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Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

LTo

L



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

LTo

L



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CToBTo



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo BTo
move(A,B)



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo
move(A,B)



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo
move(B,C )



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo

move(B,C )



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CTo

BTo

move(C ,A)



Generalization of Cycle-Covering Heuristics

Background

Planning

Simplistic world model for specific problem purposes:

Definition (planning task)

A planning task is a 4-tuple T = 〈V, s0, γ,A〉 with

I a finite set of variables V to describe each world state,

I the initial state s0,

I the goal condition γ, and

I a finite set of actions A to transition between states.

A B C

CToBTo
move(A,B)



Generalization of Cycle-Covering Heuristics

Background

State Space and Heuristic Search
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Properties that must hold along all plans:

I move to B to pick up yellow package

I move to C to deliver yellow package

I the blue package induces the same landmarks
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Background

Landmark Heuristic hLM

I one action from each landmark must be part of every plan
I minimum hitting set approach

I cheapest set of actions that hits each landmark

I solve with linear programming

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L

I this corresponds to the operator-counting framework

I use objective value as heuristic estimate
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Landmark orderings denote dependencies between landmarks.
I natural orderings must hold along all plans

I e.g., impossible to unload package before loaded

I reasonable orderings are rather “suggestions”
I e.g., move to the package’s origin before its destination

Represent landmarks and orderings in landmark graphs:

{move(A,B),move(C ,B)} {move(A,C ),move(B,C )}
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Cycle-Covering

Valuable Information in Landmark Graphs

I cyclical dependencies between landmarks

I sub-goal must be achieved multiple times to resolve cycle

I one landmark per cycle necessary twice in every plan

I again minimum hitting set problem for cycles

A B C
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Cycle-Covering

Cycle-Covering Heuristic hcycle

Extending the landmark heuristic with cycle constraints:

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L and∑
`∈c

∑
a∈`

Ya ≥ |c|+ 1 for all c ∈ C

with C the set of cycles in the landmark graph
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Heuristics Applied to Running Example

{move(A,B),move(C ,B)} {move(A,C ),move(B,C )}

r
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min YA→B + YC→B + YA→C + YB→C s.t.

YA→B + YC→B ≥ 1

YA→C + YB→C ≥ 1

YA→B + YC→B + YA→C + YB→C ≥ 3

I hLM(s0) = 2 (YA→B = 1, YB→C = 1)

I hcycle(s0) = 3 (YA→B = 1, YB→C = 1, YC→B = 1)
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Ordering-Aware Cycle-Covering Heuristic hord

I natural orderings are acyclic by definition

I candidates for resolving cycles must have
an incoming reasonable ordering

min Ya + Yb + Yc s.t.

Ya ≥ 1

Yb ≥ 1

Yc ≥ 1

Ya + Yb ≥ 3

Yb + Yc ≥ 3

2

I hcycle(s) = 4 (Ya = 1, Yb = 2, Yc = 1)

I hord(s) = 5 (Ya = 1, Yb = 2, Yc = 2)

{a}

{b}

{c}
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Cycle-Covering

Ordering-Aware Cycle-Covering Heuristic hord

I natural orderings are acyclic by definition

I candidates for resolving cycles must have
an incoming reasonable ordering

Ordering-aware cycle-covering heuristic:

min
∑
a∈A

Ya · cost(a) s.t.

Ya ≥ 0 for all a ∈ A and∑
a∈`

Ya ≥ 1 for all ` ∈ L and∑
`∈cr

∑
a∈`

Ya ≥ |cr |+ 1 for all c ∈ C

with cr ⊆ c the set of landmarks with incoming
reasonable orderings

{a}

{b}

{c}

rr
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Experimental Evaluation

Cycles in Landmark Graphs
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Initial h-Value – hLM vs. hcycle
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Experimental Evaluation

Planning with the Cycle-Covering Heuristic

Coverage barely affected

I tasks with many cycles prone to exceed memory limit

I increased complexity of optimization problems

Overall results are inconclusive and vary depending on several factors:
I Which landmark generator is used?

I various options in Fast Downward

I How to update landmarks in encountered states?
I recomputing vs. tracking based on previous state
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Planning with the Cycle-Covering Heuristic
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Summary

I cyclical dependencies between landmarks contain valuable information

I cycle-covering heuristic dominates minimum hitting set landmark heuristic
for the same landmark graph

I considering ordering types improves cycle-covering heuristic

I increased heuristic accuracy in practice

I does not (yet) pay off in coverage
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Appendix

Initial h-Values – LP vs. IP

I IP solutions identical to
LP-relaxation

I possible explanation: totally
unimodular matrices
I all squared sub-matrices have

det ∈ {−1, 0, 1}
I LP solutions are integral

I but not generally the case
I Counterexample with LP 6= IP
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Appendix

Comparison to LM-Cut
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Appendix

Decomposing Cycle-Covering from Landmark Hitting Set

{a} {b} {c}

{a, c}

I Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4

I Optimal plan: 〈a, b, c〉 ⇒ h∗ = 3
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Appendix

Recomputing vs. Tracking Landmarks

Update landmarks in every state:
I always recompute

+ potentially find new landmarks
− might be time-consuming

I or track along paths

+ compute landmarks only once in the beginning
− applying actions can only decrease heuristic estimates
± heuristic is path-dependent
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Recomputing vs. Tracking Landmarks
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Appendix

Coverage Results

I 870 planning tasks from domains with cyclical initial states

LMRHW LMhm

recomp track recomp track

hLM 342 308 222 298
hcycle 336 305 228 305
hord 340 306 231 308

I success of recomputing vs. tracking depends on landmark generator
I considering cycles is not always beneficial

I memory is a limitation
I optimization problems have increased complexity
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