
Solving Delete-Relaxed Planning Tasks
by Using Cut Sets

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Thomas Keller and Cedric Geissmann

Marvin Buff

marvin.buff@stud.unibas.ch

2014-054-191

13/06/2017

Acknowledgments

I would like to express my thanks to Dr. Thomas Keller and Cedric Geissmann for their

support and supervision of my work. I would also like to thank Professor Malte Helmert,

who allowed me to write this thesis in his research group. Special thanks goes to Beat

Bürgler who proofread this thesis.

Abstract

Classical domain-independent planning is about finding a sequence of actions which lead

from an initial state to a goal state. A popular approach for solving planning problems

efficiently is to utilize heuristic functions. A possible heuristic function is the perfect heuristic

of a delete relaxed planning problem denoted as h+. Delete relaxation simplifies the planning

problem thus making it easier to find a perfect heuristic. However computing h+ is still NP-

hard problem [4].

In this thesis we discuss a promising looking approach to compute h+ in practice. Inspired

by the paper from Gnad, Hoffmann and Domshlak [9] about star-shaped planning problems,

we implemented the Flow-Cut algorithm. The basic idea behind flow-cut to divide a problem

that is unsolvable in practice, into smaller sub problems that can be solved. We further tested

the flow-cut algorithm on the domains provided by the International Planning Competition

benchmarks, resulting in the following conclusion: Using a divide and conquer approach can

successfully be used to solve classical planning problems, however it is not trivial to design

such an algorithm to be more efficient than state-of-the-art search algorithm.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Classical Planning . 3

2.2 Heuristic Search . 4

2.3 Delete Relaxation . 4

2.4 Causal Graph . 5

2.5 Strongly Connected Components . 6

3 Flow-Cut Algorithm 7

3.1 Preparation of the Planning Problem . 8

3.2 Decomposition of the Planning Problem . 8

3.2.1 Decomposition Example . 10

3.3 Solving the Planning Problem . 11

3.3.1 Solving Example . 11

4 Experiment Evaluation 13

4.1 Environment . 13

4.2 Evaluation . 13

4.2.1 Type A: Solvable . 14

4.2.1.1 Miconic . 15

4.2.1.2 Mystery & No-Mystery . 15

4.2.1.3 Pathways & Pathways-Noneg 15

4.2.1.4 Rovers . 16

4.2.1.5 Satellite . 16

4.2.1.6 Trucks-Strips . 16

4.2.2 Type B: Big Cuts . 16

4.2.3 Type C: No Cut . 17

4.3 Evaluation Summary . 17

5 Conclusion 19

Table of Contents v

Bibliography 21

Declaration on Scientific Integrity 22

1
Introduction

Classical planning is about creating algorithms that can automatically solve planning prob-

lems. A solution to a planning problem is a sequence of actions (also called plan) leading

from the initial state to a goal state. A well-known planning problem is the travelling sales-

person problem (TSP), where a salesperson must visit every city on his list once with the

condition that he takes the shortest route in regard to the overall travelling distance. A

possible algorithm that could be used to solve the TSP is a blind search algorithm. A blind

search algorithm like breadth first search (BFS) uses a search tree to consider states with

increasing distance to the initial state. Solving a TSP instance with ten cities on the list

would require a BFS algorithm to expand 3’628’800 states in the worst case. If just one city

is added to the list, the number of states that had to be expanded increases to 39’916’800.

If you go even further and add another city to the list, the needed number of states reaches

479’001’600. The number of states that have to be expanded (search cost) with BFS grows

exponentially in the size of the problem variables, therefore limiting the problems that can

be solved by today’s computers.

To overcome this limitation, informed search algorithm use heuristic functions to reduce the

search cost. A heuristic function gives an estimate on how far the current state is away

from a goal state. By comparing the heuristic values of the other states, the algorithm can

determine which direction looks most promising to evaluate, hence making the algorithm

goal-oriented and reducing thereby the search cost. As an example, using greedy search

algorithm to solve the TSP with twelve cities on the list, results in roughly 500 states that

have to be expanded. However, finding and computing a good heuristic for a planning prob-

lem is not always possible or just too expensive. That is the reason why many algorithms in

classical planning use delete relaxation. As the perfect heuristic for a delete-relaxed plan-

ning problem can be used to solve the original problem.

Delete-relaxation assumes that every fact persists once achieved by ignoring all negative

effects of actions. The objective is to determine the exact goal distance for the relaxed plan,

denoted by h+. But as of yet delete relaxation heuristics can only calculate an estimate of

h+ [1] since h+ itself is NP-hard to compute [4]. Three algorithms that provide an estimate

Introduction 2

for h+ are the max, additive and ff heuristic. The max heuristic hmax [1] computes an es-

timate that is always lower bound to the h+ value. Thus, providing an admissible estimate

to h+. The additive heuristic hadd [1] and ff-heuristic hff [4], on the other hand, compute

an estimate that is always upper bound to the h+ value and therefore not admissible. Thus

cannot be used by most algorithms, as they need an admissible heuristic to compute an

optimal solution.

The goal of this thesis is to create a domain-independent algorithm that can compute h+

in practice. However, since this is a NP-hard problem we need to use a smart approach to

get good results. Inspired by Divide and Conquer (further referenced as D&Q), we figure

that dividing a planning task into smaller planning tasks could be beneficial to subsequently

reduce the complexity to solve the problem from an original O(2n) to O(2
n
2). The algorithm

we implemented works as follows: First, we derive the causal graph of the planning task,

thereby enforcing delete relaxation. Resulting in a graph that represents our problem. The

idea is to split this graph into three smaller sub-graphs: a left, middle and right graph. Like

their name suggests is the order of them important, as it enables us to solve the resulting

problems individually without considering going back and forth between left and right prob-

lems. The order we enforce is that all connections between the sub graphs must be directed

from left over middle to right. Next, we merge the middle graph with the others, creating

two new graphs with an overlapping part. At last we create new planning tasks from the two

graphs and subsequently solve them. By combining the solution from the sub tasks, we can

determine the solution of our original task. Important to notice here is that the overlapping

part of the graphs enables us to solve the sub task separately and later assemble the solution.

The thesis is structured as follows: First, we will define the theoretical background needed

for this thesis, like classical planning, heuristics and delete relaxation. Afterwards, we will

depict the flow-cut algorithm we introduced and implemented to solve planning problems.

We will continue by discussing the experiments conducted on the state-of-the-art planning

problems and in the last chapter, we will provide a short summary and conclusion as well

as an outlook into future work.

2
Background

In this chapter we will introduce notations and definitions, emphasizing on formalisms that

are needed throughout this thesis. Furthermore we will provide a brief introduction in

classical planning and some related topics like delete-relaxation and causal graphs.

2.1 Classical Planning
”Planning is the reasoning side of acting. It is an abstract, explicit deliber-

ation process that chooses and organizes actions by anticipating their expected

outcomes.” [5, Ghallab et al., 2004, p.1]

Planning problems are formalized as planning tasks in order to provide a general description

and thus be solved by generalized algorithms. In this thesis we are using the propositional

STRIPS formalism [3, Bylander 1994] to describe a planning task formally.

Definition 1 (planning task). A planning task is a 4-tuple Π = 〈F,O, I,G〉, where

• V is a finite set of propositional state variables (also called propositions),

• O is a finite set of operators, each with associated preconditions pre(o) ⊆ F , add

effects add(o) ⊆ F , delete effects del(o) ⊆ F and the cost of applying the operator o

cost(o) ∈ R+
0 ,

• I ⊆ F is the initial state, and

• G ⊆ F is a set of goal variables.

A state s ⊆ V is a set of variables, where every variable included in the set is true and the

others are implicitly false. All possible states are defined as S = P(V), where P(V) is the

power set over all variables. An operator o is applicable under the condition that the current

state contains all variables v ∈ pre(o). By applying the operator o, the state s is changed

by deleting all variables v ∈ del(o) and adding the variables v ∈ add(o) resulting in a new

state, s[o] := s ∪ add(o) \ del(o).

Background 4

Definition 2 (plan). A plan π for a planning task is sequence of operators o1, . . . ,on such

that applying the operators to the initial state I is resulting in a goal state, I[o1][o2] . . . [on] |=
G. The cost of a plan π is the summed cost of all operators included in the plan π. A plan

π is optimal if its cost is minimal compared to all other possible plans.

Planning problems can be distinguished between satisficing and optimal planning. The

objective of satisficing planning is to find a solution to the problem or to prove that none

exists. Where in optimal planning, the goal is to find the optimal solution. In this thesis we

will only consider optimal planning.

2.2 Heuristic Search
Search algorithm using heuristic functions (simply referenced as heuristics) are called in-

formed search algorithms, because they are goal-oriented. This means they are taking infor-

mation about how far away a state is from a goal state into consideration to find a plan. A

heuristic maps each state of a planning task Π = 〈F,O, I,G〉 to a number h : S → N0∪{∞}.
The perfect heuristic h?(s) returns the exact optimal distance to the goal for every state

s ∈ S. An important property of heuristics is admissibility. A heuristic h is admissible if

for every state s ∈ S, h(s) ≤ h?(s), therefore it never overestimates the cost of a plan π.

This is an important feature as many planning algorithms need an admissible heuristic to

be able to find the optimal solution.

In this thesis, we design an algorithm that can exactly compute h+, the perfect heuristic of

a relaxed planning task Π+. Computing h+ is NP-hard [4, Hoffmann and Nebel 2001] but

if successfully acquired it could be used as an admissible heuristic for the planning task Π.

2.3 Delete Relaxation
Delete relaxing a planning task Π = 〈F,O, I,G〉 removes all delete effects from its operators.

Accordingly, variables can be added yet not be removed. Therefore, every variable remains

true once it is achieved.

Definition 3 (delete relaxation). The relaxation of a STRIPS planning task Π = 〈F,O, I,G〉,
is the four tuple Π+ = 〈F, {o+|o ∈ O}, I, G〉, where the relaxation o+ of o is the operator

with

• pre(o+) = pre(o),

• add(o+) = add(o),

• cost(o+) = cost(o) and

• del(o+) = ∅.

Many heuristics use delete relaxation as a foundation, because it simplifies the problem

and still provides an accurate estimate. Delete relaxation works good, due to the variable

that there are good and bad effects. The good effects lead us closer to the goal state

(add effects). The bad effects (del effects) imply constraints and elongate the way to the

Background 5

goal. Consequently the good effects give a good heuristic estimate even when ignoring the

negative.

2.4 Causal Graph
In this thesis, we use causal graphs derived from planning tasks Π = 〈F,O, I,G〉. A causal

graph consists of vertices and edges, where the vertices are variables and the edges are

depicted from the causal relation between the variables.

a

b c

d e

f

g

h i j

k

l

m

n

o1

o1

o4

o1 o5o1

o5

o6

o2

o2

o3

o2
o2

o11

o6 o7

o8

o10

o9

o11

o11

Figure 2.1: The causal graph derived from the example planning task.

Definition 4 (causal graph). A causal graph is a graph C = 〈F,E〉, that can be derived

from a given planning task Π = 〈F,O, I,G〉, with

• set of vertices V E = V and

• a set of edges E such that 〈f1, f2〉 ∈ E iff there is an operator o ∈ O with f1 ∈
pre(o) and f2 ∈ add(o).

At this point we would like to introduce an example planning task used in this thesis. The

causal graph shown in Figure 2.1 is derived from the planning task Π = 〈F,O, I,G〉 where:

• V = {a, b, c, . . . , l,m, n}

• O = {o1, o2, o3, . . . }, cost(o) = 1 | o ∈ O and precondition and effect are as followed:

– o1: a→ b and d

– o2: e→ f and g

– . . .

• I = {v, a}

• G = {n}

By applying this procedure on the example planning task 2.4, we get the directed graph

shown in Figure 2.1. Every node represents a variable and its shape indicates if it is an initial

Background 6

variable (shown as rectangle), goal variable (shown with two circles) or neither (shown as a

single circle). The edges are labeled by the operator they are derived from and are directed

from precondition to effect. Exception to this rule are the edges connecting two effects from

the same action, indicated by two opposing edges side by side.

2.5 Strongly Connected Components
A directed graph G = 〈V,E〉 is strongly connected or diconnected when every vertex v ∈ V is

reachable from every other vertex v′ ∈ V . A strongly connected sub-graph is called strongly

connected component (SCC). Computing all SCC ’s of a directed graph G can be useful as a

preprocessing, when an algorithm needs the SCC ’s or only works on graphs with a certain

structure.

Applying a SCC algorithm on the causal graph computed in the previous chapter, results in

the following nine SCC ’s: {{a}, {b, d}, {c}, {h}, {i}, {e, f, g}, {j, k, l}, {m}, {n}}, shown

in Figure 2.2.

a

b c

d e

f

g

h i j

k

l

m

n

o1

o1

o4

o1 o5o1

o5

o6

o2

o2

o3

o2
o2

o11

o6 o7

o8

o10

o9

o11

o11

Figure 2.2: The example causal graph with all strongly connected
components grouped and highlighted.

3
Flow-Cut Algorithm

The following sections discuss the implementation of the flow-cut algorithm, which is shown

in Figure 1.

As mentioned before, our objective is to calculate the exact value of the delete relaxed

heuristic h+. The algorithm we introduced achieves this goal by performing two enclosed

steps. First, the planning problem Π = 〈F,O, I,G〉 is split into three parts: A left, middle

(also referred as cut) and right part, where all connections between them are directed from

left to middle and from middle to right. Assuming that the problem can be split into such

a structure, the algorithm combines the left and right part with the middle segment, thus

creating different planning tasks with an overlapping section. Second, the newly created

smaller sub-problems must be solved individually and afterwards be reassembled to get the

solution of the delete-relaxed planning problem Π+.

The idea behind this algorithm is to break down the original planning task into smaller

ones with the intention of reducing the complexity from O(2n) to O(2
n
2). This works due to

the complexity depending on the size of a planning task. However, creating and organizing

sub-tasks creates an overhead that scales with the number of variables in the cut. As a

result we are eager to make the cut as small as possible.

Algorithm 1 Flow-Cut Algorithm

procedure Flow-Cut(P) . Solves the planning problem P
cg ← deriveCausalGraph(P)
〈l,c,r〉 ← makeInitialCut(cg) . 3-tuple of sub-graphs,〈left, cut, right〉
minimal← false
while not minimal do

minimal← shrinkCut(〈l,c,r〉) . Hill climbing algorithm
end while
return createSolveProblems(subset,l,r,P)

end procedure

Flow-Cut Algorithm 8

3.1 Preparation of the Planning Problem
Before the problem can be split into different parts, it must be modified to suit the task

ahead. Therefore, we decided upon deriving the causal graph from the given planning

problem, thus enforcing delete-relaxation and simultaneously providing the correct structure

to apply a SCC algorithm. With the delete-relaxation in place, we can simplify the main

planning task even more to consequently reduce the size of the final sub-tasks. First, we

compute the SCC s of Π+, as this is a low-cost operation with a linear complexity, and it

provides us the information we need to split the graph in a further step. Second, we remove

SCC s that are left over from the initial task but no longer hold any useful information. Like

a SCC with no goal state and no other connections to other SCC s as through incoming

edges, or a SCC with only an initial state but without outgoing edges. Both have no effect

on the relaxed planning task Π+ and can therefore be left out. In Figure 3.1 is a example

shown of this procedure, vertex o and vertex p can be removed since they have no outgoing

connection to the rest of the graph.

a

b c

d e

f

g

h i j

k

l

m

n

o

p

o1

o1

o4

o1 o5o1

o5

o6

o2

o2

o3

o2
o2

o11

o6 o7

o8

o10

o9

o11

o11

o12

o13o14

Figure 3.1: Causal graph with two vertices that could be removed as
they have no influence on the solution (green highlighted).

3.2 Decomposition of the Planning Problem
The core aspect of the flow-cut algorithm is the determination of the cut, as its size has a

major impact on the run-time of the algorithm, due to the number of sub-tasks created is

depending on it. However, finding a good cut is not a trivial task as different problems have

a fundamental diverse structure. As a basis we use the already established SCC algorithm.

This provides us with the strict structure we need and gives us an estimate on which problems

the algorithm can achieve good result. As example, we cannot make a good cut if the SCC

algorithm only finds one SCC , since all facts are connected together. Yet having multiple

SCC does not assure that a good cut can be made, as different compositions still could

impose problems. With this in mind, SCC s still give an indication and can be useful to

interpret the result in the end.

Having this covered we can go into the procedures shown in Figure 2 and 3.

Flow-Cut Algorithm 9

Algorithm 2 Making Initial Cut Algorithm

procedure makeInitialCut(cg) . Returns initial cut
sccs← computeSCC(cg)
for scc in sccs do

if scc has only incoming or outgoing edges then
remove scc from sccs

end if
end for
〈l,c,r〉 ← 〈∅, sccs, ∅〉
〈l,c,r〉 ← computeLR(c,cg) . Fill with variables not in cut.
return 〈l,c,r〉

end procedure

Algorithm 3 Shrinking the Cut Algorithm

procedure shrinkCut(〈l,c,r〉) . Returns whether the cut has been shrunk.
sccs← computeSCC(c)
for scc in sccs do

if scc has only incoming or outgoing edges then
〈l2,c2,r2〉 ← computeCandidate(〈l,c,r〉,scc)
〈l,c,r〉 ← compareCandidates(〈l,c,r〉,〈l2,c2,r2〉)

end if
end for
if 〈l,c,r〉 has changed then

return true
else

return false
end if

end procedure

We distinguish between three different types of SCC s. Side SCC s that only have outgoing

edges (left side) or only have incoming edges (right side). SCC s with incoming and outgoing

edges (middle SCC s) are the most important ones for our algorithm, as they are connecting

left and right side and therefore giving us the possibility to divide the graph. First, the

algorithm builds an initial cut (shown in Procedure 2) by separating the middle SCC s from

the others. Under certain circumstances this can already yield good results, e.g. when only

one middle SCC is present with only a few variables. But in most cases, the size of the cut

is too big and needs to be reduced for our algorithm to work efficiently. In order to remove

SCC s from the cut, we implemented a downhill algorithm, where in every step one SCC is

shifted from the cut to left or right. But foremost, the SCC s of the cut must be identified

that are candidates to remove from the cut, now keep in mind that in the cut are only the

facts that previously had incoming and outgoing edges. Under those circumstance, we can

conclude that SCC s that no longer have an outgoing edge, only have outgoing connections

to right and vice versa. Hence, those SCC s could be shifted to their respective side and are

therefore candidates. Next, every candidate must now be evaluated and compared to each

other. The condition we implemented to decide which candidate is better, is influenced by

Flow-Cut Algorithm 10

the consequential running complexity. The complexity O of a given cut is

0(〈left, cut, right〉) = 2C ∗ 2|left|+|cut| + 2C ∗ 2|right|+|cut|

= 2C+|left|+|cut| + 2C+|right|+|cut|,
(3.1)

where C are the number of facts in the cut that are neither goal nor initial. For comparison,

the worst case complexity O of an informed search algorithm is

O(n) = 2n, (3.2)

where n is the number of facts. In order to achieve a balanced right left proportion, we take

the maximum from both sites. A good balance is favorable due to the complexity of solving

a task growing exponentially. However having a small cut is even more important for this

reason we added a weighting factor w(= 0.5). This factor determines whether the algorithm

favors a balanced right and left or rather over a smaller cut. Accordingly, we modified the

complexity resulting in the following formula:

E(〈left, cut, right〉) = max(C + w ∗ (|left|+ |cut|), C + w ∗ (|right|+ |cut|)) (3.3)

For every candidate, this effort value E is calculated and the algorithm settles on the can-

didate with the lowest number. The algorithm repeats this process until the cut cannot

be improved anymore. Due to the final cut, the algorithm makes an estimate on how time

consuming solving the sub-problems are going to be and thus is able to decide whether it

should interrupt at this point or continue.

a

b c

d e

f

g

h i j

k

l

m

n

o1

o1

o4

o1 o5o1

o5

o6

o2

o2

o3

o2
o2

o11

o6 o7

o8

o10

o9

o11

o11

Figure 3.2: Causal graph with the SCC s highlighted to display the
three sub-graphs: left(orange), middle(green), right(purple).

3.2.1 Decomposition Example
To illustrate the procedure explained above, we would like to make an example: Given

the planning task Π = 〈F,O, I,G〉 described in Section 2.4 and the SCC s as shown in

Figure 2.2 we define our initial cut as being all SCC s with incoming and outgoing edges:

Flow-Cut Algorithm 11

cut = {{b, d}, {c}, {i}, {e, f, g}, {j, k, l}}. The next step is to shrink the cut. First, we

determine the SCC s in the cut, which lost one connection and now only have either incoming

or outgoing connections: candidates = {{b, d}, {e, f, g}, {j, k, l}}. Second, we compute the

resulting cut for every candidate and rate it.

cut E(〈left, cut, right〉)
cut 16
cut \ {b, d} 14
cut \ {e, f, g} 13
cut \ {j, k, l} 13

As can be seen, comparing the candidates end in a tie. Assuming the algorithm chooses

{e, f, g} as the best candidate we end up with the following: cut = {{b, d}, {c}, {i}, {j, k, l}}.
Determining the candidates and removing the best concludes in one iteration, which is

performed until no other SCC s can be removed without creating a direct connection from

left to right.

3.3 Solving the Planning Problem
At last, the flow-cut algorithm acquired all the pieces needed to generate the planning tasks

and consequently solving the planning problem as shown in the procedure 4. For all possible

sub-graphs of the cut, excluding facts that are goal or initial, it creates two sub planning

tasks Π1 and Π2. This distinction is needed, as it is possible that not all facts in the cut

must comply or can be achieved, therefore imposing the effort of solving all the different

sub-graphs. For the first task Π1, it merges one sub-graph with left and for the second Π2 it

merges with right, resulting in two complementing tasks, which together yield the solution

for our main problem when solved. The sub-tasks are solved with the A? search algorithm

deploying landmark cut heuristic [7][Helmert and Domshlak], producing different outcome

for each task pair. The idea behind landmark cut heuristic is to find specific landmark

facts that always have to be fulfilled to reach the goal state. These landmarks can then be

used to estimate how advanced the current state is, by counting how many landmark facts

already are achieved. Landmark-cut heuristic is admissible, hence can be used with the A∗

algorithm to find the optimal solution. Last the lowest solution cost that was calculated

must be found, as the solution with the lowest cost is the optimal solution for the search

problem.

3.3.1 Solving Example
Given the planning task described in Section 2.4 and the cut as shown in Figure 3.2, we

show how the algorithm in 4 works. The cut consists of following facts: cut = {b, d, i}, these

are not initial nor goal facts. Since we do not know if all facts in the cut have or even can

be achieved, we have to create planning tasks with every possible combination of the cut,

shown in the following table:

Flow-Cut Algorithm 12

Algorithm 4 createSolveProblems

minCost←∞
for every fact subset of cut do . Only facts that are not initial or goal

leftSubP ← createSubProblem(subset,l,P)
rightSubP ← createSubProblem(subset,r,P)
cost← solveProblems(leftSubP,rightSubP) . Cost of plan(P)
if minCost > cost then

minCost← cost
end if

end for
return minCost

cut l = {a, b} r = {c, e, f, g, j, k, l, n,m}
∅ l r
{b} l ∩ {b} r ∩ {b}
{d} l ∩ {d} r ∩ {d}
{i} l ∩ {i} r ∩ {i}
{b, d} l ∩ {b, d} r ∩ {b, d}
{b, i} l ∩ {b, i} r ∩ {b, i}
{d, i} l ∩ {d, i} r ∩ {d, i}
{b, d, i} l ∩ {b, d, i} r ∩ {b, d, i}

Every set of variables shown above represents one planning task that must be built, with

the corresponding ones on the same row. Two planning tasks are corresponding when the

left task provides all initial variables for the right task, by having them as goal variables.

These tasks can now be solved and the lowest solution sum of all corresponding task is the

h+ value of the original problem.

4
Experiment Evaluation

The experiments were setup to evaluate the flow-cut algorithm on different planning domains

in a state-of-the-art planning environment. The objective of the experiments was to test

how the algorithm performs on different existing domains, thereby figuring out its strengths

and weaknesses and how it could be improved in a further step.

4.1 Environment
This section specifies the setup for the experiments as well as the environment on which

they were executed.

The flow-cut algorithm is implemented in C++ and integrated in the state-of-the-art plan-

ning system Fast Downward, which was introduced by Helmert[6] in 2006. Several heuristics

are already implemented in Fast Downward and can be used to solve the sub-tasks Π1 and

Π2. We use the A? [8] algorithm with landmark-cut heuristic for these sub-tasks. To test all

domains provided by the International Planning Competition (IPC) benchmarks, we make

use of the computer cluster of the University of Basel, which has Intel Xeon E5-2660 CPUs

running at 2.2 GHz. The domains of the benchmarks are from the IPC, however we excluded

all domains with axioms. Furthermore, it is necessary for the flow-cut algorithm to solve

many different tasks successively, therefore we wrote a python scripts that handles the dif-

ferent Fast Downward calls. To run the script on the cluster we utilized the lab framework.

Finally, every problem had a computation time limit of 60 minutes, a RAM limit of 2 GB

and the results were captured and summarized in the following sections.

4.2 Evaluation
In this section we will present and discuss the results of the experiments. We grouped

the results in three different types. Every type will be discussed in its own section and

summarized in the section 4.3. Type A are domains with at least one problem that has a

cut smaller than 20. Type B domains have a cut bigger than 20 and were therefore not be

solved as we implemented a hard limit to reduce computation time. At last, type C domains

have a specific structure that does prevent us from making a cut.

Experiment Evaluation 14

The result tables in this section contain following categories:

• The cut size is the number of facts in the cut, inclusive initial facts and goal facts.

• The left and right size are the number of facts in their respective sub-problem, e.g.

left size consists of all facts from the left part and middle part.

• Solvable problems are the number of problems that could be solved in the domain

by the flow-cut algorithm.

• Single SCC are SCC s without any connection to the rest of the problem.

• Left, right and middle SCC s have incoming connections, outgoing connection or

both.

4.2.1 Type A: Solvable
The eight domains shown in Table 4.1 have at least one problem that could successfully be

solved by the flow-cut algorithm. In this section we will go through every one of these eight

domains and analyze their structure.

Domain Left-Size Cut-Size Right-Size Solvable Problems

miconic 3-107 2-44 4-87 ∼50%
mystery 23-305 19-285 39-1581 1
no-mystery 23-305 19-285 39-1581 1
pathways 42-208 6-66 15-452 4
pathways-noneg 42-208 6-66 15-452 4
rovers 16-2684 6-14 6-1580 6
satellite 8-1753 4-603 10-762 5
trucks-strips 10-56 9-55 37-607 10

Table 4.1: All IPC domains that have at least one problem that can
be solved with the flow-cut algorithm combined with the size of the
different parts and how many problems can be solved.

Domain Single SCC Left Side SCC Middle SCC Right Side SCC

miconic 1-30 1 1-30 1-30
mystery 1-2 4-20 1-3 1
no-mystery 1-2 4-20 1-3 1
pathways 5-138 13-60 9-77 1-41
pathways-noneg 5-138 13-60 9-77 1-41
rovers 4-230 3-125 3-44 3-69
satellite 3-175 2-30 1-31 3-175
trucks-strips 3-21 1 2 5-20

Table 4.2: All IPC domains that have at least one problem that can be
solved with the flow-cut algorithm combined with their SCC strucute.

Experiment Evaluation 15

4.2.1.1 Miconic

As shown in the table 4.1, all problems in the miconic domain have a constant left side

SCC size of one. Even though this suggest that the left part is of constant size as well, it

is not the case here. All parts are evenly balanced and give a good ground for the flow-cut

algorithm. By comparing the parts over all problem, we came to the conclusion, that the

miconic domain is a good example how a domain should behave to employ the flow-cut

algorithm.

miconic Left-Size Cut-Size Right-Size h+

s1-0.pddl 3 2 4 3
s2-0.pddl 5 3 8 7
s3-0.pddl 13 4 6 10
s4-0.pddl 14 7 13 14
s5-0.pddl 16 7 16 17

Table 4.3: A few solvable planning problems from the miconic do-
main.

4.2.1.2 Mystery & No-Mystery

Analyzing the data to the mystery and no-mystery domain has shown, that even though

some problems can be solved, the domains itselves are not suitable. Due to the fact, that

the left part without the cut variables is always very small. Therefore the right part holds

nearly all variables of the problem and as a consequence, the flow-cut algorithm loses all

advantage, as the sub problems that are generated are as big as the original problem.

mystery Left-Size Cut-Size Right-Size h+

prob25.pddl 23 19 39 4

Table 4.4: The only planning problem from the mystery domain that
has a cut size smaller than 20.

4.2.1.3 Pathways & Pathways-Noneg

Both pathways and pathways-noneg domain have the exact same results, hence can be

discussed together. These domains produced the best results we encountered in our exper-

iments. All SCC sizes are growing at a similar rate, resulting in balanced left and right

parts. Even though the right part is roughly twice as big as the left part, it still is a good

result due to the cut size being smaller than both.

pathways Left-Size Cut-Size Right-Size h+

p01.pddl 42 6 15 6
p02.pddl 39 11 37 12
p03.pddl 54 12 56 16
p04.pddl 67 19 76 timeout

Table 4.5: All planning problems from the pathways domain that
have a cut size smaller than 20.

Experiment Evaluation 16

4.2.1.4 Rovers

The rover domain looks on the first glance similar to the pathways domain but after taking

a closer look, it is visible that the right part consists only of variables from the cut. Leaving

us in the same situation as the mystery domain.

4.2.1.5 Satellite

Examining the satellite domain shows a similar result to the pathways domain. The only

difference being that the cut size scales worse in the satellite domain. It begins good with

the cut being half as big as the other parts but soon the cut size converges on the others.

An adjusted algorithm that considers the specific structure of this domain could possibly

reduce the cut size and produce better results.

4.2.1.6 Trucks-Strips

Even though a few problem of this domain can be solved, the structure itself is not made for

such an approach. Left side SCC s as well as middle SCC s are constant over all problems.

Ultimately causing the right part to grow much bigger than the others. Making the flow-cut

algorithm inefficient to use.

trucks-strips Left-Size Cut-Size Right-Size h+

p01.pddl 10 9 37 11
p03.pddl 13 12 54 17
p05.pddl 16 15 72 23
p07.pddl 13 12 78 20
p09.pddl 17 16 98 26

Table 4.6: A few solvable planning problems from the trucks-stips
domain.

4.2.2 Type B: Big Cuts
The six domains shown in the Table 4.7 have all too big cuts to be solved efficiently. Even

though the cuts do look promising, if you examine the SCC s it will be clear why the flow-cut

algorithm is not efficient in solving these problems. The SCC s in the table mentioned before

are split into four groups. Single SCC s are not connected with the rest of the problem, thus

can be solved individually. Left side SCC s have only a outgoing connection and right side

SCC s vice versa. The most important SCC type for our algorithm are middle SCC s, as we

try to split the graph by removing these. Now, the problem with the domains below is not

that they have no middle SCC , but that they have just one that nearly holds all facts of

the problem. Leaving us no option to reduce the cut size as we have a strict structure to

maintain.

A way to make the flow-cut more compatible with these domains, could be to allow connec-

tions from the right part to the middle part and middle part to left part. This would enable

an algorithm to even break down SCC s. Yet this is not a trivial change, as one would need

to handle that a solution plan could possibly apply alternating actions from both sides.

Experiment Evaluation 17

Domain Left-Size Cut-Size Right-Size

childsnack-opt14-strips 72-192 50-139 64-174
nomystery-opt11-strips 30-264 29-163 44-356
parcprinter-08-strips 28-337 24-286 39-316
parcprinter-opt11-strips 55-255 44-204 50-284
tidybot-opt11-strips 277-763 269-757 269-759
tidybot-opt14-strips 277-763 269-757 269-759

Table 4.7: All domains where the cut is strict bigger than 20, thereby
being too big to be useful.

Domain Single SCC Left Side SCC Middle SCC Right Side SCC

childsnack-opt14-strips 14-35 22-53 17-61 1
nomystery-opt11-strips 0 1 1 3-12
parcprinter-08-strips 9-35 4-51 3-70 2-11, 1
parcprinter-opt11-strips 11-33 11-46 6-70 3-11, 1
tidybot-opt11-strips 0 4 1 4
tidybot-opt14-strips 0 4 1 4

Table 4.8: The SCC structure of the domains with a cut that is bigger
than 20.

4.2.3 Type C: No Cut
All domains shown in the Table 4.9 cannot be solved by the flow-cut algorithm due to them

having no SCC s with incoming and outgoing edges. This highlights the main problem with

the flow-cut algorithm, although the algorithm works, most domains inherent structure do

not comply with the conditions we defined for our algorithm. Yet with the information

from the SCC structure, we could introduce a new algorithm that is more adjusted to these

domains.

4.3 Evaluation Summary
To summarize, we tested the flow-cut algorithm on 79 domains, resulting in six domains that

successfully could be solved. With the best domains being miconic, pathways, pathways-

noneg and satellite, showing that the flow-cut algorithm can successfully be used to compute

h+. The next step from here on, would be to make the other domains accessible. We

identified the main problem for our algorithm, as being the incompatibility of our algorithm

with the inherent structure of the domains. The issue being that most domains have no

middle SCC s. This leads to the conclusion that cutting a planning problem needs to be

more elaborate and adjusted to the problem it is supposed to work on, if it should be more

efficient than state-of-the-art algorithms.

Experiment Evaluation 18

Domain Single SCC Middle SCC Right Side SCC Left Side SCC

airport 0 0 1 x
barman-mco14-strips 0 0 1 1
barman-opt11-strips 0 0 1 1
barman-opt14-strips 0 0 1 1
blocks 1 0 0 0
cavediving-14-adl 2 0 1 x
citycar-opt14-adl x 0 1 x
depot 0 0 1 x
driverlog 0 0 x 1
elevators-opt08-strips 0 0 1 x
elevators-opt11-strips 0 0 1 x
floortile-opt11-strips 0 0 x y
floortile-opt14-strips 0 0 x 3
freecell 0 0 1 x
ged-opt14-strips 1 0 0 0
grid 0 0 1 x
gripper 0 0 1 1
hiking-agl14-strips 0 0 1 x
hiking-opt14-strips 0 0 1 2
logistics00 0 0 x y
logistics98 0 0 x y
maintenance-opt14-adl x 0 1 y
miconic-simpleadl x 0 y 1
movie 13 0 0 0
mprime 0 0 1 1
no-mprime 0 0 1 1
openstacks-agl14-strips 0 0 1 x
openstacks-opt08-strips 0 0 1 x
openstacks-opt11-strips 0 0 1 x
openstacks-opt14-strips 0 0 1 x
openstacks-strips 5 0 1 10
parking-opt11-strips 1 0 0 0
parking-opt14-strips 1 0 0 0
pegsol-08-strips 1 0 0 0
pegsol-opt11-strips 1 0 0 0
pipesworld-notankage 1 0 0 0
pipesworld-tankage 1 0 0 0
psr-small 1 0 0 0
scanalyzer-08-strips x 0 0 0
scanalyzer-opt11-strips x 0 0 0
schedule x 0 1 y
sokoban-opt08-strips 1 0 0 0
sokoban-opt11-strips 1 0 0 0
storage 1 0 0 0
tetris-opt14-strips 1 0 0 0
thoughtful-mco14-strips x 0 1 y
tpp 0 0 x y
transport-opt08-strips 0 0 1 x
transport-opt11-strips 0 0 1 x
transport-opt14-strips 0 0 1 x
visitall-opt11-strips x 0 0 0
visitall-opt14-strips x 0 0 0
woodworking-opt08-strips x 0 y z
woodworking-opt11-strips x 0 y z
zenotravel 0 0 x y

Table 4.9: The SCC structure of all Domains where no cut could be
generated since they have no middle SCC s.

5
Conclusion

The goal of this thesis was to implement an algorithm that can compute the h+ heuristic

value in practice. We achieved this by introducing the flow-cut algorithm. The idea is

to divide a problem that is unsolvable in practice, into smaller sub problems that can be

solved on their own. Additionally, we generated the strongly connected components for all

the mentioned domains and thereby provide an indication on which domains splitting the

problem can be beneficial to solve it.

To summarize our results shown in Chapter 4, we tested the flow-cut algorithm on 79 do-

mains, resulting in six domains that can be solved successfully, thereby proving that our

implementation works and can be used to solve classical planning problems. However, many

domains cannot be solved with our approach. We decided to build the cut based on SCC s

as it provides a useful foundation. SCC s allow us to enforce a specific structure, however

the experiments have shown that most problems have no middle SCC and are therefore not

solvable by the flow-cut algorithm. Consequently, we conclude that to achieve better result

we would need to revise the decomposition of the planning task and possibly adjust the

algorithm for certain domains.

One possible way to adjust the flow-cut algorithm is to change the number of parts the

problem is split into. Gnad, Hoffmann and Domshlak have shown in the paper [9] that

many classical search problems can lead back into a star like shape. If you combine that

knowledge with our approach, you end up with a new algorithm that has many left and

right parts connected through one middle part.

A second possibility to adjust the algorithm, could be by removing the condition described

in Chapter 3, that all connections have to be directed from the left part to the middle part

and from the middle part to the right part. This condition limits us in the creation of the

cut, as we need a SCC that has incoming and outgoing connections. Yet, this approach

generates a much bigger overhead, because the split parts would not be secluded from each

other anymore and therefore require to be handled more complicated.

In conclusion, we have shown that a divide and conquer approach can successfully be applied

Conclusion 20

to solve classical planning problems. Although the flow-cut algorithm did not outperform

state-of-the-art search algorithms, it proves that this approach is a viable alternative and is

a promising direction to conduct further research.

Bibliography

[1] Bonet, B. and Geffner, H. Planning as heuristic search. Artificial Intelligence, 129(1):5–

33 (2001).

[2] Betz, C. Komplexität und Berechnung der h+-Heuristik. Diplomarbeit, Albert-

Ludwigs-Universität Freiburg. (2009).

[3] Bylander, T. The computational complexity of propositional STRIPS planning. Arti-

ficial Intelligence, 69(1-2):165–204 (1994).

[4] Hoffmann, J. and Nebel, B. The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research, 14:253–302 (2001).

[5] Ghallab, M., Nau, D., and Traverso, P. Automated Planning: Theory & Practice.

(2004).

[6] Helmert, M. The fast downward planning system. J.Artif. Intell. Res.(JAIR), 26:191–

246 (2006).

[7] Helmert, M. and Domshlak, C. Landmarks, critical paths and abstractions: What’s

the difference anyway? Nineteenth International Conference on Automated Planning

and Scheduling (ICAPS 2009), pages 162–169 (2009).

[8] Hart, P., Nilson, N. J., and Bertram, R. A Formal Basis for the Heuristic Determination

of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4 ,

pages 100–107 (1968).

[9] Gnad, D., Hoffmann, J., and Domshlak, C. From Fork Decoupling to Star-Topology

Decoupling. Proceedings of the 8th Annual Symposiium on combinatorial Search

(SOCS’15) (2015).

[10] Betz, C. and Helmert, M. Planning with h+ in theory and practice. In Annual Con-

ference on Artificial Intelligence, pages 9–16. Springer (2009).

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Marvin Buff

Matriculation number — Matrikelnummer

2014-054-191

Title of work — Titel der Arbeit

Solving Delete-Relaxed Planning Tasks by Using Cut Sets

Type of work — Typ der Arbeit

Bachelor Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 13/06/2017

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Classical Planning
	2.2 Heuristic Search
	2.3 Delete Relaxation
	2.4 Causal Graph
	2.5 Strongly Connected Components

	3 Flow-Cut Algorithm
	3.1 Preparation of the Planning Problem
	3.2 Decomposition of the Planning Problem
	3.2.1 Decomposition Example

	3.3 Solving the Planning Problem
	3.3.1 Solving Example

	4 Experiment Evaluation
	4.1 Environment
	4.2 Evaluation
	4.2.1 Type A: Solvable
	4.2.1.1 Miconic
	4.2.1.2 Mystery & No-Mystery
	4.2.1.3 Pathways & Pathways-Noneg
	4.2.1.4 Rovers
	4.2.1.5 Satellite
	4.2.1.6 Trucks-Strips

	4.2.2 Type B: Big Cuts
	4.2.3 Type C: No Cut

	4.3 Evaluation Summary

	5 Conclusion
	Bibliography
	Declaration on Scientific Integrity

