩A(V))\A(γ) = A(σ)∩ (A(V)\A(γ)) = A(σ)∩A(γ) = A(σ)∩A(γ), 5

we can create δ by using the already known intersection and complement operations.

Algorithm 10 Creating δ as the set difference of two FMs σ and γ

1: function Difference(σ, γ)
2: γ ← Complement(γ) . see Algorithm 9
3: δ ← Intersection(σ, γ) . see Algorithm 8
4: return δ

Complement(γ) returns the FM γ with A(γ) = A(γ). Intersection(σ, γ) returns the
FM δ with A(δ) = A(σ) ∩ A(γ) = A(σ) \ A(γ). Because our operations return canonical
and reduced FMs δ is a canonical and reduced FM that stores exactly the set difference of
σ and γ.

Time complexity of Difference(σ, γ) Complement(γ) has time complexityO(Tmaxγ)

and Intersection(σ, γ) has time complexity O(n ·Tmaxσ ·Tmaxγ), where n = |V | and Tmaxσ ,
and Tmaxγ is the maximum over all table sizes of σ and γ respectively. This leads to the
time complexity of Difference(σ, γ) of O(Tmaxγ +n ·Tmaxσ ·Tmaxγ) = O(n ·Tmaxσ ·Tmaxγ).

5 Follows from the associative property of the intersection of sets.

5
Symbolic Search

To consider Factored Mappings as a knowledge compilation for symbolic search we will try to
find a reasonable symbolic search algorithm that uses FMs as a knowledge compilation. For
this, we will closely follow the algorithm from chapter B8 of the Planning and Optimization
lecture by Helmert and Röger (2020) [4]. We will call this breadth-first progression search
algorithm for a propositional planning tasks 〈V, I,O, γ〉 BfsProgression(V, I,O, γ).

Algorithm 11 Progression Breadth-first Search

1: function BfsProgression(V, I,O, γ)
2: goalStates ← Models(γ)
3: reached0 ← {I}
4: i← 0
5: loop
6: if reachedi ∩ goalStates 6= 0 then
7: return solution found
8: reachedi+1 ← reachedi ∪ Apply(reached i, O)
9: if reachedi+1 = reachedi then

10: return no solution exists
11: i← i+ 1

In the lecture this algorithm uses binary decision diagrams (BDDs) as a knowledge compi-
lation to represent sets of states S. To be a reasonable algorithm it requires that the op-
erations Models(γ), {I},∩, 6= ∅,∪, Apply(reached i, O), and = are efficiently implemented
for BDDs, which means that their time complexity has to be polynomial. We want to see
how we can use FMs as a knowledge compilation for this algorithm in a similar way. An
FM σ will represent the set of states S as a set of assignments A(σ). Since variables in FMs
can have any finite domain, we can use the same BfsProgression(V, I,O, γ) approach for
planning tasks in finite domain representation (FDR) as well.

BfsProgression The algorithm saves the initial state in reached, which will be an FM
representing the set of states S that are reachable from our initial state I. Then it appends
all states that can be reached from reached using the operations O to reached. This is
done by having reachedi+1 be the union of reachedi, and Apply(reached i, O), which is an
FM representing all newly reachable states when applying any operation from O. This is

Symbolic Search 25

repeated until the goal state is reachable, or we have no new states that can be reached.
In Apply(reached i, O), we will need to somehow store transitions s o−→ s′. We will store
these transitions by storing their state pairs 〈s, s′〉 inside of an FM. To do this, we are going
to need two FM variables v and v′ for every state variable v ∈ V . Since we always assume
the same variable set and merge tree of FMs for the operations, all FMs inside this algorithm
will have to be over the variable set Ṽ . Where Ṽ = V ∪ V ′ and every v′ ∈ V ′ is a primed
copy of v with the same domain dom(v) = dom(v′). The fixed merge tree T (Ṽ) of the FMs
ensures that any FM σ over Ṽ has a left subtree σL only over V , and a right subtree σR
only over V ′. This merge tree structure is chosen like this so we will always have an empty
FM over V ′ as the right subtree σR outside of Apply(reached i, O), where we only need the
state variables from V and do not care about the variables from V ′ used for the state pairs
〈s, s′〉.

5.1 Converting Formulas into Factored Mappings
5.1.1 Formula
All of the already visited operations allow us to convert propositional formulas φ into Fac-
tored Mappings σ, representing the models of φ. The computation from propositional formu-
las to FMs is called Formula(φ). A list of individual logic connectives for which we can use
FM operations follows. Let n = |V | be the number of variables, Dmax = maxv∈V |dom(v)|
be the maximum over the domains, and Tmaxσ and Tmaxγ be the maximum over all table
sizes of σ and γ respectively:

• For ⊥ we can use False(V): O(n ·Dmax)

• For > we can use True(V): O(n ·Dmax)

• For v we can use Atom(V, v, c): O(n ·Dmax)

• For I |= φ? we can use Includes(σ, α): O(n)

• For φ ≡ ψ? we can use Equals(σ, γ): O(n(Tmaxσ + Tmaxγ))

• For (φ ∨ ψ) we can use Union(σ, γ): O(n · Tmaxσ · Tmaxγ)

• For (φ ∧ ψ) we can use Intersection(σ, γ): O(n · Tmaxσ · Tmaxγ)

• For ¬φ we can use Complement(σ): O(Tσmax)

• For (φ ∧ ¬ψ) we can use Difference(σ, γ): O(n · Tmaxσ · Tmaxγ)

• For (φ→ ψ) we can use Union(Complement(σ),γ): O(n · Tmaxσ · Tmaxγ)

• For (φ↔ ψ) we can use Union(Intersection(σ, γ),

Intersection(Complement(σ),Complement(γ)): O(n · Tmaxσ · Tmaxγ)

Since all our operations take polynomial time, each individual logic connective also takes
polynomial time. In the Planning and Optimization lecture [4], it is discussed that converting

Symbolic Search 26

a full formula of length m into BDDs can take O(2m) time. The same is true for FMs,
because converting a formula with m nested connectives can lead to m multiplications of
polynomial time, which in the worst case results in the exponential time complexity of O(2m)

for Formula(φ).

5.1.2 Singleton
We can convert the single assignment I into a Factored Mapping σ representing {I}. We do
this by computing the conjunction of all literals in I. We use Intersection() to conjunct
all atoms for the partial assignments α : v 7→ c with α ∈ I, which we can create using
Atom(V, v, c). We call this computation Singleton(I). I has a maximum of n literals,
where n = |V |. Therefore Singleton(I) will maximally create n− 1 intersections between
n created atoms. This takes O((n − 1) · n · Tmaxi · Tmaxi+1 + n · n · Dmax) = O(n2 · Tmaxi ·
Tmaxi+1 + n2 ·Dmax) time, where Dmax = maxv∈V |dom(v)| and Tmaxi is the maximum over
all table sizes of an atoms i. Because Tmaxi ≥ Dmax, we can see that Singleton(I) has
the time complexity of O(n2 · Tmaxi · Tmaxi+1).

5.2 The Apply Function
Lastly, we need the Apply(reached,O) operation that computes the set of states (as a
Factored Mapping) that can be reached by applying some operator o ∈ O in some state
s ∈ reached, where O is the set of operators given by the planning task and reached is an
FM representing a set of states. First, we need a way to store all possible transitions from
our planning task in an FM. As in the Planning and Optimization lecture [4], we let τV (o)
be the formula that describes all transitions s o−→ s′ of a single operator o ∈ O in terms of the
variables V describing s and V ′ describing s′. Then, we can create the formula

∨
o∈O τV (o)

describing all state transitions of any operator in O. This formula can be converted to an
FM TV (O) over Ṽ with Formula(

∨
o∈O τV (o)). This conversion can take exponential time

(as seen in Section 5.1.1), but only needs to be computed once per planning task. TV (O) is
called the transition relation of the planning task and can be computed before calling the
apply function. Since Apply(reached,O) is called inside a loop of Algorithm 11, it makes
sense to compute the transition relation TV (O) outside of the loop and pass it as an input
to the apply operation instead of O. We will therefore call Apply(reached,TV (O)) instead,
which will then apply the transition relation to our reached states to see to which states
we could transition to. Since these states will be stored inside the right subtree over V ′,
we need to reorder and rename them to be stored inside the left subtree over V , so we can
use them in our new reached states as starting point for the next iteration. This is different
to BDDs, where the lecture uses a Rename and Forget operation to achieve this. But
since we want FMs to be always over the same variable set Ṽ , we need a different operation
Reorder.

Symbolic Search 27

5.2.1 Reordering and Renaming
To reorder and rename a Factored Mapping σ over Ṽ with right subtree σR over V ′ and left
subtree σL over V , we want to have the old primed variables as unprimed variables inside
the left subtree σL and the right subtree σR over the primed variables as an empty FM. This
way, FMs σ over Ṽ will always have σR as empty FM outside of the Apply(reached,TV (O))

operation. To do this, we use the algorithm Reorder(σ), which sets the left subtree of σ
as the old right subtree, renames every v′ ∈ V ′ to v ∈ V , and then sets the right subtree as
empty FM over V ′.

Algorithm 12 Reordering and renaming of σ over Ṽ

1: function Reorder(σ)
2: σL ← σR
3: for atomic FM σv′ ∈ σL with vars(σv′) = {v′} do . where v′ ∈ V ′

4: vars(σv′)← {v} . where v ∈ V is the unprimed version of v′

5: σR ← False(V ′) . see Algorithm 2
6: return σ

Time complexity of Reorder(σ) Reorder(σ) goes through all n′ = |V ′| atomic FMs
in the new σL and changes their associated variable. Then, it calls False(V ′) which has
a time complexity of O(n′ ·Dmax), where Dmax = maxv′∈V ′ |dom(v′)| = maxv∈V |dom(v)|.
Because n = |V | = |V ′| = n, Reorder(σ) has the time complexity of O(n + n ·Dmax) =

O(n ·Dmax).

Now, we can compute the apply operation using Apply(reached,TV (O)), which takes the
transition relation, describing state pairs, and conjuncts them with the set of states that are
already reached. This gives us an FM σ storing state pairs 〈s, s′〉, where s′ is a successor of
s and s ∈ reached. The states s are stored in σL over V and the states s′ in σR over V ′.
Then, we reorder σ so its right subtree over V ′ is an empty FM and the states s′ are now
stored in terms of variables v ∈ V .

Algorithm 13 Computes the set of successors of reached using the transition relation TV (O)

1: function Apply(reached,TV (O))
2: σ ← TV (O)
3: σ ← Intersection(σ, reached) . see Algorithm 8
4: σ ← Reorder(σ) . see Algorithm 12
5: return σ

Time complexity of Apply(reached,TV (O)) Apply(reached,TV (O)) calls
Intersection(σ, reached) and Reorder(σ) once. This takes O(n · Tmaxσ · Tmaxreached + n ·
Dmax) time, where Dmax = maxv∈V |dom(v)|, and Tmaxσ and Tmaxreached is the maximum
over all table sizes of σ and reached respectively. Because Tmaxσ ≥ Dmax, we can see that
Apply(reached,TV (O)) has the time complexity of O(n · Tmaxσ · Tmaxreached).

Symbolic Search 28

5.3 Symbolic Search Algorithm for Factored Mappings
Now, we have all the tools for a breadth-first progression search algorithm using Factored
Mappings as a knowledge compilation. We will revisit BfsProgression(V, I,O, γ) and
use the implemented FM operations (just like the BDD operations in the Planning and
Optimization lecture [4]) to create BfsProgFinal(V, I,O, γ). BfsProgFinal(V, I,O, γ)

uses FMs as knowledge compilation and can thus be used not only for propositional planning
tasks, but also for any FDR planning task 〈V, I,O, γ〉.

Algorithm 14 Progression breadth-first search for a FDR planning task using FMs

1: function BfsProgFinal(V, I,O, γ)
2: TV (O)← Formula(

∨
o∈O τV (o)) . see Section 5.1.1

3: goalStates ← Formula(γ) . see Section 5.1.1
4: reached0 ← Singleton(I) . see Section 5.1.2
5: i← 0
6: loop
7: if Equals(Intersection(reachedi,goalStates),False(Ṽ)) = False then
8: return solution found . see Algorithms 8,2 and 6
9: reachedi+1 ← Union(reachedi,Apply(reached i, TV (O))) . see Algorithms 7, 13

10: if Equals(reachedi+1,reachedi) then . see Algorithm 6
11: return no solution exists
12: i← i+ 1

All necessary operations are implemented efficiently with a polynomial time complexity. The
only operations with a potentially exponential time complexity are Formula(

∨
o∈O τV (o))

on line 2, Formula(γ) on line 3, and Singleton(I) on line 4. Because both Formula

calls and the Singleton(I) call only need to be computed once per planning task, this is a
reasonable symbolic search algorithm for a propositional or FDR planning task. This means
that Factored Mappings are well suited as a knowledge compilation for symbolic search.

6
Conclusion

In this thesis, we investigated Factored Mappings as a knowledge compilation language. We
have seen that it is possible to use Factored Mappings as a knowledge compilation language
for symbolic search.
We have done this by first looking for a canonical representation and have found that there
are two canonical representations assuming a fixed merge tree and value order. The first one
stores a maximum amount of different values and the second one stores a minimal amount.
We decided to use the latter for obvious space saving reasons.
We then looked at different operations for creating, querying, and transforming FMs. We
saw that all of those operations could be performed in polynomial time.
Then we looked the missing operations that are necessary for a breadth-first symbolic search
algorithm. We saw that converting a formula into an FM could take exponential time, but
the only operations inside a symbolic search algorithm that have to convert a formula to an
FM only get called once per planning task. Therefore they do not affect the breadth-first
search much, which means that we have found a reasonable symbolic search algorithm for
FMs.
This shows that Factored Mappings are a knowledge compilation language that is well suited
for symbolic search algorithms for propositional and finite-domain planning tasks.

Bibliography

[1] Randal E. Bryant. Symbolic manipulation of boolean functions using a graphical rep-
resentation. In Hillel Ofek and Lawrence A. O’Neill, editors, Proceedings of the 22nd
ACM/IEEE Design Automation Conference (DAC 1985), pages 688–694. Association
for Computing Machinery, 1985.

[2] Adnan Darwiche. SDD: A new canonical representation of propositional knowledge
bases. In Toby Walsh, editor, Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI 2011), pages 819–826. AAAI Press, 2011.

[3] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002.

[4] Malte Helmert and Gabriele Röger. Lecture: Planning and optimization. Uni-
versity of Basel, Fall Semester 2020. URL https://dmi.unibas.ch/de/studium/
computer-science-informatik/lehrangebot-hs20/lecture-planning-and-optimization/.

[5] Malte Helmert, Gabriele Röger, and Silvan Sievers. On the expressive power of non-
linear merge-and-shrink representations. In Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein, editors, Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS 2015), pages 106–114. AAAI
Press, 2015.

[6] Silvan Sievers and Malte Helmert. Merge-and-shrink: A compositional theory of transfor-
mations of factored transition systems. Accepted for publication in Journal of Artificial
Intelligence Research.

https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs20/lecture-planning-and-optimization/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs20/lecture-planning-and-optimization/

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud
beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Leonhard Badenberg

Matriculation number — Matrikelnummer

2016-055-238

Title of work — Titel der Arbeit

Factored Mappings as Knowledge Compilation for Symbolic Search

Type of work — Typ der Arbeit

Bachelor Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged
the assistance received in completing this work and that it contains no material that has
not been formally acknowledged. I have mentioned all source materials used and have cited
these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene
Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln
verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten
wissenschaftlichen Regeln zitiert.

Basel, June 7, 2021

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Definitions

	3 Canonicity
	3.1 Requirements
	3.2 Reducing Factored Mappings

	4 Operations on Factored Mappings
	4.1 Building Basic Factored Mappings
	4.1.1 False
	4.1.2 True
	4.1.3 Atom

	4.2 Boolean Tests
	4.2.1 Includes
	4.2.2 Equals

	4.3 Set Operations
	4.3.1 Union
	4.3.2 Intersection
	4.3.3 Complement
	4.3.4 Difference

	5 Symbolic Search
	5.1 Converting Formulas into Factored Mappings
	5.1.1 Formula
	5.1.2 Singleton

	5.2 The Apply Function
	5.2.1 Reordering and Renaming

	5.3 Symbolic Search Algorithm for Factored Mappings

	6 Conclusion
	Bibliography
	Declaration on Scientific Integrity

