
Generalization of Cycle-Covering Heuristics

Master’s Thesis Presentation

Generalization of

Cycle-Covering Heuristics

Clemens Büchner

Department of Mathematics and Computer Science
University of Basel

May 14, 2020

Generalization of Cycle-Covering Heuristics

Introduction

DMI Spiegelgasse

Generalization of Cycle-Covering Heuristics

Introduction

Outline

1. Background

2. Cycle-covering heuristic

3. Experimental results

Generalization of Cycle-Covering Heuristics

Background

Background

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

LTo

L

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

LTo

L

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CToBTo

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo
move(A,B)

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo
move(A,B)

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo
move(B,C)

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo

move(B,C)

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo

move(C ,A)

Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CToBTo
move(A,B)

Generalization of Cycle-Covering Heuristics

Background

State Space and Heuristic Search

A B C

CTo BTo

A B C

CTo

BTo

A B C

CTo

BTo

A B C

CToBTo

A B C

CTo

BTo

A B C

CTo

BTo

A B C

CToBTo

...

move(A,B)

move(B,C)

move(C ,B)

move(A,C)

move(C ,B)

move(B,C)

Generalization of Cycle-Covering Heuristics

Background

Landmarks

Properties that must hold along all plans:

I move to B to pick up yellow package

I move to C to deliver yellow package

I the blue package induces the same landmarks

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let T = 〈V, s0,G ,A〉 be a planning task and let s be a state of T .
A disjunctive action landmark of s is a non-empty set of actions ` ⊆ A such
that every s-plan contains an action a ∈ `.

I in example: {move(A,B),move(C ,B)} and {move(A,C),move(B,C)}
I landmark generation is not the topic of this thesis

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let T = 〈V, s0,G ,A〉 be a planning task and let s be a state of T .
A disjunctive action landmark of s is a non-empty set of actions ` ⊆ A such
that every s-plan contains an action a ∈ `.

I in example: {move(A,B),move(C ,B)} and {move(A,C),move(B,C)}

I landmark generation is not the topic of this thesis

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let T = 〈V, s0,G ,A〉 be a planning task and let s be a state of T .
A disjunctive action landmark of s is a non-empty set of actions ` ⊆ A such
that every s-plan contains an action a ∈ `.

I in example: {move(A,B),move(C ,B)} and {move(A,C),move(B,C)}
I landmark generation is not the topic of this thesis

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Background

Landmark Heuristic hLM

I one action from each landmark must be part of every plan
I minimum hitting set approach

I cheapest set of actions that hits each landmark

I solve with linear programming

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L

I this corresponds to the operator-counting framework

I use objective value as heuristic estimate

Generalization of Cycle-Covering Heuristics

Background

Landmark Orderings

Landmark orderings denote dependencies between landmarks.
I natural orderings must hold along all plans

I e.g., impossible to unload package before loaded

I reasonable orderings are rather “suggestions”
I e.g., move to the package’s origin before its destination

Represent landmarks and orderings in landmark graphs:

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

Generalization of Cycle-Covering Heuristics

Background

Landmark Orderings

Landmark orderings denote dependencies between landmarks.
I natural orderings must hold along all plans

I e.g., impossible to unload package before loaded

I reasonable orderings are rather “suggestions”
I e.g., move to the package’s origin before its destination

Represent landmarks and orderings in landmark graphs:

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Cycle-Covering

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Valuable Information in Landmark Graphs

I cyclical dependencies between landmarks

I sub-goal must be achieved multiple times to resolve cycle

I one landmark per cycle necessary twice in every plan

I again minimum hitting set problem for cycles

A B C

CTo BTo

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Cycle-Covering Heuristic hcycle

Extending the landmark heuristic with cycle constraints:

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L and∑
`∈c

∑
a∈`

Ya ≥ |c|+ 1 for all c ∈ C

with C the set of cycles in the landmark graph

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Heuristics Applied to Running Example

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

min YA→B + YC→B + YA→C + YB→C s.t.

YA→B + YC→B ≥ 1

YA→C + YB→C ≥ 1

YA→B + YC→B + YA→C + YB→C ≥ 3

I hLM(s0) = 2 (YA→B = 1, YB→C = 1)

I hcycle(s0) = 3 (YA→B = 1, YB→C = 1, YC→B = 1)

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Heuristics Applied to Running Example

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

min YA→B + YC→B + YA→C + YB→C s.t.

YA→B + YC→B ≥ 1

YA→C + YB→C ≥ 1

YA→B + YC→B + YA→C + YB→C ≥ 3

I hLM(s0) = 2 (YA→B = 1, YB→C = 1)

I hcycle(s0) = 3 (YA→B = 1, YB→C = 1, YC→B = 1)

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Heuristics Applied to Running Example

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

min YA→B + YC→B + YA→C + YB→C s.t.

YA→B + YC→B ≥ 1

YA→C + YB→C ≥ 1

YA→B + YC→B + YA→C + YB→C ≥ 3

I hLM(s0) = 2 (YA→B = 1, YB→C = 1)

I hcycle(s0) = 3 (YA→B = 1, YB→C = 1, YC→B = 1)

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Heuristics Applied to Running Example

{move(A,B),move(C ,B)} {move(A,C),move(B,C)}

r

r

min YA→B + YC→B + YA→C + YB→C s.t.

YA→B + YC→B ≥ 1

YA→C + YB→C ≥ 1

YA→B + YC→B + YA→C + YB→C ≥ 3

I hLM(s0) = 2 (YA→B = 1, YB→C = 1)

I hcycle(s0) = 3 (YA→B = 1, YB→C = 1, YC→B = 1)

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Ordering-Aware Cycle-Covering Heuristic hord

I natural orderings are acyclic by definition

I candidates for resolving cycles must have
an incoming reasonable ordering

min Ya + Yb + Yc s.t.

Ya ≥ 1

Yb ≥ 1

Yc ≥ 1

Ya + Yb ≥ 3

Yb + Yc ≥ 3

2

I hcycle(s) = 4 (Ya = 1, Yb = 2, Yc = 1)

I hord(s) = 5 (Ya = 1, Yb = 2, Yc = 2)

{a}

{b}

{c}

rr

rn

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Ordering-Aware Cycle-Covering Heuristic hord

I natural orderings are acyclic by definition

I candidates for resolving cycles must have
an incoming reasonable ordering

min Ya + Yb + Yc s.t.

Ya ≥ 1

Yb ≥ 1

Yc ≥ 1

Ya + Yb ≥ 3

���XXXYb + Yc ≥ �A3 2

I hcycle(s) = 4 (Ya = 1, Yb = 2, Yc = 1)

I hord(s) = 5 (Ya = 1, Yb = 2, Yc = 2)

{a}

{b}

{c}

rr

rn

Generalization of Cycle-Covering Heuristics

Cycle-Covering

Ordering-Aware Cycle-Covering Heuristic hord

I natural orderings are acyclic by definition

I candidates for resolving cycles must have
an incoming reasonable ordering

Ordering-aware cycle-covering heuristic:

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L and∑
`∈cr

∑
a∈`

Ya ≥ |cr |+ 1 for all c ∈ C

with cr ⊆ c the set of landmarks with incoming
reasonable orderings

{a}

{b}

{c}

rr

rn

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Experimental Evaluation

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Cycles in Landmark Graphs

100 101 102 103 104 105

50

100

150

200

250

amount of cycles

ta
sk

s

caldera
blocks
spider
sokoban
agricola
flashfill
pathways
airport
scanalyzer
thoughtful
nomystery
parcprinter
logistics
depot
miconic
zenotravel
elevators

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Initial h-Value – hLM vs. hcycle

0 25 50 75 100 125
0

25

50

75

100

125

hLM

h
cy
cl
e

agricola
blocks
depot
elevators
logistics
miconic
nomystery
zenotravel

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Initial h-Value – hLM vs. hord

0 25 50 75 100 125
0

25

50

75

100

125

hLM

h
or
d

agricola
blocks
depot
elevators
logistics
miconic
nomystery
zenotravel
caldera
flashfill
spider

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Aiming for Optimality

0 25 50 75 100
0

25

50

75

100

h∗

h
or
d

0 25 50 75 100
0

25

50

75

100

h+

higher
lower
equal

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Aiming for Optimality

0 25 50 75 100
0

25

50

75

100

h∗

h
or
d

0 25 50 75 100
0

25

50

75

100

h+

higher
lower
equal

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Planning with the Cycle-Covering Heuristic

Coverage barely affected

I tasks with many cycles prone to exceed memory limit

I increased complexity of optimization problems

Overall results are inconclusive and vary depending on several factors:
I Which landmark generator is used?

I various options in Fast Downward

I How to update landmarks in encountered states?
I recomputing vs. tracking based on previous state

Generalization of Cycle-Covering Heuristics

Experimental Evaluation

Planning with the Cycle-Covering Heuristic

100 101 102 103

100

101

102

103

uns.

uns.

hLM

h
or
d

Search Time

100 102 104

100

102

104

uns.

uns.

hLM

Expanded States

Generalization of Cycle-Covering Heuristics

Summary

Summary

I cyclical dependencies between landmarks contain valuable information

I cycle-covering heuristic dominates minimum hitting set landmark heuristic
for the same landmark graph

I considering ordering types improves cycle-covering heuristic

I increased heuristic accuracy in practice

I does not (yet) pay off in coverage

Generalization of Cycle-Covering Heuristics

Appendix

Appendix

Generalization of Cycle-Covering Heuristics

Appendix

Initial h-Values – LP vs. IP

I IP solutions identical to
LP-relaxation

I possible explanation: totally
unimodular matrices
I all squared sub-matrices have

det ∈ {−1, 0, 1}
I LP solutions are integral

I but not generally the case
I Counterexample with LP 6= IP

100 101 102

100

101

102

LP

IP

Generalization of Cycle-Covering Heuristics

Appendix

Comparison to LM-Cut

100 101 102 103
100

101

102

103

hord

h
L
M
-c
u
t

Initial h-Value

10−1 102 105
10−1

102

105

uns.

uns.

hord

Expanded States

10−2 100 102

10−2

100

102

uns.

uns.

hord

Search Time

Generalization of Cycle-Covering Heuristics

Appendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a} {b} {c}

{a, c}

I Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4

I Optimal plan: 〈a, b, c〉 ⇒ h∗ = 3

Generalization of Cycle-Covering Heuristics

Appendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a} {b} {c}

{a, c}

I Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4

I Optimal plan: 〈a, b, c〉 ⇒ h∗ = 3

Generalization of Cycle-Covering Heuristics

Appendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a} {b} {c}

{a, c}

I Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4

I Optimal plan: 〈a, b, c〉 ⇒ h∗ = 3

Generalization of Cycle-Covering Heuristics

Appendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a} {b} {c}

{a, c}

I Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4

I Optimal plan: 〈a, b, c〉 ⇒ h∗ = 3

Generalization of Cycle-Covering Heuristics

Appendix

Recomputing vs. Tracking Landmarks

Update landmarks in every state:
I always recompute

+ potentially find new landmarks
− might be time-consuming

I or track along paths

+ compute landmarks only once in the beginning
− applying actions can only decrease heuristic estimates
± heuristic is path-dependent

Generalization of Cycle-Covering Heuristics

Appendix

Recomputing vs. Tracking Landmarks

100 102 104 106

100

102

104

106

uns.

uns.

track

re
co

m
p

Expanded States

100 101 102 103

100

101

102

103

uns.

uns.

track

Search Time

Generalization of Cycle-Covering Heuristics

Appendix

Coverage Results

I 870 planning tasks from domains with cyclical initial states

LMRHW LMhm

recomp track recomp track

hLM 342 308 222 298
hcycle 336 305 228 305
hord 340 306 231 308

I success of recomputing vs. tracking depends on landmark generator
I considering cycles is not always beneficial

I memory is a limitation
I optimization problems have increased complexity

Generalization of Cycle-Covering Heuristics

Appendix

Coverage Results

I 870 planning tasks from domains with cyclical initial states

LMRHW LMhm

recomp track recomp track

hLM 342 308 222 298
hcycle 336 305 228 305
hord 340 306 231 308

I success of recomputing vs. tracking depends on landmark generator

I considering cycles is not always beneficial
I memory is a limitation
I optimization problems have increased complexity

Generalization of Cycle-Covering Heuristics

Appendix

Coverage Results

I 870 planning tasks from domains with cyclical initial states

LMRHW LMhm

recomp track recomp track

hLM 342 308 222 298
hcycle 336 305 228 305
hord 340 306 231 308

I success of recomputing vs. tracking depends on landmark generator
I considering cycles is not always beneficial

I memory is a limitation
I optimization problems have increased complexity

	Introduction
	Background
	Cycle-Covering
	Experimental Evaluation
	Summary
	Appendix
	Appendix

