
Operator-counting Constraints for
Implicit Abstractions

Master Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Research Group
https://ai.dmi.unibas.ch/

Examiner: Dr. Gabriele Röger
Supervisor: Clemens Büchner

Leonhard Badenberg
leonhard.badenberg@unibas.ch

2016-055-238

July 8, 2023

Acknowledgments

I want to thank my supervisor Clemens Büchner for his time and guidance. His advice and
feedback was always helpful and his patience greatly appreciated. I also want to thank Dr.
Gabriele Röger and Prof. Dr. Malte Helmert for giving me the opportunity to write my
master thesis in the artificial intelligence research group and providing me with such an
interesting topic. Furthermore, I want to thank my family and friends for giving me nothing
but encouragement and helpful advice.

Abstract

Abstractions are a common way to obtain heuristic estimates that can be used for optimal
planning. Abstractions typically preserve the transition behavior of the original state space
to explicitly search for optimal plans in the abstract state space. Implicit abstractions on the
other hand, do not preserve the transition behavior. A planning task is instead decomposed
into multiple implicit abstractions such that constraints, similar to cost partitioning, are
fulfilled.
Operator-counting constraints are constraints that must be fulfilled in every plan. They
allow us to combine different types of constraints under a linear program formulation by
using a fixed optimization function and using the result as a heuristic estimate.
In this thesis, we construct operator-counting constraints for fork abstractions. Fork ab-
stractions are concrete instances of implicit abstractions. We derive the operator-counting
constraints from the inherent cost-partition constraints of the implicit fork abstractions.
Our experimental evaluation shows that the heuristic obtained from operator-counting con-
straints for implicit fork abstractions is computationally too expensive and does not provide
a clear accuracy advantage over other operator-counting constraint based heuristics to make
up for it.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3
2.1 Classical Planning . 3
2.2 Heuristic Search and Abstractions . 5

2.2.1 Composition of Abstraction Heuristics 5
2.2.2 Optimal Cost-partitioning . 6

2.3 Operator-counting Constraints . 7
2.3.1 Cost-partitioning Constraints for Abstractions 8

3 Implicit Abstractions 10
3.1 General Idea . 10
3.2 Fork Decompositions . 12

3.2.1 Example . 14

4 Constraints for Implicit Fork Abstractions 16
4.1 Cost-partitioning Constraints . 16
4.2 Operator-counting Constraints . 20

5 Results 31
5.1 Implementation . 31
5.2 Experimental Evaluation . 32

5.2.1 Heuristic Accuracy . 33
5.2.2 Summary . 38

6 Conclusion 39
6.1 Future Work . 40

Bibliography 41

Declaration on Scientific Integrity 44

1
Introduction

Planning is an artificial intelligence task that focuses on finding solutions to planning tasks.
These solutions are called plans and describe a sequence of state-transforming actions from
an initial state to a goal. In classical planning those actions have a deterministic outcome.
The goal of optimal planning is to find optimal plans with minimal cost. One way to find
optimal plans is by guiding a search algorithm over all possible states with the help of a
heuristic that estimates how close a state is to the goal. We generally want admissible
heuristics that underestimate the true distance to the goal. When computing heuristics
there is always an accuracy-computation trade-off. Higher accuracy results in better goal
distance estimates and a faster search but require more time on the computation of the
heuristic.
A common way to generate useful heuristics that underestimate goal distances is with the
help of abstractions. Abstractions map the large state space of a planning task to a smaller
state space by abstracting the planning task into one that is easier to solve. Abstractions
preserve the transition behavior, such that every plan in the original state space is also a
plan in the abstraction. The goal distance in an abstract state space can be used as an
admissible heuristic estimate for the original state space.
Many abstraction heuristics are already well understood, such as domain abstraction heuris-
tics (Hernádvölgyi and Holte, 2000), pattern database (PDB) heuristics (Culberson and
Schaeffer, 1998, Edelkamp, 2001), merge-and-shrink (M&S) abstraction heuristics (Helmert
et al., 2007, 2014) and cartesian abstraction heuristics (Seipp and Helmert, 2013, 2018). For
abstraction heuristics to be tractable, we need to be able to compute the abstraction and
the abstract goal distances efficiently. Abstraction heuristics, that preserve the transition
behavior to explicitly search for optimal plans in the abstract state space, can only be com-
puted efficiently if the size of the abstract state space is bounded. To overcome the limitation
of these explicit abstraction heuristics, the notion of implicit abstractions was introduced by
Katz and Domshlak (2010a). Implicit abstractions no longer preserve the transition behav-
ior but only the costs between two states. This allows implicit abstractions to be a great fit
for cost-partitioning. Cost partitioning is a way to combine multiple abstraction heuristics
by partitioning the cost of the original actions over multiple abstractions such that we can
add them together admissibly, without overestimating the true goal distance.

Introduction 2

Some of the other approaches to derive and combine heuristics for optimal planning are
based on linear programming. The heuristic estimate is computed by solving a linear pro-
gram (LP) for every state. The LP optimizes an objective function over some constraints.
Pommerening et al. (2014) introduce the operator-counting framework. With this framework
we can combine different types of constraints, derived by different types of heuristics, by
using a fixed optimization function of the LP. Operator-counting constraints are not only
able to admissibly combine different heuristics but also to compare them on the basis of
their constraints.
In this thesis, we want to create operator-counting constraints for implicit abstractions to
investigate them further within the operator-counting framework. We start by giving the
necessary preliminary definitions from optimal planning that we will be using throughout
this thesis in Chapter 2. We also show how to derive operator-counting constraints from
optimal cost-partitioning constraints for explicit abstractions. In Chapter 3, we introduce
the general notion of implicit abstractions and specify concrete fork abstractions that we
will focus on in this thesis. In Chapter 4, we use optimal cost-partitioning constraints for
implicit fork abstractions to derive operator-counting constraints for them. Since a similar
construction was done for explicit abstractions we can compare some key differences between
implicit and explicit abstractions. In Chapter 5, we describe some of the design choices made
for the implementation in Fast Downward (Helmert, 2006) and compare the results to four
other operator-counting constraint based heuristics. The experimental evaluation shows
that the forward fork abstractions we implemented are computationally too expensive and
do not provide high enough heuristic accuracy to make up for it. We summarize our findings
in Chapter 6 and give possible directions for future research.

2
Background

In this chapter, we introduce some concepts and terminology from the field of cost-optimal
planning. This includes preliminary definitions of classical planning in general, heuristic
search, abstractions, operator-counting constraints, and other notation that will be used in
this thesis.

2.1 Classical Planning
In classical planning, an agent tries to find a sequence of actions, called plan, to determin-
istically change the agents world from an initial state to a goal state. We define the world
of the agent and the actions it can take by a SAS+ planning task (Bäckström and Nebel,
1995).

Definition 1 (SAS+ Planning Task). A planning task in SAS+ is given by the tuple
Π = ⟨V, I,O,G⟩ where

• V is a set of state variables v that each have a finite-domain dom(v),

• I is the initial state,

• O is a finite set of operators (also called actions) over V , and

• G is a partial assignment of V called the goal.

A (partial) assignment a of V assigns variables v ∈ V to a specific value a[v] ∈ dom(v).
A state s is a complete assignment of V and S =

∏
v∈V dom(v) is the state space of Π.1

A state s∗ is called a goal state of G iff G ⊆ s∗. An operator o, given by the tuple
o = ⟨pre(o), eff(o), cost(o)⟩, has a precondition pre(o) and effect eff(o), which are partial
assignments over V , and a cost cost(o) ∈ R+

0 .

For an assignment a, V(a) ⊆ V denotes the set of state variables that is instantiated by a.

1 We note that V is ordered. Therefore, the state space consists only of combinations of different values
the variables can take and is not influenced by different variable orders.

Background 4

Definition 2 (Applicability and Successor States). An operator o is applicable in a state
s iff pre(o) ⊆ s. Applying o in state s changes the value of each v ∈ V(eff(o)) from s[v]

to eff(o)[v] = sJoK[v] in the successor state sJoK. If there exists no v ∈ V(eff(o)) then
sJoK[v] = s[v]

The set of values of v for which an operator o can be applied is denoted by Pre(o)[v]. It is
either equal to pre(o)[v] if v ∈ V(pre(o)) or to dom(v) otherwise.

Definition 3 (Transition System). A transition system is given by the tuple T = ⟨S,L, c, T, s0, S∗⟩
where

• S is a finite set of states,

• L is a finite set of transition labels,

• c : L → R+
0 is a label cost function,

• T ⊆ S × L× S is the transition relation,

• s0 ∈ S is the initial state, and

• S∗ ⊆ S is the set of goal states.

A planning task Π = ⟨V, I,O,G⟩ induces the transition system T (Π) = ⟨S,L, c, T, s0, S∗⟩,
where

• S is the set of all states over V ,

• L is the set of operators O,

• c(o) = cost(o) for all o ∈ O,

• T = {⟨s, o, s′⟩ | s ∈ S, o applicable in s, s′ = sJoK},

• s0 = I, and

• S∗ = {s∗ ∈ S |G ⊆ s∗}.

A path is a sequence of operators that leads from one state to another following the tran-
sitions of T . Any path from a state s ∈ S to a goal state s∗ ∈ S∗ is called an s-plan. An
s-plan is just called plan if s = s0. Any s-plan with minimal cost is called optimal. In
classical planning we distinguish between satisficing planning, where the goal is to find any
valid plan, and optimal planning, where the goal is to find optimal plans. We are interested
in the latter.

Definition 4 (Causal Graph). The causal graph CG(Π) of a planning task Π = ⟨V, I,O,G⟩
is a digraph over nodes V . An arc ⟨v, v′⟩ is in CG(Π) iff v ̸= v′ and there exists an operator
o ∈ O such that v ∈ V(eff(o)) ∪ V(pre(o)) and v′ ∈ V(eff(o)). We say that ⟨v, v′⟩ is induced
by o and denote the sets of immediate successors and predecessors of v in CG(Π) by succ(v)
and pred(v), respectively.

Background 5

Definition 5 (Domain Transition Graph). The domain transition graph DTG(v,Π) of a
variable v ∈ V in a planning task Π = ⟨V, I,O,G⟩ is a digraph over the nodes dom(v). An
arc ⟨θ, θ′⟩ is in DTG(v,Π) iff θ ̸= θ′ and there exists an operator o ∈ O such that both
eff(o)[v] = θ′ and θ ∈ Pre(o)[v]. We say that ⟨θ, θ′⟩ is induced by o.

2.2 Heuristic Search and Abstractions
Heuristic search algorithms are widely used for optimal planning. They use heuristic esti-
mates of the goal distance as guidance to find an optimal plan.

Definition 6 (Heuristic). A heuristic of a transition system T = ⟨S,L, c, T, s0, S∗⟩, is a
function h : S → R+

0 ∪{∞} that maps a state s ∈ S to an estimate of its goal distance. The
true goal distance or perfect heuristic is written as h∗, where h∗(s) is equal to the optimal
s-plan or equal to infinity if no goal state can be reached from s.
A heuristic h is called admissible if for all states s: h(s) ≤ h∗(s).
Let h1 and h2 be two admissible heuristics, if h1(s) ≤ h2(s) for all s ∈ S then we say that
h2 dominates h1 as it gives a better estimate of the true goal distance h∗.

Abstractions are a way of simplifying the transition system while preserving paths to help
find admissible heuristics.

Definition 7 (Abstraction). An abstraction of a transition system T = ⟨S,L, c, T, s0, S∗⟩
is a function ⟨Tα, α⟩ where

• Tα = ⟨Sα, Lα, cα, Tα, s
0
α, S

∗
α⟩ is a transition system,

• α : S → Sα is an abstraction function, such that

– α(s0) = s0α,

– α(s∗) ∈ S∗
α for all s∗ ∈ S∗, and

– Tα = {⟨α(s), o, α(s′)⟩ | ⟨s, o, s′⟩ ∈ T}

An abstraction of a planning task Π is defined by the abstraction of its induced transition
system T (Π).

Definition 8 (Abstraction Heuristic). The abstraction heuristic hα induced by the abstrac-
tion function α : S → Sα is the function that maps each state s ∈ S to its true goal distance
h∗
Tα

(α(s)) in the abstract transition system Tα.

An abstraction heuristic for a planning task Π is defined by the abstraction heuristic for its
induced transition system T (Π).

2.2.1 Composition of Abstraction Heuristics
We want to find an admissible heuristic that exploits the information of different admissible
heuristics by combining them. We note that higher values of admissible heuristics correspond
to better estimates of the true goal distance. There are two main ways we can combine
multiple admissible abstraction heuristics stemming from different abstractions of the same

Background 6

planning task Π. The first is to take the maximum over the different heuristic values in
each state (Holte et al., 2006). This heuristic dominates its components as it always selects
the strongest one. Another way is to try to add the different heuristic values such that the
resulting heuristic is still admissible, as summing admissible heuristics is not admissible in
general. Being able to add different heuristics allows for a better combination of heuristic
that can lead to much better estimations. One way to guarantee that we can admissibly
add abstraction heuristics is through cost partitioning (Katz and Domshlak, 2008b, Yang
et al., 2008). Cost partitioning is a way to distribute the cost of a planning task Π among
its abstractions such that summing over these abstraction heuristics is guaranteed to be
admissible. For now we focus on a definition similar to the one by Seipp et al. (2017a).

Definition 9 (Cost Partitioning). Let Π = ⟨V, I,O,G⟩ be a planning task and A =

{⟨Ti, αi⟩}mi=1 be a set of abstractions of T (Π) = ⟨S,L, c, T, s0, S∗⟩. An (operator) cost
partitioning over A is a set of cost functions C = {ci}mi=1 whose sum is bounded by c:∑m

i=1 ci(o) ≤ c(o) for all o ∈ O.

Definition 10 (Cost-partitioned Heuristic). The cost-partitioned heuristic hA
C is defined as

hA
C (s) :=

∑m
i=1 h

αi
ci (s), where hαi

ci is the i-th abstraction heuristic using the partitioned cost
ci.
A cost partitioning C∗ is optimal for state s if hA

C∗(s) ≥ hA
C (s) for all cost partitionings C.

We write hOCP
A (s) for the optimal cost-partitioned value.

One simple approach to achieve such an operator-cost partitioning is to count the whole cost
of an operator, while computing a single heuristic in the ensemble, and setting the cost of that
operator to zero in all the other heuristics in the ensemble. This zero-one cost-partitioning
was, for example, exploited for pattern database heuristics (Edelkamp, 2006, Felner et al.,
2004). Another approach is to split the cost uniformly. This uniform cost partitioning was,
for example, exploited for landmarks (Karpas and Domshlak, 2009). There exist infinitely
many other approaches to partition the operator cost c(o) admissibly into real numbers
ci ∈ [0, c(o)]. The restriction of ci to take non-negative values can often be lifted, in which
case we speak of general cost-partitioning (Pommerening et al., 2015). With infinitely many
choices, the question becomes which operator-cost partitioning scheme one uses. Not all of
these are necessarily better than simply taking the maximum over the admissible heuristics,
which works entirely without supervision. Therefore, finding the optimal cost partitioning
is desirable. As the quality of each operator-cost partition varies between search states, the
optimal cost partitioning could be different for each state.

2.2.2 Optimal Cost-partitioning
Katz and Domshlak (2010b) introduced a fully unsupervised procedure to find the optimal
cost partitioning for each state. The procedure takes

• a deterministic planning task Π,

• a state s, and

• a set of admissible heuristics

Background 7

and finds the optimal operator-cost partition for s. To find the optimal operator-cost parti-
tion we have to create different linear programs that solve optimization problems. Katz and
Domshlak (2008b, 2010b) show how to derive constraints to create such linear programs.

Definition 11 (Cost-partitioning LP for Abstractions). Let Π = ⟨V, I,O,G⟩ be a planning
task and A = {⟨Ti, αi⟩}mi=1 be a set of abstractions of T (Π) = ⟨S,L, c, T, s0, S∗⟩. Let
SCTi ⊆ Ti be a subset containing all state-changing transitions ⟨s, o, s′⟩ with s ̸= s′ and
s, s′ ∈ Si. The estimate of the optimal cost-partitioning heuristic hOCP

A for A in state s ∈ S

is the objective value of the following linear program (LP) or ∞ if infeasible.

Maximize
m∑
i=1

hi(αi(s)) subject to

d(αi(s), αi(s
′)) = 0 for all 1 ≤ i ≤ m and αi(s

′) = αi(s)

d(αi(s), αi(s
′′)) ≤ d(αi(s), αi(s

′)) + ci(o) for all 1 ≤ i ≤ m and ⟨αi(s
′), o, αi(s

′′)⟩ ∈ SCTi

hi(αi(s)) ≤ d(αi(s), αi(s
∗)) for all 1 ≤ i ≤ m and αi(s

∗) ∈ S∗
i

m∑
i=1

ci(o) ≤ cost(o) for all o ∈ O,

where d(αi(s), αi(s
′)) is the cost of the cheapest path from αi(s) to αi(s

′) in Ti, and all
variables ≥ 0.

We note that obtaining an optimal general cost-partitioning, by allowing negative ci, through
this LP is only possible if we lift the restriction of ⟨αi(s

′), o, αi(s
′′)⟩ from being in SCTi to

being in Ti. Else, negative ci that are part of a cycle within Ti would not appear in hi(αi(s))

of this LP formulation and the LP would no longer be bounded if we lifted the restriction
of ci to be non-negative. However, the restriction to non-negative values of the d-variables
and the heuristic variables hi can always be lifted.

2.3 Operator-counting Constraints
Another way to admissibly combine heuristics can also be done with the help of the operator-
counting framework introduced by Pommerening et al. (2014). This framework does not
combine heuristics stemming from abstractions directly but rather combines different heuris-
tics that are based on linear programming. When the objective function is fixed, constraints
from different heuristics can be combined admissibly leading to a heuristic that is better
than maximizing over the components.

Definition 12 (Operator-counting Constraints). Let Π = ⟨V, I,O,G⟩ be a planning task,
and let s be one of its states. Let Y be a set of non-negative real valued variables consisting
of {Yo | o ∈ O}, where Yo ≥ 0 is an integer variable called operator-counting variable, and
other auxiliary variables.

Background 8

A set of linear inequalities cs over Y is called an operator-counting constraint2 for s if for
every s-plan π setting each Yo to Y π

o is a feasible variable assignment, where Y π
o is the

number of occurrences of o in π.
A constraint set C(s) is a set of operator-counting constraints for s, where the only common
variables between constraints are the operator-counting variables.

Based on these constraints Pommerening et al. (2014) define an integer or linear program.

Definition 13 (Operator-counting Integer/Linear Program). The operator-counting integer
program IPC for constraint set C is:

Minimize
∑
o∈O

cost(o) · Yo subject to C.

An operator-counting integer program IPC only allows the operator-counting variables to
take integer values, whereas the operator-counting linear program LPC is the LP-relaxation
of IPC that allows for operator-counting variables to take continuous values.

Since an optimal plan π has a number of operator occurrences that is a feasible solution to
C, the cost of an optimal plan π acts as an upper bound for the objective value of the IP,
which in turn acts as an upper bound for the objective value of the LP. This induces the
following admissible heuristic estimates.

Definition 14 (IP and LP Heuristic). The IP-heuristic hIP
C (s) is the objective value of the

integer program IPC(s). The LP-heuristic hLP
C (s) is the objective value of the linear program

LPC(s). If the programs are infeasible, a heuristic value of ∞ is used instead.

We note that adding more constraints can only make the heuristic a stronger estimate of
the true cost. Let C and C ′ be two constraint sets and C(s) ⊆ C ′(s) for all states s. Then
the IP/LP heuristic for C ′ dominates the respective heuristic for C: hIP

C (s) ≤ hIP
C′(s) and

hLP
C (s) ≤ hLP

C′ (s).

2.3.1 Cost-partitioning Constraints for Abstractions
Recall that the optimal cost-partitioning for abstractions can be derived through linear
programming. To be able to use the constraints from Definition 11 in the operator-counting
framework we have to fix the objective function and derive new operator-counting constraints
that result in the same objective value as the initial cost-partitioning.
We note that the cost-partitioning LP from Definition 11 is a maximization problem, whereas
we defined operator-counting constraints to be a minimization problem. Pommerening et al.
(2014), however, show that the dual of the cost-partitioning LP is a direct fit for the operator-
counting framework. Duality in linear programs refers to the fact that every LP has an
alternative view. A maximization LP can be formulated as a minimization LP and the
other way around. Variables and constraints swap roles and so do the objective coefficients
and bounds. The objective value of the primal view is a lower bound on the objective value

2 Not to be confused with the non-state-dependant cost function c.

Background 9

of its dual and the objective value of the dual an upper bound on its primal. If an optimal
solution exists the objective values for both views are equal.

Definition 15 (Operator-counting LP for Abstractions). The dual of the cost-partitioning
LP is given by the following LP formulated with the operator-counting constraints cOCP

i,s .

Minimize
∑
o∈O

cost(o) · Yo subject to cOCP
i,s for all 1 ≤ i ≤ m

Where the optimal cost-partitioning constraint cOCP
i,s consists of

1. a transition count inequality for each operator o ∈ O:

Yo ≥
∑

t∈SCTi
t labeled with o

Yi
t,

2. a goal inequality
∑

αi(s′)∈S∗
i

Gi(s
′) ≥ 1,

3. a transition flow inequality for all αi(s
′) ̸= αi(s):

∑
t∈SCTi

t ends in s′

Yi
t −

∑
t∈SCTi

t starts in s′

Yi
t ≥

Gi(s
′) if αi(s

′) ∈ S∗
i

0 if αi(s) /∈ S∗
i

,

where SCTi is the set of state-changing transitions as defined in Definition 11 and Gi(s
′)

denotes how often the goal state s′ is reached.

Recall that the restriction of the operator cost variables ci to be non-negative in the primal
can only be lifted when also lifting the restriction of ⟨αi(s

′), o, αi(s
′′)⟩ to be in SCTi. In

that case we can adjust the dual accordingly by also allowing t ∈ SCTi to be in Ti instead.
The inequality 1 will turn into an equality. If the restriction to non-negative values of the
d-variables and the heuristic variables hi in the primal cost-partitioning LP are also lifted,
then the inequalities 2 and 3 respectively would also turn into equalities.
The LP from Definition 15 perfectly fits the operator-counting framework and can even
be interpreted as an integer program, in which case it would give a better heuristic than
optimal-cost partitioning, although it cannot be computed in polynomial time.

3
Implicit Abstractions

In this chapter, we introduce the notion of implicit abstractions (Katz and Domshlak, 2010a).
We look at the general idea behind them and then repeat the definition of fork abstractions
according to Katz and Domshlak (2010a), for which we will create operator-counting con-
straints later.

3.1 General Idea
So far, an abstraction of a planning task Π was defined by the abstraction ⟨Tα, α⟩ of its
induced transition system T (Π). Recall from Definition 7 that each transition in the original
transition system T is preserved explicitly in Tα. Abstractions that are created in this way
can be called explicit abstractions. The corresponding explicit abstraction heuristic, that
explicitly searches for optimal plans in the abstract state space, can only be computed
efficiently if the size of the abstract space is bounded.
Motivated by the constant bound on the size of the abstract space induced by explicit
abstractions, Katz and Domshlak (2010a) introduce what they call implicit abstractions.
According to Katz (2010) the basic idea is simply not to rely on abstract problems that are
easy to solve because they are small, but instead to rely on abstract problems belonging to
provably tractable fragments of optimal planning. Therefore, implicit abstractions should
remove the requirement on the abstraction size to be small.
Implicit abstractions want to abstract a planning task Π over states S to a different planning
task Πα directly, such that the transition system does not have to be represented explicitly
and the abstraction and the induced abstraction function α : S → Sα can be computed
in polynomial time. With that in mind Katz and Domshlak (2010a) define (additive) im-
plicit abstractions that, instead of preserving the individual transitions, they pose a weaker
condition that allows to abstract over the planning task directly and is similar to the cost
partitioning.

Definition 16 (Implicit Abstraction). An implicit abstraction of a planning task Π is given
by the pair ⟨Πα, α⟩, where

• Πα = ⟨Vα, Iα, Oα, Gα⟩ is an abstract planning task implicitly inducing the abstract

Implicit Abstractions 11

transition system Tα = ⟨Sα, Lα, cα, Tα, s
0
α, S

∗
α⟩,

• α : S → Sα is an abstraction function, such that

– α(s0) = s0α, α(s
∗) ∈ S∗

α for all s∗ ∈ S∗, and,

– for all pairs of states s, s′ ∈ S it holds that

cost(α(s), α(s′)) ≤ cost(s, s′).

Implicit abstractions generalize Definition 7 by no longer preserving paths in the induced
transition system, allowing us to implicitly abstract the planning task without creating the
transition system.

Definition 17 (Additive Set of Implicit Abstractions). An additive implicit abstraction set
of a planning task Π is a set of pairs A = {⟨Πi, αi⟩}mi=1 where, for 1 ≤ i ≤ m,

• Πi = ⟨Vi, Ii, Oi, Gi⟩ is an abstract planning task inducing the abstract transition sys-
tem Ti = ⟨Si, Li, ci, Ti, s

0
i , S

∗
i ⟩,

• αi : S → Si is an abstraction function, such that

– αi(s
0) = s0i , αi(s

∗) ∈ S∗
i for all s∗ ∈ S∗, and,

– for all pairs of states s, s′ ∈ S it holds that

m∑
i=1

cost(αi(s), αi(s
′)) ≤ cost(s, s′), (3.1)

Definition 18 (Implicit Abstraction Heuristic). Let Π be a planning task over the states
S, and let A = {⟨Πi, αi⟩}mi=1 be an additive implicit abstraction set of Π and hαi(αi(s)) =

h∗
i (αi(s)) be an implicit abstraction heuristic, where h∗

i (αi(s)) is the cost of the optimal
plan for Πi. Then hA(s) =

∑m
i=1 h

αi(αi(s)) =
∑m

i=1 h
∗
i (αi(s)) is a cost-partitioned implicit

abstraction heuristic for Π.

We can see that the implicit abstraction heuristic hA(s) =
∑m

i=1 h
αi(αi(s)) is an admissible

heuristic for Π. This is because each h∗
i is an admissible heuristic for Πi, respectively, and

the condition from Equation 3.1 for the additive implicit abstraction set A = {⟨Πi, αi⟩}mi=1

ensures that the sum over those admissible heuristics is admissible, as we have already seen
in Definition 9.
Katz and Domshlak (2010a) show that calculating the implicit abstraction heuristic for an
additive implicit abstraction set A = {⟨Πi, αi⟩}mi=1 of Π is tractable, by calculating h∗

i (αi(s))

for each component. For all Πi where calculating this additive fragment is not tractable, we
can define a new additive implicit abstraction set Ai = {⟨Πi,j , αi,j⟩}mi

j=1. Each Πi,j where
calculating this additive fragment is still not tractable can be further abstracted in a similar
fashion. We continue this until we are left with only tractable additive fragments for which
we can obtain the true cost.
Because each composition A′ =

⋃m
i=1{⟨Πi,j , αi,j ◦αi⟩}mi

j=1 is an additive implicit abstraction
set of the initial planning task Π, we can tractably calculate an admissible heuristic of the

Implicit Abstractions 12

components Πi,j and Πi itself, which in turn guarantees a tractable admissible heuristic for
Π. We refer to Katz and Domshlak (2010a) for a formal proof of this claim.
We note that implicit abstraction heuristics directly correspond to tractable fragments of
optimal planning. We basically sum over m true goal distances h∗, where m is polynomial
in the description size of Π and h∗ is computable in polynomial time.

3.2 Fork Decompositions
Katz and Domshlak (2010a) specify a general framework to obtain additive implicit abstrac-
tion sets, called acyclic causal-graph decompositions. The idea is to decompose the given
planning task Π along its causal graph CG(Π). Because Π is abstracted along a subgraph
of Π’s causal graph, we obtain abstract problems with a specific structure.

Definition 19 (Causal Graph Abstractions). Let Π = ⟨V,O, I,G⟩ be a planning task, and
let G = {Gi = ⟨VGi , EGi⟩}mi=1 be a set of acyclic subgraphs of the causal graph CG(Π)

called acyclic causal-graph decomposition. An abstraction ⟨ΠGi , αi⟩ is an acyclic causal-
graph abstraction of Π over Gi if αi : S → Si is the projection mapping αi(s) = s[VGi] and
ΠGi = ⟨VGi , OGi , IGi , GGi⟩, where

• IGi
= I[VGi

], GGi
= G[VGi

],

• OGi
=

⋃
o∈O OGi

(o) where each OGi
(o) = {ov1 , . . . , ovk} is a set of operators with a

unary-effect on a variable vj ∈ {v1, . . . , vk} = V(eff(o)) ∩ VGi
with

eff(ovj)[v] =

eff(o)[vj], v = vj

unspecified, otherwise

pre(ovj)[v] =



pre(o)[vj], v = vj

pre(o)[v], ⟨v, vj⟩ ∈ EGi ∧ v ̸= V(eff(o))

eff(o)[v], ⟨v, vj⟩ ∈ EGi
∧ v = V(eff(o))

unspecified, otherwise

• For each operator o ∈ O, ∑
o′∈OGi

(o)

costGi
(o′) ≤ cost(o).

The subgraph Gi induces some topological ordering of {v1, . . . , vk} ⊆ VGi
.

We note that OGi
can be of larger size than O, and the construction of the operators in OGi

can be understood as splitting each original operator o into unary-effect operators o′ that,
when executed sequentially, act in the same way as o does in ΠGi

. The set OGi
(o) denotes

the set of unary-effect operators induced by o. As it will be useful to keep track of the effect
of a unary-effect operator o′, we also introduce the notation O[v] = {o ∈ O : v ∈ V(eff(o))}
for the set of operators that have an effect on v.

Implicit Abstractions 13

Remark. Any set of acyclic causal-graph abstractions {⟨ΠGi
, αi⟩}ni=1 with {Gi}ni=1 ⊆ G is

an additive implicit abstraction set if it fulfills the additivity constraints

n∑
i

∑
o′∈OGi

(o)

costGi
(o′) ≤ cost(o), (3.2)

where ci(o) denotes the cost of an operator o ∈ O within the i-th component of the set.

We note that if the sum of the cost over all components and unary-effect operators of an
operator o never exceeds the cost of the operator in the original task, then the condition
from Equation 3.1 must be fulfilled and {⟨ΠGi

, αi⟩}ni=1 is an additive implicit abstraction.
The concrete examples of implicit abstractions that we will be discussing in the thesis are
based on specific acyclic causal-graph decompositions, called fork decompositions. Fork
decompositions are based on two fragments of tractable cost-optimal planning (Katz and
Domshlak, 2008a) for tasks with fork and inverted-fork structured causal graphs.

Definition 20 (Forward and Inverted Forks). For a planning task Π = ⟨V,O, I,G⟩, and a
variable v ∈ V ,

1. the forward fork of Π with root v is a subgraph Gf
v of CG(Π) over nodes VGf

v
=

{v} ∪ succ(v) and edges EGf
v
= {⟨v, u⟩ |u ∈ succ(v)}, and

2. the inverted fork of Π with sink v is a subgraph Gi
v of CG(Π) over nodes VGi

v
=

{v} ∪ pred(v) and edges EGi
v
= {⟨u, v⟩|u ∈ pred(v)}.

The sets of all forward forks and inverted forks of Π are denoted by GF = {Gf
v}v∈V and

GI = {Gi
v}v∈V , respectively.

As forward forks and inverted forks are acyclic digraphs, we can see that GF and GI are
acyclic causal-graph decompositions, and so is GFI = GF ∪ GI (Katz and Domshlak,
2010a). This allows us to define the following causal-graph abstractions.

Definition 21 (Fork Abstractions). For any planning task Π = ⟨V, I,O,G⟩,

1. any acyclic causal-graph abstraction ⟨Πf
r, α

f
r⟩ of Π over Gf

r is called a forward fork
abstraction, and the set of all forward fork abstractions of Π over GF is given by
AF = {⟨Πf

v, α
f
v⟩}v∈V ;

2. any acyclic causal-graph abstraction ⟨Πi
r, α

i
r⟩ of Π over Gi

r is called an inverted fork
abstraction, and the set of all inverted fork abstractions of Π over GI is given by
AI = {⟨Πi

v, α
i
v⟩}v∈V ;

3. the set of all forward and inverted fork abstractions of Π over GFI = GF ∪ GI is
given by AFI = {⟨Πf

v, α
f
v⟩, ⟨Πi

v, α
i
v⟩}v∈V .

Any set of forward fork abstractions Af = {⟨Πf
i, α

f
i⟩}mi=1 ⊆ AF with {Gf

i}mi=1 ⊆ GF , inverted
fork abstractions Ai = {⟨Πi

i, α
i
i⟩}ni=1 ⊆ AI with {Gi

i}ni=1 ⊆ GI , and forward and inverted
fork abstractions Afi = {⟨Πf

i, α
f
i⟩}mi=1 ∪ {⟨Πi

i, α
i
i⟩}ni=1 ⊆ AFI with {Gf

i}mi=1 ∪ {Gi
i}ni=1 ⊆ GFI

is an additive implicit abstraction set if it fulfills the additivity constraints from Equation
3.2.

Implicit Abstractions 14

Furthermore, the cost-partitioned implicit abstraction heuristics hAf
, hAi

, and hAfi
are

admissible estimates of h∗ in Π.3 Even the optimal cost-partitioning for implicit abstractions
can be obtained by the linear program formulation of Katz and Domshlak (2010b). In the
next chapter we will use that formulation to create operator-counting constraints for implicit
fork abstractions.
But before that, we will take another look at the tractability of the fork abstractions.
The causal graphs of the planning tasks in {Πf

v}v∈V and {Πi
v}v∈V form directed forks and

directed inverted forks, respectively. Unfortunately optimal planning for these types of
problems is inherently hard, mainly due to root variables having large domains (Helmert,
2003, 2004). By limiting the domain of the root and sink variables, Katz and Domshlak
(2010a) are able to characterize tractable forks and inverted forks. This can be done by
arbitrarily abstracting the domain of the root r to {0, 1} within each Πf

r and by arbitrarily
abstracting the domain of the sink r to {0, 1, . . . , k} with O(1) within each Πi

r. From now on,
we always assume root variables of any forward fork abstraction ⟨Πf

r, α
f
r⟩ to have a binary

domain.

3.2.1 Example
We show how to create implicit forward fork and inverted fork abstractions on a recurring
example.
Let Π = ⟨V, I,O,G⟩ be the planning task of our example, with

• V = {a, b, c, d}, with dom(v) = {0, 1} for all v ∈ V ,

• I = {a = 0, b = 0, c = 0, d = 0},

• O = {o1, o2}, with o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ and o2 = ⟨{b = 1, d = 0}, {c = 1}⟩
with cost(o) = 1 for all o ∈ O,

• G = {a = 1, c = 1}.

We can see that the only plan of this task is given by ⟨o1, o2⟩.
To create the fork abstractions we first look at the causal graph CG(Π), given by:

a

b

c

d

We will now create the two additive implicit abstractions sets containing all forward fork
and inverted fork abstractions by decomposing the planning task along its causal graph.
We will first generate the set of all forward fork abstractions AF . For this, a forward
fork subgraph Gf

v is generated for every variable in the planning task, consisting out of the
variable and its successors. The causal graph for each forward fork can be deduced by the
outgoing edges in the causal graph CG(Π):

3 Recall that the general cost-partitioning for acyclic-causal graph abstractions, such as these fork abstrac-
tions, does not guarantee admissibility with the current construction.

Implicit Abstractions 15

a

b

b

a c

c d

c

We will now show how the abstract planning tasks Πf
r look for each forward fork abstraction.

The variables for those tasks are given by the ordered sets V f
a = {a, b}, V f

b = {b, a, c},
V f
c = {c}, and V f

a = {d, c}, respectively. The initial states I f
r and goal states Gf

r are given by
the projection of I and G over the remaining variables in V f

r . For the operator set Of
r, we

have to create new unary-effect operators Of
r(o

v) from the original operators o that affect
variables v in Πf

r:

• Of
a = {oa1 , ob1} = {⟨{ }, {a = 1}⟩, ⟨{a = 1, b = 0}, {b = 1}⟩}

• Of
b = {ob1, oa1 , oc2} = {⟨{b = 0}, {b = 1}⟩, ⟨{b = 1}, {a = 1}⟩, ⟨{b = 1}, {c = 1}⟩}

• Of
c = {oc2} = {⟨{ }, {c = 1}⟩}

• Of
d = {oc2} = {⟨{d = 0}, {c = 1}⟩}

We will now generate the set of all inverted fork abstractions AI . For this, an inverted
fork subgraph Gi

v is generated for every variable in the planning task, consisting out of the
variable and its predecessors. The causal graph for each inverted fork can be deduced by
the incoming edges in the causal graph CG(Π):

a

b

b

b d

c d

We will now show how the abstract planning tasks Πi
r look for each inverted fork abstraction.

The variables for those tasks are given by the ordered sets V i
a = {b, a}, V i

b = {b}, V i
c =

{b, d, c}, and V i
a = {d}, respectively. The initial states I i

r and goal states Gi
r are given by

the projection of I and G over the remaining variables in V i
r . For the operator set Oi

r, we
have to create new unary-effect operators Oi

r(o
v) from the original operators o that effect

variables v in Πi
r:

• Oi
a = {ob1, oa1} = {⟨{b = 0}, {b = 1}⟩, ⟨{b = 1}, {a = 1}⟩}

• Oi
b = {ob1} = {⟨{b = 0}, {b = 1}⟩}

• Oi
c = {ob1, oc2} = {⟨{b = 0}, {b = 1}⟩, ⟨{b = 1, d = 0}, {c = 1}⟩}

• Oi
d = { } = { }

With this, we have seen how to obtain the set of all forward and inverted fork abstractions
AFI . In the next chapter, we will see how to obtain an optimal cost-partitioning for AFI .

4
Constraints for Implicit Fork Abstractions

In this chapter, we use the optimal operator-cost partitioning linear program formulation
from Katz and Domshlak (2010b) for implicit abstractions to derive constraints that can be
used within the operator-counting framework.

4.1 Cost-partitioning Constraints
We have seen in Section 2.2.2 and 2.3.1 how to derive operator-counting constraints from the
linear programming formulation of operator-cost partitioning for explicit abstractions, by
using the dual formulation to turn the maximization problem into a minimization problem
(Pommerening et al., 2014).
We want to do something similar with the LP-formulation for implicit fork abstractions and
turn it from a maximization problem, calculating the optimal cost-partitioning heuristic, to
a minimization problem, fitting the operator-counting framework. First, we will see how to
obtain the initial primal cost-partitioning LP for forward fork abstractions and for inverted
fork abstractions as described by Katz and Domshlak (2010b). Then, we will see how we
can combine them by describing the composed LP. And finally, we will derive constraints
from those LPs that fit the operator-counting framework.

Definition 22 (Cost-partitioning LP for Forward Forks). Let A = {⟨Πf
i, α

f
i⟩}mi=1 ⊆ AF

be a set of forward fork abstractions of a planning task Π. The optimal cost-partitioning
heuristic hOCP

A for A in state s ∈ S is the objective value of the following LP, where r ∈ V

denotes the root variable in the i-th component and si = αf
i(s).

Maximize
m∑
i=1

hf
i(si) subject to Cadd(s) and cfi,s for all 1 ≤ i ≤ m

Where Cadd(s) are the additivity constraints
∑m

i=1

∑
o′∈Of

r(o)
ci(o

′) ≤ cost(o) for all o ∈ O,
and the forward fork constraint cfi,s consists of the following sets of linear constraints:

1. Cheapest-path constraints for each goal variable v ∈ V f
r \ {r} and each θ ∈ dom(v):

p(v, θ, θ, 0) = 0, p(v, θ, θ, 1) = 0.

Constraints for Implicit Fork Abstractions 17

Likewise, for each v-changing operator ov ∈ Of
r[v] and each θr ∈ Pre(ov)[r]:

p(v, θ, eff(ov)[v], θr) ≤ ci(o
v) +

p(v, θ, pre(ov)[v], θr) if v ∈ V(pre(ov))

0 otherwise

2. Root-sequence-induced-distance constraints for each goal variable v ∈ V f
r \ {r} and

each θ ∈ dom(v):
d(v, θ, 1) ≤ p(v, si[v], θ, σ(r)[1])

And for each θ′ ∈ dom(v) and 2 ≤ l ≤ |σ(r)|:

d(v, θ, l) ≤ d(v, θ′, l − 1) + p(v, θ′, θ, σ(r)[l])

3. Goal constraints for each goal-achieving root sequence σ∗ and each pair of r-changing
operators ⟨o, o′⟩ with o, o′ ∈ Of

r[r] and eff(o)[r] = 1− si[r] and eff(o′)[r] = si[r]:

hf
i(si) ≤

⌈
|σ∗| − 1

2

⌉
· ci(o) +

⌊
|σ∗| − 1

2

⌋
· ci(o′) +

∑
v∈V f

r\{r}

d(v,Gf
r[v], |σ∗|)

We note goal variables v ∈ V f
r \{r} are leaf variables that appear in the goal Gf

r. We note that
goal-less leaves can usually be omitted from the fork. Root sequences are binary sequences
that, starting with si[r], alternate between binary root values. The longest possible root
sequence is σ(r) with |σ(r)| = 1 +maxv∈V f

r
|dom(v)|. A partial root sequence σ ∈ σ(r) is a

goal-achieving sequence σ∗ if it ends in a root value equal to Gf
r[r].

We further note that each p-variable p(v, θ, θ′, θr) stands for the cheapest path that changes
the value of v from θ to θ′, while the root value θr is fixed. Each d-variable d(v, θ, l) stands
for the distance between the values si[v] and θ of v, given the root value is changed l − 1

times. We can think of this as a distance measure that gets access to new fixed-root paths
every time we change the root value. For now we assume that all variables ≥ 0.

We note that obtaining an optimal general cost-partitioning through this LP is not possible,
as this LP formulation would no longer be bounded if we lifted the restriction of ci to be non-
negative. However, the restriction to non-negative values of the d-variables, the p-variables
and the heuristic variables hf

i can be lifted.
To see how Definition 22 works in practice, we will create the cost-partitioning LP for the
complete set of forward fork abstractions AF = {⟨Πf

a, α
f
a⟩, ⟨Πf

b, α
f
b⟩, ⟨Πf

c, α
f
c⟩, ⟨Πf

d, α
f
d⟩} for

the initial state s0 = I = {a = 0, b = 0, c = 0, d = 0} from our recurring example. The
objective function is

Maximize hf
a(s

0
a) + hf

b(s
0
b) + hf

c(s
0
c) + hf

d(s
0
d) subject to Cadd(s0) and cfv,s0 for all v ∈ V.

The only constraints that use variables from different forward forks are the additivity con-
straints Cadd(so) given by:

ca(o
a
1) + ca(o

b
1) + cb(o

b
1) + cb(o

a
1) ≤ cost(o1) = 1

cb(o
c
2) + cc(o

c
2) + cd(o

c
2) ≤ cost(o2) = 1

Constraints for Implicit Fork Abstractions 18

The forward fork constraints cfa,s0 and cfc,s0 are simply given by:

hf
a(s

0
a) ≤ ca(o

a
1) hf

c(s
0
c) ≤ cc(o

c
2)

The forward fork constraint cfb,s0 is given by:

p(a, 0, 0, 0) = 0 p(a, 0, 0, 1) = 0 p(a, 1, 1, 0) = 0 p(a, 1, 1, 1) = 0 p(a, 0, 1, 1) ≤ cb(o
a
1)

p(c, 0, 0, 0) = 0 p(c, 0, 0, 1) = 0 p(c, 1, 1, 0) = 0 p(c, 1, 1, 1) = 0 p(c, 0, 1, 1) ≤ cb(o
c
2)

d(a, 0, 1) ≤ p(a, 0, 0, 0) d(a, 1, 1) ≤ p(a, 0, 1, 0)

d(a, 0, 2) ≤ d(a, 0, 1) + p(a, 0, 0, 1) d(a, 1, 2) ≤ d(a, 0, 1) + p(a, 0, 1, 1)

d(a, 0, 2) ≤ d(a, 1, 1) + p(a, 1, 0, 1) d(a, 1, 2) ≤ d(a, 1, 1) + p(a, 1, 1, 1)

d(a, 0, 3) ≤ d(a, 0, 2) + p(a, 0, 0, 0) d(a, 1, 3) ≤ d(a, 0, 2) + p(a, 0, 1, 0)

d(a, 0, 3) ≤ d(a, 1, 2) + p(a, 1, 0, 0) d(a, 1, 3) ≤ d(a, 1, 2) + p(a, 1, 1, 0)

d(c, 0, 1) ≤ p(c, 0, 0, 0) d(c, 1, 1) ≤ p(c, 0, 1, 0)

d(c, 0, 2) ≤ d(c, 0, 1) + p(c, 0, 0, 1) d(c, 1, 2) ≤ d(c, 0, 1) + p(c, 0, 1, 1)

d(c, 0, 2) ≤ d(c, 1, 1) + p(c, 1, 0, 1) d(c, 1, 2) ≤ d(c, 1, 1) + p(c, 1, 1, 1)

d(c, 0, 3) ≤ d(c, 0, 2) + p(c, 0, 0, 0) d(c, 1, 3) ≤ d(c, 0, 2) + p(c, 0, 1, 0)

d(c, 0, 3) ≤ d(c, 1, 2) + p(c, 1, 0, 0) d(c, 1, 3) ≤ d(c, 1, 2) + p(c, 1, 1, 0)

hf
b(s

0
b) ≤ d(a, 1, 1) + d(c, 1, 1)

hf
b(s

0
b) ≤ cb(o

b
1) + d(a, 1, 2) + d(c, 1, 2)

hf
b(s

0
b) ≤ cb(o

b
1) + d(a, 1, 3) + d(c, 1, 3)

The last forward fork constraint cfd,s0 is given by:

p(c, 0, 0, 0) = 0 p(c, 0, 0, 1) = 0 p(c, 1, 1, 0) = 0 p(c, 1, 1, 1) = 0 p(c, 0, 1, 0) ≤ cb(o
c
2)

d(c, 0, 1) ≤ p(c, 0, 0, 0) d(c, 1, 1) ≤ p(c, 0, 1, 0)

d(c, 0, 2) ≤ d(c, 0, 1) + p(c, 0, 0, 1) d(c, 1, 2) ≤ d(c, 0, 1) + p(c, 0, 1, 1)

d(c, 0, 2) ≤ d(c, 1, 1) + p(c, 1, 0, 1) d(c, 1, 2) ≤ d(c, 1, 1) + p(c, 1, 1, 1)

d(c, 0, 3) ≤ d(c, 0, 2) + p(c, 0, 0, 0) d(c, 1, 3) ≤ d(c, 0, 2) + p(c, 0, 1, 0)

d(c, 0, 3) ≤ d(c, 1, 2) + p(c, 1, 0, 0) d(c, 1, 3) ≤ d(c, 1, 2) + p(c, 1, 1, 0)

hf
d(s

0
d) ≤ d(c, 1, 1)

hf
d(s

0
d) ≤ d(c, 1, 2)

hf
d(s

0
d) ≤ d(c, 1, 3)

We note that the p-variables and d-variables are fork dependant and stand for different
variables in Πf

b and Πf
d.

Constraints for Implicit Fork Abstractions 19

Definition 23 (Cost-partitioning LP for Inverted Forks). Let A = {⟨Πi
i, α

i
i⟩}ni=1 ⊆ AI

be a set of inverted fork abstractions of a planning task Π. The optimal cost-partitioning
heuristic hOCP

A for A in state s ∈ S is the objective value of the following LP, where r ∈ V

denotes the sink variable in the i-th component and si = αi
i(s).

Maximize
n∑

i=1

hi
i(si) subject to Cadd(s) and cii,s for all 1 ≤ i ≤ n

Where Cadd(s) are the additivity constraints
∑n

i=1

∑
o′∈Oi

r(o)
ci(o

′) ≤ cost(o) for all o ∈ O,
and the inverted fork constraint cii,s consists of the following sets of linear constraints:

1. Cheapest-path constraints for each v ∈ V i
r \ {r} and each θ ∈ dom(v):

d(v, θ, θ) = 0

Likewise, for each v-changing operator ov ∈ Oi
r[v]:

d(v, θ, eff(ov)[v]) ≤ ci(o
v) +

d(v, θ, pre(ov)[v]) if v ∈ V(pre(ov))

0 otherwise

2. Goal constraints for each cycle-free path π∗ = ⟨or1, . . . , orm⟩ from si[r] to Gi
r[r] in

DTG(r,Πi
r), where orj ∈ Oi

r[r]:

hi
i(si) ≤

m∑
j=1

ci(o
r
j) +

m∑
j=0

∑
v∈V i

r\{r}

d(v, pj [v], pj+1[v])

Where p0[v] = si[v], pm+1[v] = Gi
r[v] if Gi

r[v] is specified and pm[v] otherwise, and pj [v] =

pre(oj)[v] if pre(oj)[v] is specified and pj−1 otherwise. The p-function basically describes
the value each parent v has to take along each step of the path π, such that the operators of
π can be taken and v ends up at its goal value (if defined). Each d-variable d(v, θ, θ′) stands
for the cheapest path that changes the value of v from θ to θ′ also known as the distance
between the two values. For now we assume that all variables ≥ 0.

We note that obtaining an optimal general cost-partitioning through this LP is not possible,
as this LP formulation would no longer be bounded if we lifted the restriction of ci to be
non-negative. However, the restriction to non-negative values of the d-variables and the
heuristic variables hi

i can be lifted.
To see how Definition 23 works in practice, we will create the cost-partitioning LP for the
complete set of inverted fork abstractions AI = {⟨Πi

a, α
i
a⟩, ⟨Πi

b, α
i
b⟩, ⟨Πi

c, α
i
c⟩, ⟨Πi

d, α
i
d⟩} for

the initial state s0 = I = {a = 0, b = 0, c = 0, d = 0} from our recurring example. The
objective function is

Maximize hi
a(s

0
a) + hi

b(s
0
b) + hi

c(s
0
c) + hi

d(s
0
d) subject to Cadd(s0) and civ,s0 for all v ∈ V.

The only constraints that use variables from different inverted forks are the additivity con-
straints Cadd(so) given by:

ca(o
b
1) + ca(o

a
1) + cb(o

b
1) + cc(o

b
1) ≤ cost(o1) = 1

cc(o
c
2) ≤ cost(o2) = 1

Constraints for Implicit Fork Abstractions 20

The inverted fork constraints cib,s0 and cid,s0 are simply given by:

hi
b(s

0
b) ≤ 0 hi

b(s
0
b) ≤ cb(o

b
1) hi

d(s
0
d) ≤ 0

The inverted fork constraint cia,s0 is given by:

d(b, 0, 0) = 0 d(b, 0, 1) ≤ ca(o
b
1) + d(b, 0, 0) d(b, 1, 1) = 0

hi
a(s

0
a) ≤ ca(o

a
1) + d(b, 0, 1) + d(b, 1, 1)

The last inverted fork constraint cic,s0 is given by:

d(b, 0, 0) = 0 d(b, 0, 1) ≤ cc(o
b
1) + d(b, 0, 0) d(b, 1, 1) = 0

d(d, 0, 0) = 0 d(d, 1, 1) = 0

hi
c(s

0
c) ≤ cc(o

c
2) + d(b, 0, 1) + d(b, 1, 1) + d(d, 0, 0) + d(d, 0, 0)

We note that the d-variables are fork dependant and stand for different variables in Πi
a and

Πi
c.

Definition 24 (Composed Cost-partitioning LP for Forks). The composition of an LP for
a set of forward fork abstractions {⟨Πf

i, α
f
i⟩}mi=1 ⊆ AF and an LP for a set of inverted fork

abstractions {⟨Πi
i, α

i
i⟩}ni=1 ⊆ AI is given by the following LP, where in the i-th forward fork

component si = αf
i(s) and r ∈ V denotes the root, and in the i-th inverted fork component

si = αi
i(s) and r ∈ V denotes the sink.

Maximize
m∑
i=1

hf
i(si) +

n∑
i=1

hi
i(si) subject to Cadd(s),

cfi,s for all 1 ≤ i ≤ m, and cii,s for all 1 ≤ i ≤ n

Where Cadd(s) are the additivity constraints over all fork abstractions

m∑
i=1

∑
o′∈Of

r(o)

ci(o
′) +

n∑
i=1

∑
o′′∈Oi

r(o)

ci(o
′′) ≤ cost(o) for all o ∈ O,

and the forward fork constraint cfi,s and inverted fork constraint cii,s are exactly as defined
in Definition 22 and Definition 23.
Let A = {⟨Πf

i, α
f
i⟩}mi=1 ∪ {⟨Πi

i, α
i
i⟩}ni=1 ⊆ AFI be a set of forward and inverted fork abstrac-

tions of a planning task Π. The composed optimal cost-partitioning heuristic hOCP
A in state

s ∈ S is the objective value of the composition LP of its component.

4.2 Operator-counting Constraints
To obtain the dual of the cost-partitioning LP we basically swap the roles of the variables
and constraints, and the objective coefficients and constraint bounds. The sign constraints
of the variables are dependant on the sign before the constraint bounds. It is beneficial to
look at the dual problem as its own problem and take a closer look at the new constraints
and auxiliary variables, used for the operator-counting formulation, to compare them to
other known operator-counting constraints.

Constraints for Implicit Fork Abstractions 21

Definition 25 (Operator-counting LP for Forward Forks). The operator-counting LP for
a set of forward fork abstractions A = {⟨Πf

i, α
f
i⟩}mi=1 ⊆ AF of a planning task Π is given by

the following LP formulated with operator-counting constraints cfi,s, for each ⟨Πf
i, α

f
i⟩, where

r ∈ V denotes the root variable in the i-th component and si = αf
i(s).

Minimize
∑
o∈O

cost(o) · Yo subject to cfi,s for all 1 ≤ i ≤ m

Where the forward fork constraint cfi,s makes use of the operator-counting variables, which
will be denoted as Yo, and three different types of auxiliary variables that only exist if the
corresponding constraint exists within the primal:

1. Cheapest fixed-root path variables Yi
θr
(v, θ, θ′, o) that denote how often the cheapest

path is taken that changes the variable v from θ to θ′ using operator o while the root
is at the fixed value θr, where θ, θ′ ∈ dom(v), θr ∈ dom(r), and o ∈ Of

r[v] ∪ {□}.

This auxiliary variable only exists if the path is trivial and θ = θ′ or eff(o)[v] = θ′ and
θr ∈ Pre(o)[v],

2. Distance variables induced by a partial root-sequence Yi
l(v, θ, θ

′) that denote how often
the cheapest path is taken that changes v from θ to θ′ after having changed the binary
root value l − 1 times, where θ, θ′ ∈ dom(v) and l = |σ| is the length of a partial root
sequence σ.

This auxiliary variable only exists when the partial root sequence σ changes the root
and 2 ≤ l ≤ |σ(r)| or if there is no root change (l = 1) and the path starts in the
current state si[v] = θ,

3. Goal-achieving root sequence variables Yi
σ∗
l
(o, o′) that denote how often a particular

goal-achieving root sequence σ∗
l (o, o

′) of length l, using o, o′ ∈ Of
r[r], is taken.

This auxiliary variable exists for each goal-achieving root sequence σ∗ ∈ σ(r) and each
pair of operators ⟨o, o′⟩ with o, o′ ∈ Of

r[r] and eff(o)[r] = 1− si[r] and eff(o′)[r] = si[r].
We assume these operators to always exist, as we can simply create the non-root-
changing operators o0 = ⟨{r = 0}, {r = 0}, 0⟩ and o1 = ⟨{r = 1}, {r = 1}, 0⟩.

We note that the first two auxiliary variables only exist for goal variables v ∈ V f
r \ {r}.

Goal variables and root sequences are defined just like they were in Definition 22. All of
the variables with the exception of the trivial path Yi

θr
(v, θ, θ, o) are restricted to be non-

negative.
The forward fork constraint cfi,s consists of the following sets of linear constraints over these
variables:

1. Operator count inequalities for the unary-effect operator or ∈ Of
r[r](o) and ov ∈

Of
r[v](o) for all v ∈ V f

r , where Pre(ov)[r] is the set of root values for which ov can

Constraints for Implicit Fork Abstractions 22

be applied. For each operator o ∈ O:

Yo ≥



∑
σ∗
l ∈σ(r)

∑
o′∈Of

r[r]

eff(o′)[r]=1−eff(or)[r]

⌈
l − 1

2

⌉
· Yi

σ∗
l
(or, o′) if eff(or)[r] ̸= si[r]

∑
σ∗
l ∈σ(r)

∑
o′∈Of

r[r]

eff(o′)[r]=1−eff(or)[r]

⌊
l − 1

2

⌋
· Yi

σ∗
l
(o′, or) if eff(or)[r] = si[r]

,

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov)[r]

∑
θr∈Pre(ov)[r]

Yi
θr (v, θ, eff(o

v)[r], ov),

...

Semantics: Each original operator o has to be used at least as often as its unary-root-
effect operator or is used in goal achieving root sequences and its unary-leaf-effect
operator ov is used on v-changing paths for all ov ∈ Of

r(o) \ {or}.

2. Cheapest fixed-root path inequalities for all goal variables v ∈ V f
r \ {r}, each θ, θ′ ∈

dom(v), and θr ∈ {0, 1}. Let l ≥ 1 if si[v] = θ, and l ≥ 2 otherwise:

For θ = θ′, we have:

Yi
θr (v, θ, θ,□) ≥

∑
l≤|σ(r)|

σ(r)[l]=θr

Yi
l(v, θ, θ) +

∑
o′∈Of

r[v]

pre(o′)[v]=θ
θ ̸=eff(o′)[v]
θr∈Pre(o′)[r]

Yi
θr (v, θ, eff(o

′)[v], o′)

For θ ̸= θ′, we have:∑
o∈Of

r[v]

eff(o)[v]=θ′

θr∈Pre(o)[r]

Yi
θr (v, θ, θ

′, o) ≥
∑

l≤|σ(r)|
σ(r)[l]=θr

Yi
l(v, θ, θ

′) +
∑

o′∈Of
r[v]

pre(o′)[v]=θ′

θ ̸=eff(o′)[v]
θr∈Pre(o′)[r]

Yi
θr (v, θ, eff(o

′)[v], o′)

Semantics: Each cheapest fixed-root path is used as often as it appears in all partial
root-sequence paths, where it is usable, and in all other cheapest fixed-root paths it is
guaranteed to be a part of, as they continue from its final state.

3. Root-sequence-induced-distance flow inequalities for all goal variables v ∈ V f
r \ {r},

each θ′ ∈ dom(v), and 1 ≤ l ≤ |σ(r)|:

For l = 1, we have:

Yi
1(v, si[v], θ

′)−
∑

θ∈dom(v)

Yi
2(v, θ

′, θ) ≥


∑

σ∗
1 (o,o

′) Y
i
σ∗
1
(o, o′) if θ′ = Gf

r[v]

0 otherwise

For l ≥ 2, we have:

∑
θ∈dom(v)

Yi
l(v, θ, θ

′)−
∑

θ′′∈dom(v)

Yi
l+1(v, θ

′, θ′′) ≥


∑

σ∗
l (o,o

′) Y
i
σ∗
l
(o, o′) if θ′ = Gf

r[v]

0 otherwise

Constraints for Implicit Fork Abstractions 23

Where
∑

σ∗
l (o,o

′) is defined as:∑
σ∗∈σ(r)
|σ∗|=l

∑
o∈Of

r[r]
eff(o)[r]=1−si[r]

∑
o′∈Of

r[r]

eff(o′)[r]=si[r]

Semantics: For every time variable v is changed into a value θ′ it has to be changed
out of the value θ′ again. Except if θ′ is the goal value of the variable, in which case it
has to be changed into θ′ once more than out of θ′. For l = 1 we only consider changes
from si[v] to θ′ as we always start in the initial before the first root value change.

4. A goal inequality: ∑
σ∗
l ∈σ(r)

∑
o∈Of

r[r]
eff(o)[r]=1−si[r]

∑
o′∈Of

r[r]

eff(o′)[r]=si[r]

Yi
σ∗
l
(o, o′) ≥ 1

Semantics: At least one goal-achieving root sequence is taken.

Let Cf(s) = {cfi,s}mi=1 be the set of forward fork constraints of A. The operator-counting
LP-heuristic hLP

Cf (s) is the objective value of this LP.

Recall that the restriction of the operator cost variables ci to be non-negative is necessary
for the primal to be bounded. Therefore the dual would not be feasible if this restriction was
lifted. However, the restriction to non-negative values for the p-variables, the d-variables,
and the heuristic variables hf

i in the primal cost-partitioning LP can be lifted, in which case
the inequalities 2, 3, and 4 respectively would turn into equalities. As we will see in Chapter
5, there is little practical incentive to do so.
We note that the root-sequence-induced flow inequalities provide constraints very similar
to the transition flow inequalities from Definition 15. The main difference is that we do
not measure the flow of explicit transitions but some flow of root-sequence paths, where the
root-sequence length increases when taking a step.

Proposition 1. Forward fork constraints as defined in Definition 25 are operator-counting
constraints.

Even though the constraints are very intuitive and the proposition seems to be clear, the
proof for this proposition appears to be much more difficult than anticipated. Below is an
attempt at the proof that showcases some of the general ideas necessary.

Proof. Let π = ⟨o1, . . . , om⟩ be an s-plan of length m for state s ∈ S in the original planning
task Π, and let Y π

o denote the number of occurrences of the operator o ∈ O in π. We know
that si[r] is equal to 0 or 1 within any forward fork abstraction. We assume, without loss
of generality, that si[r] = 0. Let Of

r[r = 1] denote the set of operators o with eff(o)[r] = 1

and Of
r[r = 0] denote the set of operators o with eff(o)[r] = 0. For any pair of operators

o1, o0 ∈ π with o1 ∈ Of
r[r = 1] and o0 ∈ Of

r[r = 0] we set Yσ∗
l+1

(o1, o0) = l
n , where n is the

number of times the root value is changed in π and l is the number of times the pair ⟨o1, o0⟩
was responsible for said change. We can get l by counting how often o0 appears for the first

Constraints for Implicit Fork Abstractions 24

time after o1 in π and how often o1 appears for the first time or for the first time after o0.
From this construction we can see that∑

σ∗
l ∈σ(r)

∑
o∈Of

r[r]
eff(o)[r]=1−si[r]

∑
o′∈Of

r[r]

eff(o′)[r]=si[r]

Yi
σ∗
l
(o, o′) = 1

and inequality 4 is satisfied.
For any goal variable v ∈ V f

r \ {r} let o be the operator in π that last changed v and let l be
equal to the number of times the pair ⟨o1, o0⟩ changed the root value before o last changed v.
We set Yi

l+1(v, θ, eff(o)[v]) = Yi
σ∗
l+1

(o1, o0), where θ is equal to the value v had before o1 was
applied for the first time. For different pairs ⟨o1, o0⟩, we will get different values for l or θ.
We go through all pairs like this and set all the other Yi

l(v, θ
′, θ) equal to Yi

l+1(v, θ, eff(o)[v]),
as they need to be reached first. From this we should get∑

θ′∈dom(v)

Yi
l(v, θ

′, θ)−
∑

θ∈dom(v)

Yi
l+1(v, θ, eff(o)[v]) =

∑
σ∗
l (o,o

′)

Yi
σ∗
l+1

(o1, o0)

and satisfy the inequalities 3.
For any goal variable v ∈ V f

r \ {r} let ⟨oj+1 . . . , oj+k⟩ describe a partial sequence of π

between two root-changing operators oj and oj+k+1 that does not contain any root-changing
operators. For every v-changing operator o within the first partial sequence, before the
first root change, we set Yi

0(v, θ, θ
′, o) to Yi

1(v, θ, eff(o)[v]) if we use o to change v from
initial value θ = si[v] to θ′ and it was the last change to v of the partial sequence, and
to Yi

0(v, θ, eff(o′)[v], o′) otherwise, where o′ is the next v-changing operator in the partial
sequence. For later partial sequences we set Yi

eff(oj)[r](v, θ, θ
′, o) to Yi

l+1(v, θ, eff(o)[v]) if we
use o to change v from initial value θ = si[v] to θ′ and it was the last change to v of the
partial sequence, and to Yi

eff(oj)[r](v, θ, eff(o
′)[v], o′) otherwise, where o′ is the next v-changing

operator in the partial sequence. We set all Yi
θr
(v, θ, θ,□) to 0. From this construction it

should follow that∑
o∈Of

r[v]

eff(o)[v]=θ′

θr∈Pre(o)[r]

Yi
θr (v, θ, θ

′, o) ≥
∑

l≤|σ(r)|
σ(r)[l]=θr

Yi
l(v, θ, θ

′) +
∑

o′∈Of
r[v]

pre(o′)[v]=θ′

θ ̸=eff(o′)[v]
θr∈Pre(o′)[r]

Yi
θr (v, θ, eff(o

′)[v], o′)

and the inequalities 2 are satisfied.
Through our construction (recall inequality 4) the right side of the unary-root effect in-
equality is given by ⌈ l−1

2 ⌉, as we can assume eff(o)[r] = 1 without loss of generality, which
is equal to the amount of times o is used to change the root value. The right side of each
unary-effect inequality is simply given by the amount of times o was used in all partial
sequences to change v (recall construction for inequality 2) and therefore by how often it is
used in π to change v. To satisfy the inequalities 1 we set Yo to Y π

o . As the inequalities
hold for Y π

o the inequalities are guaranteed to hold for Yo.

The LP formulation in Definition 25 is the dual of the primal cost-partitioning LP from
Definition 22 for forward forks and indeed fits the operator-counting framework perfectly.

Constraints for Implicit Fork Abstractions 25

With this we can create the operator-counting LP for the complete set of forward fork
abstractions AF = {⟨Πf

a, α
f
a⟩, ⟨Πf

b, α
f
b⟩, ⟨Πf

c, α
f
c⟩, ⟨Πf

d, α
f
d⟩} for the initial state s0 = I = {a =

0, b = 0, c = 0, d = 0} from our recurring example. The objective function is

Minimize
∑
o∈O

cost(o) · Yo subject to cfi,s for all 1 ≤ i ≤ m

The forward fork constraint cfa,s0 is given by:

Yo1 ≥ Ya
σ∗
2
(o1, o

0) Yo1 ≥ 0

Ya
σ∗
2
(o1, o

0) ≥ 1

The forward fork constraint cfb,s0 is given by:

Yo1 ≥ Yb
σ∗
2
(o1, o

0) Yo1 ≥ Yb
θr=1(a, 0, 1, o

a
1) Yo2 ≥ Yb

θr=1(c, 0, 1, o
c
2)

Yb
θr=0(a, 0, 0,□) ≥ Yb

l=1(a, 0, 0) + Yb
l=3(a, 0, 0) Yb

θr=1(a, 0, 0,□) ≥ Yb
l=2(a, 0, 0)

0 ≥ Yb
l=1(a, 0, 1) + Yb

l=3(a, 0, 1) Yb
θr=1(a, 0, 1, o

a
1) ≥ Yb

l=2(a, 0, 1)

0 ≥ Yb
l=3(a, 1, 0) 0 ≥ Yb

l=2(a, 1, 0)

Yb
θr=0(a, 1, 1,□) ≥ Yb

l=3(a, 1, 1) Yb
θr=1(a, 1, 1,□) ≥ Yb

l=2(a, 1, 1)

Yb
θr=0(c, 0, 0,□) ≥ Yb

l=1(c, 0, 0) + Yb
l=3(c, 0, 0) Yb

θr=1(c, 0, 0,□) ≥ Yb
l=2(c, 0, 0)

0 ≥ Yb
l=1(c, 0, 1) + Yb

l=3(c, 0, 1) Yb
θr=1(c, 0, 1, o

c
2) ≥ Yb

l=2(c, 0, 1)

0 ≥ Yb
l=3(c, 1, 0) 0 ≥ Yb

l=2(c, 1, 0)

Yb
θr=0(c, 1, 1,□) ≥ Yb

l=3(c, 1, 1) Yb
θr=1(c, 1, 1,□) ≥ Yb

l=2(c, 1, 1)

Yb
l=1(a, 0, 0)− Yb

l=2(a, 0, 0)− Yb
l=2(a, 0, 1) ≥ 0

Yb
l=1(a, 0, 1)− Yb

l=2(a, 1, 0)− Yb
l=2(a, 1, 1) ≥ Yb

σ∗
1
(o1, o

0)

Yb
l=2(a, 0, 0) + Yb

l=2(a, 1, 0)− Yb
l=3(a, 0, 0)− Yb

l=3(a, 0, 1) ≥ 0

Yb
l=2(a, 0, 1) + Yb

l=2(a, 1, 1)− Yb
l=3(a, 1, 0)− Yb

l=3(a, 1, 1) ≥ Yb
σ∗
2
(o1, o

0)

Yb
l=3(a, 0, 0) + Yb

l=3(a, 1, 0) ≥ 0

Yb
l=3(a, 0, 1) + Yb

l=3(a, 1, 1) ≥ Yb
σ∗
3
(o1, o

0)

Yb
l=1(c, 0, 0)− Yb

l=2(c, 0, 0)− Yb
l=2(c, 0, 1) ≥ 0

Yb
l=1(c, 0, 1)− Yb

l=2(c, 1, 0)− Yb
l=2(c, 1, 1) ≥ Yb

σ∗
1
(o1, o

0)

Yb
l=2(c, 0, 0) + Yb

l=2(c, 1, 0)− Yb
l=3(c, 0, 0)− Yb

l=3(c, 0, 1) ≥ 0

Yb
l=2(c, 0, 1) + Yb

l=2(c, 1, 1)− Yb
l=3(c, 1, 0)− Yb

l=3(c, 1, 1) ≥ Yb
σ∗
2
(o1, o

0)

Yb
l=3(c, 0, 0) + Yb

l=3(c, 1, 0) ≥ 0

Yb
l=3(c, 0, 1) + Yb

l=3(c, 1, 1) ≥ Yb
σ∗
3
(o1, o

0)

Constraints for Implicit Fork Abstractions 26

Yb
σ∗
1
(o1, o

0) + Yb
σ∗
2
(o1, o

0) + Yb
σ∗
3
(o1, o

0) ≥ 1

The forward fork constraint cfc,s0 is given by:

Yo2 ≥ Yc
σ∗
2
(o2, o

0)

Yc
σ∗
2
(o2, o

0) ≥ 1

The last forward fork constraint cfd,s0 is given by:

Yo2 ≥ Yd
θr=0(c, 0, 1, o

c
2)

Yd
θr=0(c, 0, 0,□) ≥ Yd

l=1(c, 0, 0) + Yd
l=3(c, 0, 0) Yd

θr=1(c, 0, 0,□) ≥ Yd
l=2(c, 0, 0)

Yd
θr=0(c, 0, 1, o

c
2) ≥ Yd

l=1(c, 0, 1) + Yd
l=3(c, 0, 1) 0 ≥ Yd

l=2(c, 0, 1)

0 ≥ Yd
l=3(c, 1, 0) 0 ≥ Yd

l=2(c, 1, 0)

Yd
θr=0(c, 1, 1,□) ≥ Yd

l=3(c, 1, 1) Yd
θr=1(c, 1, 1,□) ≥ Yd

l=2(c, 1, 1)

Yd
l=1(c, 0, 0)− Yd

l=2(c, 0, 0)− Yd
l=2(c, 0, 1) ≥ 0

Yd
l=1(c, 0, 1)− Yd

l=2(c, 1, 0)− Yd
l=2(c, 1, 1) ≥ Yd

σ∗
1
(o1, o0)

Yd
l=2(c, 0, 0) + Yd

l=2(c, 1, 0)− Yd
l=3(c, 0, 0)− Yd

l=3(c, 0, 1) ≥ 0

Yd
l=2(c, 0, 1) + Yd

l=2(c, 1, 1)− Yd
l=3(c, 1, 0)− Yd

l=3(c, 1, 1) ≥ Yd
σ∗
2
(o1, o0)

Yd
l=3(c, 0, 0) + Yd

l=3(c, 1, 0) ≥ 0

Yd
l=3(c, 0, 1) + Yd

l=3(c, 1, 1) ≥ Yd
σ∗
3
(o1, o0)

Yd
σ∗
1
(o1, o0) + Yd

σ∗
2
(o1, o0) + Yd

σ∗
3
(o1, o0) ≥ 1

We note that o0 = ⟨{r = 0}, {r = 0}, 0⟩ and o1 = ⟨{r = 1}, {r = 1}, 0⟩.

Definition 26 (Operator-counting LP for Inverted Forks). The operator-counting LP for
a set of inverted fork abstractions A = {⟨Πi

i, α
i
i⟩}ni=1 ⊆ AI of a planning task Π is given by

the following LP formulated with operator-counting constraints cii,s, for each ⟨Πi
i, α

i
i⟩, where

r ∈ V denotes the sink variable in the i-th component and si = αi
i(s).

Minimize
∑
o∈O

cost(o) · Yo subject to cii,s for all 1 ≤ i ≤ n

Where the inverted fork constraint cii,s makes use of the operator-counting variables, which
will be denoted as Yo, and two different types of auxiliary variables that only exist if the
corresponding constraint exists within the primal:

1. Cheapest path variables Yi(v, θ, θ′, o) that denote how often the cheapest path is taken
that changes variable v from θ to θ′ using operator o, where θ, θ′ ∈ dom(v) and
o ∈ Oi

r[v] ∪ {□}.

This auxiliary variable only exists for parent variables v ∈ V i
r \ {r}, and if the path is

trivial and θ = θ′ or eff(o)[v] = θ′.

Constraints for Implicit Fork Abstractions 27

2. Goal-achieving cycle-free path variables Yi
π∗
m

that denote how often a particular cycle-
free path π∗ ∈ P(r) of length m is taken.

This auxiliary variable exists for each cycle-free path π∗
m = ⟨or1, . . . , orm⟩ ∈ P(r), where

P(r) is the set of all cycle-free paths from si[r] to Gi
r[r] in DTG(r,Πi

r) and orj ∈ Oi
r[r].

All of the variables with the exception of the trivial path Yi(v, θ, θ,□) are restricted to be
non-negative.
The inverted fork constraint cii,s consists of the following sets of linear constraints over these
variables:

1. Operator count inequalities for the unary-effect operator ov ∈ Oi
r[v](o) for all v ∈ V i

r

and or ∈ Oi
r[r](o). For each operator o ∈ O:

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov)[v]

Yi(v, θ, eff(ov)[v], ov),

...

Yo ≥
∑

π∗
m∈P(r)

Y
π∗
m

or · Yi
π∗
m
,

where Y
π∗
m

or denotes the number of occurrences of or in π∗
m.

Semantics: Each original operator o has to be used at least as often than its unary-
parent-effect operator ov is used on v-changing paths for all ov ∈ Oi

r(o) \ {or} and at
least as often as its unary-sink-effect operator or is used in cycle-free paths from si[r]

to Gi
r[r].

2. Cheapest path inequalities for all parent variables v ∈ V i
r \{r} and each θ, θ′ ∈ dom(v):

For θ = θ′, we have:

Yi(v, θ, θ,□) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v]=θ

pj+1[v]=θ′

Yi
π∗
m
+

∑
o′∈Oi

r[v]

pre(o′)[v]=θ
θ ̸=eff(o′)[v]

Yi(v, θ, eff(o′)[v], o′)

For θ ̸= θ′, we have:∑
o∈Oi

r[v]

eff(o)[v]=θ′

Yi(v, θ, θ′, o) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v]=θ

pj+1[v]=θ′

Yi
π∗
m
+

∑
o′∈Oi

r[v]

pre(o′)[v]=θ′

θ ̸=eff(o′)[v]

Yi(v, θ, eff(o′)[v], o′)

Semantics: Each cheapest parent-changing path is used as often as it appears in all
cycle-free paths from si[r] to Gi

r[r] to change the value of the parent, such that the
path is applicable and the goal of the parent is reached afterwards, and in all other
cheapest paths it is guaranteed to be a part of, as they continue from its final state.

3. A goal inequality: ∑
π∗
m∈P(r)

Yi
π∗
m
≥ 1

Semantics: At least one cycle-free path from si[r] to Gi
r[r] is taken.

Constraints for Implicit Fork Abstractions 28

We note that we used the same p-function notation as in Definition 23: p0[v] = si[v],
pm+1[v] = Gi

r[v] if Gi
r[v] is specified and pm[v] otherwise, and pj [v] = pre(oj)[v] if pre(oj)[v]

is specified and pj−1 otherwise. It describes the value each parent v has to take along each
step of the path π, such that the operators of π can be taken and v ends up at its goal value
(if defined).
Let C i(s) = {cii,s}ni=1 be the set of inverted fork constraints of A. The operator-counting
LP-heuristic hLP

Ci (s) is the objective value of this LP.

Recall that the restriction of the operator cost variables ci to be non-negative is necessary
for the primal to be bounded. Therefore the dual would not be feasible if this restriction was
lifted. However, the restriction to non-negative values for the d-variables and the heuristic
variables hi

i in the primal cost-partitioning LP can be lifted, in which case the inequalities
2 and 3 respectively would turn into equalities.

Proposition 2. Inverted fork constraints as defined in Definition 26 are operator-counting
constraints.

Proof. Let π = ⟨o1, . . . , ol⟩ be an s-plan of length l for state s ∈ S in the original planning
task Π, and let Y π

o denote the number of occurrences of the operator o ∈ O in π. We set
Yi
π∗
m

to 1 if π∗
m is equal to the sink-changing operator sequence of π with omitted cycles and

0 otherwise. This satisfies inequality 3.
For all v ∈ V i

r we set Yi(v, θ, θ′, o) to 1 if si[v] = θ and o is the last v-changing operator in
π with eff(o)[v] = θ′ and to 0 otherwise. We further set Yi(v, θ, θ,□) to 1 if si[v] = θ. This
satisfies the inequalities 2.
We now set Yo = Y π

o . Because π∗
m is equal to the sink-changing operator sequence of π with

omitted cycles we have Y π
o ≥ Y

π∗
m

or and
∑

π∗
m∈P(r) Y

i
π∗
m
= 1 we have

Yo ≥
∑

π∗
m∈P(r)

Y
π∗
m

or · Yi
π∗
m
.

For all v ∈ V i
r we only have a non-zero variable Yi(v, θ, θ′, o) with θ ̸= θ′ and eff(o)[v] = θ′

if o was the last v-changing operator and therefore part of the plan. This gives us

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov)[v]

Yi(v, θ, eff(ov)[v], ov)

and therefore all inequalities hold.

The LP formulation in Definition 26 is the dual of the primal cost-partitioning LP from
Definition 23 for inverted forks and indeed fits the operator-counting framework perfectly.
With this we can create the operator-counting LP for the complete set of inverted fork
abstractions AI = {⟨Πi

a, α
i
a⟩, ⟨Πi

b, α
i
b⟩, ⟨Πi

c, α
i
c⟩, ⟨Πi

d, α
i
d⟩} for the initial state s0 = I = {a =

0, b = 0, c = 0, d = 0} from our recurring example. The objective function is

Minimize
∑
o∈O

cost(o) · Yo subject to cii,s for all 1 ≤ i ≤ n

The inverted fork constraint cia,s0 is given by:

Yo1 ≥ Ya(b, 0, 1, ob1) Yo1 ≥ Ya
π∗
1

Constraints for Implicit Fork Abstractions 29

Ya(b, 0, 0,□) ≥ Ya(b, 0, 1) Ya(b, 0, 1, ob1) ≥ Ya
π∗
1

0 ≥ 0 Ya(b, 1, 1,□) ≥ Ya
π∗
1

Ya
π∗
1
≥ 1

The inverted fork constraint cib,s0 is given by:

Yo1 ≥ Yb
π∗
1

Yb
π∗
0
+ Yb

π∗
1
≥ 1

The inverted fork constraint cic,s0 is given by:

Yo1 ≥ Yc(b, 0, 1, ob1) Yo2 ≥ Yc
π∗
1

Yc(b, 0, 0,□) ≥ Yc(b, 0, 1) Yc(b, 0, 1, ob1) ≥ Yc
π∗
1

0 ≥ 0 Yc(b, 1, 1,□) ≥ Yc
π∗
1

Yc(d, 0, 0,□) ≥ 2 · Yc
π∗
1

0 ≥ 0

0 ≥ 0 Yc(d, 1, 1,□) ≥ 0

Yc
π∗
1
≥ 1

The last inverted fork constraint cid,s0 is given by:

Yd
π∗
0
≥ 1

We note that Yi
π∗
m

is unique for each length m in our example. Otherwise we would have
to add a notation to differentiate between different paths of same length within an inverted
fork.

Definition 27 (Composed Operator-counting LP for Forks). The composition of an LP for
a set of forward fork abstractions {⟨Πf

i, α
f
i⟩}mi=1 ⊆ AF and an LP for a set of inverted fork

abstractions {⟨Πi
i, α

i
i⟩}ni=1 ⊆ AI is given by the following LP, where in the i-th forward fork

component si = αf
i(s) and r ∈ V denotes the root, and in the i-th inverted fork component

si = αi
i(s) and r ∈ V denotes the sink.

Minimize
∑
o∈O

cost(o) · Yo subject to cfi,s for all 1 ≤ i ≤ m and cii,s for all 1 ≤ i ≤ n

Where the forward fork constraint cfi,s and inverted fork constraint cii,s are exactly as defined
in Definition 25 and Definition 26.
Let A = {⟨Πf

i, α
f
i⟩}mi=1 ∪ {⟨Πi

i, α
i
i⟩}ni=1 ⊆ AFI be a set of forward and inverted fork abstrac-

tions of a planning task Π. Let Cfi(s) = Cf(s)∪C i(s) be the set of forward fork and inverted
fork constraints of A. The composed operator-counting LP-heuristic hLP

Cfi(s) is the objective
value of the composed LP and dominates hLP

Cf and hLP
Ci .

Constraints for Implicit Fork Abstractions 30

Remark. Because forward fork constraints and inverted fork constraints are both operator-
counting constraints, the combined constraint set Cfi(s) = Cf(s) ∪ C i(s) is, by definition, a
set of operator-counting constraints.

5
Results

In this chapter, we discuss some of the design choices that were made for the implementation
of operator-counting constraints for implicit fork abstractions in Fast Downward (Helmert,
2006). We then show some experimental results that highlight how expensive their compu-
tation and how accurate the resulting heuristic is.

5.1 Implementation
We implemented the implicit forward fork constraints derived in Chapter 4 in Fast Down-
ward. We focused on the forward fork constraints as they do not need paths over the domain
transition graph of the sink DTG(r,Π), like the inverted forks do. We implemented both,
the cost-partitioning and the operator-counting constraints, to ensure that the constraints
we derived were indeed correct and yielded the same objective value when solving the LP.
We implemented the forward fork operator-counting constraints Cf directly within the al-
ready existing operator-counting framework, such that it could be easily combined with,
and tested against, other operator-counting constraints.

Design Choices We mainly followed the description in Chapter 3 to create forward fork
abstractions for a planning task Π. We could create forward fork abstractions for any set of
variables in V but, as we have not looked in detail at what the characteristics of a good set
of fork abstractions is, decided to create them for all variables in V and only omit forward
fork abstractions from our set if they are clearly of no use. Therefore, we only excluded
fork abstractions that contained no goal variables from our set. We abstracted the root
domain to binary values by randomly mapping values ≥ 2 to values in {0, 1}. The other
considerations for the mapping were to alternate between 0 and 1 and to map the first half
of the domain to 0 and the second half to 1. To avoid implicit biases, we decided to go with
the random mapping. It is likely that the other mappings would perform much better for
certain planning tasks. When looking at the operator-counting constraints from Definition
25, it is worth to note that we can only achieve root sequences of length l ≥ 2 if at least one
unary root-effect operator o ∈ Of

r[r] exists, with eff(o) = 1− si[r], and we can only achieve
root sequences of length l ≥ 3 if at least one pair o, o′ ∈ Of

r[r] exists, with eff(o) = 1−eff(o′).

Results 32

Therefore, we decided to only generate constraints for root sequences of longer length if those
operators actually exist. We also implemented a more generalized version of the operator-
counting constraints that allow for most of the variables in the primal cost-partitioning view
to no longer be restricted to non-negative values, to see the effect that this can have. In the
experimental evaluation that follows, we will see that this only increases the computational
cost with no benefit to the heuristic and are focusing on the original constraints as described
in Definition 25. It is important to note, however, that the constraints of the generalized
version are not constraints for a general cost-partitioning, as we are still not allowing the
costs ci to take negative values. Their verdict is still open.

5.2 Experimental Evaluation
We tested our implementation of the operator-counting LP heuristic obtained for implicit
forward forks in version 22.12 of the Fast Downward planner (Helmert, 2006) with CPLEX
22.1.1 as LP solver. We consider a benchmark set consisting of all 1827 planning tasks
without conditional effects from the optimal sequential tracks of the International Planning
Competitions 1998–2018. We use Lab (Seipp et al., 2017b) for running our experiments. All
experiments are conducted on Intel Xeon Silver 4114 processors running on 2.2 GHz with a
time limit of 30 minutes and a memory limit of 3.5 GB. The calculations were performed at
sciCORE (http://scicore.unibas.ch/) scientific computing center at University of Basel.
We compare the operator-counting constraints obtained for implicit forward forks to four
other types of operator-counting constraints, already implemented in Fast Downward:

• Delete Relaxation Constraints (Imai and Fukunaga, 2015),

• LM-Cut Landmark Constraints (Bonet, 2013, Pommerening et al., 2014),

• Post-Hoc Optimization Constraints (Pommerening et al., 2013),

• State Equation Constraints (Bonet, 2013, Pommerening et al., 2014, Van Den Briel
et al., 2007).

We denote the LP heuristic hLP
C corresponding to the operator-counting LP obtained from

those constraints with Delete Relaxation, LM-Cut, Post-Hoc, and State Equation,
respectively. The operator-counting LP heuristic obtained for implicit forward forks is de-
noted by Implicit. We note that 56 619 out of 173 555 fork abstractions did not contain
any goal variables and were therefore not created. We compare these different heuristics by
executing an A∗ search with them on our benchmark set of 1827 planning tasks.

Results 33

Success Out-of-Memory Out-of-Time
Implicit 281 637 894
Implicit-General 274 650 888
Delete Relaxation 577 207 1027
LM-Cut 909 0 901
Post-Hoc 748 2 1058
State Equation 770 0 1041

Table 5.1: Coverage comparison of all 1827 planning tasks. The winner of each category
is highlighted in bold. We note that the reason for Implicit-General having the lowest
out-of-time error is due to it running out of memory for those tasks before running out of
time.

We can see the coverage of the different operator-counting heuristics in Table 5.1. Implicit-
General is the operator-counting heuristic for implicit forward forks, where we lift the
restriction of all non-cost variables in the primal view to be positive. We found the heuristic
value of these more generalized fork constraints to be the equal to the restricted one. As
they seem to be computationally more expensive and run out of memory more often, lifting
those restrictions does not seem worth it. The question if a general-cost partitioning, where
also the restriction on the cost variables of the primal view is lifted, is possible and useful,
remains. We further note that LM-Cut performs the best, coverage wise, and Implicit
the worst.
We are generating constraints exponential to the variables and their domains, which is
what makes the computation so expensive. That is why the domain abstraction of the root
was crucial in making the forks tractable at all. Another limiting factor for the coverage
of implicit fork constraints is the fact that all operator-counting constraints generated are
state dependant and have to be generated at every step of the search. For the

5.2.1 Heuristic Accuracy
We will now compare the accuracy of two heuristics, by comparing them directly and with
its combined heuristic, which is the operator-counting heuristic that uses the combined
constraint sets of the two. To compare the accuracy of heuristics, we look at the initial h-
value, which is the value obtained for the initial state of a planning task, and the expansions
until last jump, which is the number of state expansions before the last f -layer of A∗, from
which on the true goal distance h∗ is used. Since the heuristics compared are all admissible,
higher h-values are preferred, whereas less expansions until last jump are preferred, as that
means that the heuristic estimate manages to match h∗ sooner.

Results 34

Figure 5.1: Number of expansions before the last f -layer. The tasks in which Delete
Relaxation needs to expand less states are below the diagonal, the tasks in which Implicit
expands less are above. Tasks on the right edge were not solved by Implicit before running
out of memory/time. Tasks lying on the x- and y-axis show tasks where Delete Relaxation
and Implicit, respectively, had the perfect estimate for the initial state.

Implicit Delete Relaxation Combined
Implicit − 270 0
Delete Relaxation 493 − 0
Combined 172 411 −

Table 5.2: Comparison of the initial h-value. We compare the row heuristic to the column
heuristic and denote in each cell for how many tasks it yields a higher value in the initial
state. The winner of each pairwise comparison is highlighted in bold.

Implicit vs Delete Relaxation We can see from Table 5.2 that the combined heuristic
dominates its component as it should. Even though the Delete Relaxation beats the
Implicit heuristic in more tasks, the combined heuristic beats Delete Relaxation more
often than Implicit. This is interesting, as this is not the case for any of the other operator-
counting constraints and means that Delete Relaxation seems to benefit more for its initial
estimate from the combination with Implicit than the other way around.
We can see in Figure 5.1 that Delete Relaxation expands less states than Implicit before
the last f -layer. While Delete Relaxation might give a better estimate than Implicit
on average, for a few tasks Implicit estimates h∗ perfectly in the initial state and Delete

Results 35

Relaxation still needs to expand a lot of states. We note that there are even tasks that were
solved by Implicit but not by Delete Relaxation. Because the number of expanded states
for different tasks seem to differ the most between the two, as we can see from comparing
the spread of the different figures, combining them will be very beneficial.

Figure 5.2: Number of expansions before the last f -layer for LM-Cut and Implicit.

Implicit LM-Cut Combined
Implicit − 135 0
LM-Cut 903 − 0
Combined 958 208 −

Table 5.3: Pairwise comparison of the initial h-value.

Implicit vs LM-Cut We can see from Table 5.3 and Figure 5.2 that LM-Cut completely
outperforms Implicit on all fronts. Not only does it derive higher initial h-values but it
also expands less states before the last f -layer for more planning tasks. Implicit would
benefit way more from a combination with LM-Cut than the other way around. It is worth
mentioning, however, that there are tasks for which Implicit estimates h∗ perfectly in the
initial state and LM-Cut does not find a solution.

Results 36

Figure 5.3: Number of expansions before the last f -layer for Post-Hoc and Implicit.

Implicit Post-Hoc Combined
Implicit − 313 0
Post-Hoc 486 − 0
Combined 525 484 −

Table 5.4: Pairwise comparison of the initial h-value.

Implicit vs Post-Hoc Among all the operator-counting constraints we compared, the
Post-Hoc heuristic accuracy is the closest match to the accuracy of Implicit. We can see
in Figure 5.3 that they expand a similar amount of states before the last f -layer for most
tasks and have fewer outliers between them than between Implicit and any of the other
operator-counting constraints.
We can see in Table 5.4 that, when comparing the initial h-value, Impicit is much more
competitive with Post-Hoc than with the other operator-counting constraints, as it loses
to it the least. Combining the heuristics seems to benefit the initial estimate of Post-Hoc
almost as often as it benefits Implicit.

Results 37

Figure 5.4: Number of expansions before the last f -layer for State Equation and Implicit.

Implicit State Equation Combined
Implicit − 396 0
State Equation 570 − 0
Combined 714 619 −

Table 5.5: Pairwise comparison of the initial h-value.

Implicit vs State Equation Implicit beats State Equation in more tasks than any
other operator-counting heuristic when comparing initial h-values as well as expansions
before until last jump.
We can see in Figure 5.4 that for most tasks State Equation still expands less states
before the last f -layer than Implicit. We note, however, that the tasks where Implicit
expands less states lie not as close to the diagonal as it was the case in other comparisons.
That means that on those tasks Implicit beats State Equation by more than just a small
margin. The spread also suggests that combining the heuristics could be very beneficial.
As we can see from Table 5.5, when it comes to the initial h-value, State Equation is
indeed the heuristic that benefits the most from a combination with Implicit, and the
initial estimate of Implicit benefits even more.

Results 38

5.2.2 Summary
We have seen that the Implicit heuristic is computationally very expensive, especially for
problems with many variables and large domains.
The Implicit heuristic is beaten by all other operator-counting heuristics when it comes to
the h-value in the initial state, with the closest match being the Post-Hoc heuristic.
When it comes to the number of expanded states before the last f -layer, Implicit seems to
be much more competitive with the other operator-counting constraints, only being clearly
beaten by LM-Cut.
We can see, that the Implicit heuristic is not the best at estimating the goal distance for
the initial state, even though it made perfect estimates for some tasks where others did not,
but improves quite a lot when it gets closer to a goal state.
None of the operator-counting heuristics completely dominates the Implicit heuristic, in
the initial h-value or the expansions until last jump, although LM-Cut outperforms it
in almost all ways. This means that combining the operator-counting heuristics with the
Implicit heuristic is, at least theoretically, always useful. We can see that the combination
with the Implicit heuristic is especially helpful in reducing the number of expanded states
before the last f -layer. The operator-counting heuristic that would benefit the most from
a combination with Implicit are Delete Relaxation (for expansions until last jump) and
State Equation (for initial h-value). In practice, however, combining operator-counting
constraints C with operator-counting constraints for implicit fork abstractions Cf increases
the computation by too much for the trade-off, of getting a better heuristic estimate, to be
worth it.

6
Conclusion

In this thesis, we have created operator-counting constraints for implicit abstractions and
investigated them within the operator-counting framework by comparing them to other
operator-counting constraints.
We have done this by introducing fork abstractions (Katz and Domshlak, 2008a, 2010a) as
concrete instances of implicit abstractions and looking at the linear program formulation of
the optimal cost-partitioning for them (Katz and Domshlak, 2008b, 2010b). We then used
the cost-partitioning constraints, from the linear program formulation, to derive operator-
counting constraints for forward fork and inverted fork abstractions, respectively. To do
this, we have made use of the duality of linear programs (LP) to create the duals of the
cost-partitioning LPs, and we have shown that those dual LPs are a fit for the operator-
counting framework. We have also seen how to compose the constraints for forward fork
and inverted fork abstractions. We have seen for the derived operator-counting constraints
for implicit abstractions that there are similarities between the path constraints of inverted
fork abstractions and forward fork abstractions, as well as similarities between the flow con-
straints of forward fork abstractions and the flow constraints derived from cost-partitioning
constraints of explicit abstractions.
We implemented the operator-counting constraint heuristic for forward fork abstractions
in Fast Downward (Helmert, 2006) and compared them to four other types of operator-
counting constraints. The experimental evaluation shows that the accuracy of the heuristic
is subpar in its initial estimate but seems to improve the closer a search gets to a goal
state. Although LM-Cut constraints (Bonet, 2013, Pommerening et al., 2014) seem to beat
implicit forward fork constraints on all fronts, it is never fully dominated. Because of this,
combining other operator-counting constraints with implicit forward fork constraints can, in
theory, considerably improve the heuristic estimate. In practice, however, implicit forward
forks have shown to be computationally too expensive to make the accuracy-computation
trade-off beneficial.

Conclusion 40

6.1 Future Work
One of the main questions for future work is how to make the computation more efficient. For
the cost-partitioning constraints of implicit fork abstractions it is possible to precompute
some of the constraints that are shared between states and store them in some form of
database to speed up the computation (Katz and Domshlak, 2010a). Because the operator-
counting constraints for fork abstractions are all state dependant and have to be computed
individually for every state, we have to look for different ways to make them more applicable
in practice.
The other two main factors causing the computation to be so expensive, is the fact that
it creates constraints exponential to the number of variables and domain size. Therefore
limiting the amount of fork abstractions we use for the computation and their domains can
play a substantial role in making them easier to compute. As we do not want to sacrifice
heuristic accuracy, it is important to come up with a notion to describe useful forks, that
should always be created, and irrelevant forks, that can be omitted without much decrease in
accuracy. We have already discussed very basic concepts of irrelevant forks but there are still
a lot more insights to be gained on how to best select a set of fork abstractions for a planning
task. It would also be interesting to see if there are ways to combine forward and inverted
fork abstractions such that a minimal amount of computation is repeated and a maximal
increase in accuracy is achieved. Another area where we could decrease the computation
cost is by abstracting more than just the root domain or coming up with methods that
abstract the root domain of each planning task in an optimal manner.
Future work might also include the search for other types of usable implicit abstractions
that are not directly based on fork decompositions.
The last interesting question from this thesis remaining open for future research is how a
general cost-partitioning for implicit abstractions would look. We saw that the constrains
as they are described in this thesis do not allow for a general cost-partitioning. In theory,
however, there is nothing preventing the modification of those constraints in such a way that
they allow for general cost-partitioning. One of the requirements for such constraints will
likely be that path-costs for non-goal leaf variables for forward forks have to be included.
Constraints for general cost-partitioning will therefore likely be even more expensive to
compute than the current constraints. If they achieve a favourable accuracy-computation
trade-off remains to be seen.

Bibliography

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Compu-
tational Intelligence, 11(4):625–655, 1995.

Blai Bonet. An admissible heuristic for sas+ planning obtained from the state equation. In
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,
pages 2268–2274, 2013.

Joseph C Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

Stefan Edelkamp. Planning with pattern databases. In Proceedings of the Sixth European
Conference on Planning (ECP-01), pages 13–24, 2001.

Stefan Edelkamp. Automated creation of pattern database search heuristics. pages 35–50,
2006.

Ariel Felner, Richard E Korf, and Sarit Hanan. Additive pattern database heuristics. Journal
of Artificial Intelligence Research, 22:279–318, 2004.

Malte Helmert. Complexity results for standard benchmark domains in planning. Artificial
Intelligence, 143(2):219–262, 2003.

Malte Helmert. A planning heuristic based on causal graph analysis. In Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling, pages
161–170, 2004.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, et al. Flexible abstraction heuristics for
optimal sequential planning. In Proceedings of the Seventeenth International Conference
on Automated Planning and Scheduling, pages 176–183, 2007.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored state spaces. Journal of the ACM,
61(3):1–63, 2014.

István T Hernádvölgyi and Robert C Holte. Experiments with automatically created
memory-based heuristics. In International Symposium on Abstraction, Reformulation,
and Approximation, pages 281–290. Springer, 2000.

Bibliography 42

Robert C Holte, Ariel Felner, Jack Newton, Ram Meshulam, and David Furcy. Maximizing
over multiple pattern databases speeds up heuristic search. Artificial Intelligence, 170
(16-17):1123–1136, 2006.

Tatsuya Imai and Alex Fukunaga. On a practical, integer-linear programming model for
delete-free tasks and its use as a heuristic for cost-optimal planning. Journal of Artificial
Intelligence Research, 54:631–677, 2015.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In IJCAI,
pages 1728–1733. Pasadena, CA, 2009.

Michael Katz. Implicit abstraction heuristics for cost-optimal planning. Research thesis,
Senate of the Technion - Israel Institute of Technology, Av, 5770 Haifa, Israel, 2010. URL
https://fai.cs.uni-saarland.de/katz/PHD/MichaelKatzPhD.pdf.

Michael Katz and Carmel Domshlak. Structural patterns heuristics via fork decomposition.
In Proceedings of the Eighteenth International Conference on Automated Planning and
Scheduling, pages 182–189, 2008a.

Michael Katz and Carmel Domshlak. Optimal additive composition of abstraction-based
admissible heuristics. In Proceedings of the Eighteenth International Conference on Au-
tomated Planning and Scheduling, pages 174–181, 2008b.

Michael Katz and Carmel Domshlak. Implicit abstraction heuristics. Journal of Artificial
Intelligence Research, 39:51–126, 2010a.

Michael Katz and Carmel Domshlak. Optimal admissible composition of abstraction heuris-
tics. Artificial Intelligence, 174(12-13):767–798, 2010b.

Florian Pommerening, Gabriele Röger, and Malte Helmert. Getting the most out of pattern
databases for classical planning. International Joint Conference on Artificial Intelligence,
pages 2357–2364, 2013.

Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. Lp-based heuristics
for cost-optimal planning. In Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, pages 226–234, 2014.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pages 3335–3341, 2015.

Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian abstraction refinement.
In Proceedings of the Twenty-Third International Conference on Automated Planning and
Scheduling, pages 347–351, 2013.

Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Research, 62:535–577, 2018.

https://fai.cs.uni-saarland.de/katz/PHD/MichaelKatzPhD.pdf

Bibliography 43

Jendrik Seipp, Thomas Keller, and Malte Helmert. Narrowing the gap between saturated
and optimal cost partitioning for classical planning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages 3651–3657, 2017a.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward Lab.
https://doi.org/10.5281/zenodo.790461, 2017b.

Menkes Van Den Briel, J Benton, Subbarao Kambhampati, and Thomas Vossen. An lp-based
heuristic for optimal planning. In Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming (CP 2007), pages 651–665. Springer,
2007.

Fan Yang, Joseph Culberson, Robert Holte, Uzi Zahavi, and Ariel Felner. A general theory of
additive state space abstractions. Journal of Artificial Intelligence Research, 32:631–662,
2008.

https://doi.org/10.5281/zenodo.790461

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud
beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Leonhard Badenberg

Matriculation number — Matrikelnummer

2016-055-238

Title of work — Titel der Arbeit

Operator-counting Constraints for Implicit Abstractions

Type of work — Typ der Arbeit

Master Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged
the assistance received in completing this work and that it contains no material that has
not been formally acknowledged. I have mentioned all source materials used and have cited
these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene
Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln
verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten
wissenschaftlichen Regeln zitiert.

Basel, July 8, 2023

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Classical Planning
	2.2 Heuristic Search and Abstractions
	2.2.1 Composition of Abstraction Heuristics
	2.2.2 Optimal Cost-partitioning

	2.3 Operator-counting Constraints
	2.3.1 Cost-partitioning Constraints for Abstractions

	3 Implicit Abstractions
	3.1 General Idea
	3.2 Fork Decompositions
	3.2.1 Example

	4 Constraints for Implicit Fork Abstractions
	4.1 Cost-partitioning Constraints
	4.2 Operator-counting Constraints

	5 Results
	5.1 Implementation
	5.2 Experimental Evaluation
	5.2.1 Heuristic Accuracy
	5.2.2 Summary

	6 Conclusion
	6.1 Future Work

	Bibliography
	Declaration on Scientific Integrity

