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Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let 7 = (V, s, G, .A) be a planning task and let s be a state of 7.
A disjunctive action landmark of s is a non-empty set of actions £ C A such
that every s-plan contains an action a € /.

in example: {move(A, B), move(C, B)} and {move(A, C), move(B, C)}

landmark generation is not the topic of this thesis
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Landmark Heuristic AtM

one action from each landmark must be part of every plan
minimum hitting set approach
cheapest set of actions that hits each landmark

solve with linear programming

min Z Y, - cost(a) s.t.
acA
Y,>0 forallae A and

Zvaz1 forall ¢ € L
act

this corresponds to the operator-counting framework

use objective value as heuristic estimate
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Landmark Orderings

Landmark orderings denote dependencies between landmarks.
natural orderings must hold along all plans
e.g., impossible to unload package before loaded
reasonable orderings are rather “suggestions”
e.g., move to the package's origin before its destination

Represent landmarks and orderings in landmark graphs:

r

/\
{move(A, B), move(C, B)} {move(A, C), move(B, C)}
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LCycIe—Covering

Valuable Information in Landmark Graphs

cyclical dependencies between landmarks
sub-goal must be achieved multiple times to resolve cycle
one landmark per cycle necessary twice in every plan

again minimum hitting set problem for cycles
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Cycle-Covering Heuristic h<’

Extending the landmark heuristic with cycle constraints:

min Z Y, cost(a) s.t.

acA
Y,>0 forallae A and

ZY321 for all ¢ € £ and
act

S Yazc|+1 forallcec

lec ael

with C the set of cycles in the landmark graph
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Heuristics Applied to Running Example
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Yasg+Ycon >1
Yasc+Ygsc>1
Yasg+Yco+Yasc+Ygsc >3

M) =2 (Yase=1,Yp,c=1)
hY9e(so) =3 (Yase=1,Ygsc=1Yc,g=1)
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Ordering-Aware Cycle-Covering Heuristic h°

natural orderings are acyclic by definition

candidates for resolving cycles must have
an incoming reasonable ordering

minY, + Y, + Yo st {a}
r r
Y, >1
Yb >1 {b}
Ye>1
Y.+ Yy >3 n r

{c}
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Ordering-Aware Cycle-Covering Heuristic h°
natural orderings are acyclic by definition
candidates for resolving cycles must have
an incoming reasonable ordering
Ordering-aware cycle-covering heuristic: {a}
min Z Y, - cost(a) s.t. r r
acA
Y, >0 forallac Aand {b}
ZYaZI for all ¢ € L and 0 ;
ac/t
ZZYaz|cr|+1 forall ceC {c}
lec, ael

with ¢, C ¢ the set of landmarks with incoming
reasonable orderings
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Cycles in Landmark Graphs
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Initial A-Value — AtM vs. porcle
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Aiming for Optimality
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Planning with the Cycle-Covering Heuristic

Coverage barely affected
tasks with many cycles prone to exceed memory limit

increased complexity of optimization problems

Overall results are inconclusive and vary depending on several factors:
Which landmark generator is used?
various options in Fast Downward
How to update landmarks in encountered states?
recomputing vs. tracking based on previous state
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Planning with the Cycle-Covering Heuristic
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Summary

cyclical dependencies between landmarks contain valuable information

cycle-covering heuristic dominates minimum hitting set landmark heuristic
for the same landmark graph

considering ordering types improves cycle-covering heuristic
increased heuristic accuracy in practice

does not (yet) pay off in coverage
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Initial h-Values — LP vs. IP

IP solutions identical to 102
LP-relaxation

possible explanation: totally

unimodular matrices o
. 10t £ E
all squared sub-matrices have i ]
det € {-1,0,1} : ]
LP solutions are integral - .
but not generally the case 100 1 8

H L Ll Ll
Counterexample with LP # IP 100 1ol 107

LP
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Comparison to LM-Cut

hLM—cut

Initial h-Value Expanded States Search Time
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Recomputing vs. Tracking Landmarks

Update landmarks in every state:

always recompute
potentially find new landmarks
might be time-consuming

or track along paths
compute landmarks only once in the beginning
applying actions can only decrease heuristic estimates
heuristic is path-dependent
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Recomputing vs. Tracking Landmarks

Expanded States Search Time
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Coverage Results

870 planning tasks from domains with cyclical initial states

LM RHW LM h™m
recomp track recomp track
htM 342 308 222 298
peyele 336 305 228 305
herd 340 306 231 308

success of recomputing vs. tracking depends on landmark generator
considering cycles is not always beneficial

memory is a limitation
optimization problems have increased complexity
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