Generalization of Cycle-Covering Heuristics

Master's Thesis Presentation

Generalization of
Cycle-Covering Heuristics

Clemens Buchner

Department of Mathematics and Computer Science
University of Basel

May 14, 2020

\I/
X< University
AI% of Basel

Generalization of Cycle-Covering Heuristics

L introduction

DMI Spiegelgasse

Generalization of Cycle-Covering Heuristics

L introduction

QOutline

Background
Cycle-covering heuristic

Experimental results

Generalization of Cycle-Covering Heuristics
LBackgrol.md

Background

Generalization of Cycle-Covering Heuristics

L Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)
A planning task is a 4-tuple T = (V, 50,7, A) with

@ Hp

Generalization of Cycle-Covering Heuristics

L Background

Planning

Simplistic world model for specific problem purposes:
Definition (planning task)

A planning task is a 4-tuple T = (V, 50,7, A) with
a finite set of variables V to describe each world state,

@ Hp

Generalization of Cycle-Covering Heuristics

L Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)
A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,

the initial state sp,

d <

Toc ToB

Generalization of Cycle-Covering Heuristics
LBackground

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)
A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,

the initial state sp,

the goal condition 7, and

E s

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

' <

Toc ToB

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

B — Te
move(A, B) -B

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

B — Te
move(A, B) -B

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

move(B, C)

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

move(B, C)

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

To C

move(C, A)

Generalization of Cycle-Covering Heuristics
L Background
4

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple 7 = (V, 50,7, A) with
a finite set of variables V to describe each world state,
the initial state sp,

the goal condition ~y, and

a finite set of actions A to transition between states.

move(A, B)

d

To C

State Space and Heuristic Search

l
i B 8

move(A, B)

B >\ /i B

move(A, C)

move(B, C) move(C, B)

ot gy @)

move(C, B) move(B, C)

(Bres B) B Al

Generalization of Cycle-Covering Heuristics
LBackground

Landmarks

Properties that must hold along all plans:

move to B to pick up yellow package
move to C to deliver yellow package

the blue package induces the same landmarks

g
ToC

Generalization of Cycle-Covering Heuristics
LBackground

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let 7 = (V, s, G, .A) be a planning task and let s be a state of 7.
A disjunctive action landmark of s is a non-empty set of actions £ C A such
that every s-plan contains an action a € /.

d <

Toc ToB

Generalization of Cycle-Covering Heuristics
LBackground

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let 7 = (V, s, G, .A) be a planning task and let s be a state of 7.
A disjunctive action landmark of s is a non-empty set of actions £ C A such
that every s-plan contains an action a € /.

in example: {move(A, B), move(C, B)} and {move(A, C), move(B, C)}

d <

Toc ToB

Generalization of Cycle-Covering Heuristics
LBackground

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let 7 = (V, s, G, .A) be a planning task and let s be a state of 7.
A disjunctive action landmark of s is a non-empty set of actions £ C A such
that every s-plan contains an action a € /.

in example: {move(A, B), move(C, B)} and {move(A, C), move(B, C)}

landmark generation is not the topic of this thesis

d <

Toc ToB

Generalization of Cycle-Covering Heuristics
LBackground

Landmark Heuristic AtM

one action from each landmark must be part of every plan
minimum hitting set approach
cheapest set of actions that hits each landmark

solve with linear programming

min Z Y, - cost(a) s.t.
acA
Y,>0 forallae A and

Zvaz1 forall ¢ € L
act

this corresponds to the operator-counting framework

use objective value as heuristic estimate

Generalization of Cycle-Covering Heuristics
LBackground

Landmark Orderings

Landmark orderings denote dependencies between landmarks.
natural orderings must hold along all plans
e.g., impossible to unload package before loaded
reasonable orderings are rather “suggestions”
e.g., move to the package's origin before its destination

Generalization of Cycle-Covering Heuristics
LBackground

Landmark Orderings

Landmark orderings denote dependencies between landmarks.
natural orderings must hold along all plans
e.g., impossible to unload package before loaded
reasonable orderings are rather “suggestions”
e.g., move to the package's origin before its destination

Represent landmarks and orderings in landmark graphs:

r

/\
{move(A, B), move(C, B)} {move(A, C), move(B, C)}

\/

r

Generalization of Cycle-Covering Heuristics

LCycIe—Covering

Cycle-Covering

Generalization of Cycle-Covering Heuristics

LCycIe—Covering

Valuable Information in Landmark Graphs

cyclical dependencies between landmarks
sub-goal must be achieved multiple times to resolve cycle
one landmark per cycle necessary twice in every plan

again minimum hitting set problem for cycles

n
_ . .
(o) o TOC/ '

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Cycle-Covering Heuristic h<’

Extending the landmark heuristic with cycle constraints:

min Z Y, cost(a) s.t.

acA
Y,>0 forallae A and

ZY321 for all ¢ € £ and
act

S Yazc|+1 forallcec

lec ael

with C the set of cycles in the landmark graph

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Heuristics Applied to Running Example
{move(A, B), move(C, B)} {move(A, C), move(B, C)}

Yasg+YcoB >1
Yasc+Ygsc>1

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Heuristics Applied to Running Example
{move(A, B), move(C, B)} {move(A, C), move(B, C)}

Yase+Ycon >1
Yasc+Ygsc>1

M) =2 (Yase=1,Ypsc=1)

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Heuristics Applied to Running Example
{move(A, B), move(C, B)} {move(A, C), move(B, C)}

Yase+Ycon >1
Yasc+Ygsc>1
Yasg+Yco+Yasc+Ygsc >3

M) =2 (Yase=1,Yp,c=1)

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Heuristics Applied to Running Example
{move(A, B), move(C, B)} {move(A, C), move(B, C)}

Yasg+Ycon >1
Yasc+Ygsc>1
Yasg+Yco+Yasc+Ygsc >3

M) =2 (Yase=1,Yp,c=1)
hY9e(so) =3 (Yase=1,Ygsc=1Yc,g=1)

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Ordering-Aware Cycle-Covering Heuristic h°

natural orderings are acyclic by definition

candidates for resolving cycles must have
an incoming reasonable ordering

minY, + Y, + Yo st {a}
r r
Y, >1
Yb >1 {b}
Ye>1
Y.+ Yy >3 n r

{c}

hcycle(s) =4 (Ya =1,Y,=2,Y:. = 1)

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Ordering-Aware Cycle-Covering Heuristic h°

natural orderings are acyclic by definition

candidates for resolving cycles must have
an incoming reasonable ordering

minY, + Y, + Yo st {a}

Yp >1 {b}

{c}

hovdle(sy =4 (Ya=1,Yp=2Y.=1)
hord(s) =5 (Ya=1,Yp=2,Y.=2)

Generalization of Cycle-Covering Heuristics
LCycIe—Covering

Ordering-Aware Cycle-Covering Heuristic h°
natural orderings are acyclic by definition
candidates for resolving cycles must have
an incoming reasonable ordering
Ordering-aware cycle-covering heuristic: {a}
min Z Y, - cost(a) s.t. r r
acA
Y, >0 forallac Aand {b}
ZYaZI for all ¢ € L and 0 ;
ac/t
ZZYaz|cr|+1 forall ceC {c}
lec, ael

with ¢, C ¢ the set of landmarks with incoming
reasonable orderings

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Experimental Evaluation J

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Cycles in Landmark Graphs

250

200 p;

100

50

----caldera
----blocks ’
—— spider
sokoban
——agricola 7
—— flashfill
—— pathways
-~ --airport
scanalyzer
- -~ thoughtful
----nomystery
---- parcprinter
—— logistics
depot
~——— miconic .
—— zenotravel
—— elevators

100

amount of cycles

10*

10°

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Initial A-Value — AtM vs. porcle

125 X
x agricola
+blocks
100 7 | *depot
elevators
75 | [+logistics
i) * miconic
= x nomystery
50 | | + zenotravel
25 1
0 . \ \ \ \
0 25 50 75 100 125

hLM

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Initial A-Value — AtM vs. pord

125 T x 3
X x agricola
+blocks
100 - 7 | *depot
elevators
751 r | [+logistics
- x *miconic
S p x nomystery
50 | | + zenotravel
*caldera
25 |- _| | = flashfill
+spider
0 . \ \ \ \
0 25 50 75 100 125

hLM

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Aiming for Optimality

100
75
T
s. 50
=
25
0

+
o
L #fgj " .
+
+#\ﬁ+ | |
25 50 75

100

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Aiming for Optimality

100
75

T
5. 50
25
0

+
o
L #fgj " .
+
o | ﬁ+ | |
25 50 75
h*

100

100

75

50

25

T
+higher
+ lower
+ equal

100

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Planning with the Cycle-Covering Heuristic

Coverage barely affected
tasks with many cycles prone to exceed memory limit

increased complexity of optimization problems

Overall results are inconclusive and vary depending on several factors:
Which landmark generator is used?
various options in Fast Downward
How to update landmarks in encountered states?
recomputing vs. tracking based on previous state

Generalization of Cycle-Covering Heuristics

L Experimental Evaluation

Planning with the Cycle-Covering Heuristic

Search Time Expanded States
T T T TTI T T T T T T T T T
uns. — it ++ +|"IH+/‘HIH' — uns. + A —
103 S i E e +t$
E //i*, +_# ///i E 1047 // /// |
T o102k Y L . .
[S) 10 E 7 - ;‘; E 7 T +
N = . e B - e
TR~ A T R . 4 .
% e L + % P +/+/ . +
. PR N] P T
100 [i] R i
100 - f
L2 vl 2 vl 2 1l | [4 1 4 |4 |
100 101 102 103 uns. 100 102 104 uns.

hLM hLM

Generalization of Cycle-Covering Heuristics
LSummary

Summary

cyclical dependencies between landmarks contain valuable information

cycle-covering heuristic dominates minimum hitting set landmark heuristic
for the same landmark graph

considering ordering types improves cycle-covering heuristic
increased heuristic accuracy in practice

does not (yet) pay off in coverage

Generalization of Cycle-Covering Heuristics
LAppendix

Appendix

Generalization of Cycle-Covering Heuristics
LAppendix

Initial h-Values — LP vs. IP

IP solutions identical to 102
LP-relaxation

possible explanation: totally

unimodular matrices o
. 10t £ E
all squared sub-matrices have i]
det € {-1,0,1} :]
LP solutions are integral - .
but not generally the case 100 1 8

H L Ll Ll
Counterexample with LP # IP 100 1ol 107

LP

Generalization of Cycle-Covering Heuristics
LAppendix

Comparison to LM-Cut

hLM—cut

Initial h-Value Expanded States Search Time
g\ LLLRALIL L LALIL R] ’ uns. 7L [[. \7 uns. - +\ T T , [|
i ;] 1o2z /i# ;AN RINTORSE § e +%
% B ST R 51071 ’/ﬁ“"ﬂ*““** i T710_2 L L /\ \i |
100 10t 102 103 1071 102 105 uns 1072 100 102 uns:
hord hord hord

Generalization of Cycle-Covering Heuristics
LAppendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a,c}

9

{af ——— {b} ——— {d}

Minimum landmark hitting set: 3, minimum cycle hitting set: 1 = h=14

Generalization of Cycle-Covering Heuristics
LAppendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a,c}

()

{af —— {} —— {a}

Minimum landmark hitting set: 3, minimum cycle hitting set: 1 = h=14
Optimal plan: (a,b,c) = h* =3

Generalization of Cycle-Covering Heuristics
LAppendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a,c}

.

{af — b} ——— {d}

Minimum landmark hitting set: 3, minimum cycle hitting set: 1 = h=14
Optimal plan: (a,b,c) = h* =3

Generalization of Cycle-Covering Heuristics
LAppendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a,c}

[J

{af — (b} —— {d}

Minimum landmark hitting set: 3, minimum cycle hitting set: 1 = h=14
Optimal plan: (a,b,c) = h* =3

Generalization of Cycle-Covering Heuristics
LAppendix

Recomputing vs. Tracking Landmarks

Update landmarks in every state:

always recompute
potentially find new landmarks
might be time-consuming

or track along paths
compute landmarks only once in the beginning
applying actions can only decrease heuristic estimates
heuristic is path-dependent

Generalization of Cycle-Covering Heuristics
LAppendix

Recomputing vs. Tracking Landmarks

Expanded States Search Time
T T T T T LU B A1) B e R AR
uns. + “Hi - - uns. -
100 LA 10%E 1
o p F &
£ - R - 2 []
S 10* |- 3 + 10
S el |10tk E
1070l]
. + ol
L L L % 10° [.
100 ¢ e Y .
L7 | | | % \/\/Hmu\ Ll il |
ns.

109 102 10* 10 U 100 10! 102 103 uns
track track

Generalization of Cycle-Covering Heuristics
LAppendix

Coverage Results

870 planning tasks from domains with cyclical initial states

LMRHW LMhm

recomp track recomp track

htM 342 308 222 298
peyele 336 305 228 305
herd 340 306 231 308

Generalization of Cycle-Covering Heuristics
LAppendix

Coverage Results

870 planning tasks from domains with cyclical initial states

LM RHW LM h™m
recomp track recomp track
htM 342 308 222 298
peyele 336 305 228 305
herd 340 306 231 308

success of recomputing vs. tracking depends on landmark generator

Generalization of Cycle-Covering Heuristics
LAppendix

Coverage Results

870 planning tasks from domains with cyclical initial states

LM RHW LM h™m
recomp track recomp track
htM 342 308 222 298
peyele 336 305 228 305
herd 340 306 231 308

success of recomputing vs. tracking depends on landmark generator
considering cycles is not always beneficial

memory is a limitation
optimization problems have increased complexity

	Introduction
	Background
	Cycle-Covering
	Experimental Evaluation
	Summary
	Appendix
	Appendix

