
Detecting Unsolvability Based on
Parity Functions

Remo Christen

Department of Mathematics and Computer Science
University of Basel

9. April 2021

Introduction Background Theory Results Conclusion

Classical Planning – Example

Initial state
s0

5 1 2 4

6 3 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s1

5 1 2 4

6 3 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s2

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s3

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s4

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s5

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s6

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

−→ . . . −→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s7

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

−→

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning – Example

s8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

=

Goal
s∗

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 / 19

Introduction Background Theory Results Conclusion

Classical Planning

Planning Task in TNF

Π = 〈V,O, s0, s∗〉 where

• V is a finite set of variables

• O is a finite set of operators with vars(pre) = vars(eff)

• s0 is the initial state

• s∗ is the goal state

s0

Initial state

s1 . . . s∗

Goal

o0 o1 on

2 / 19

Introduction Background Theory Results Conclusion

Unsolvability

Ideal Outcomes of a Search

• Task is solvable, return a (optimal) plan.

• Task is provably unsolvable.

Our Outcomes

• Task is provably unsolvable.

• We don’t know.

Q Can the 15 puzzle be unsolvable?

3 / 19

Introduction Background Theory Results Conclusion

Unsolvability

Ideal Outcomes of a Search

• Task is solvable, return a (optimal) plan.

• Task is provably unsolvable.

Our Outcomes

• Task is provably unsolvable.

• We don’t know.

Q Can the 15 puzzle be unsolvable?

3 / 19

Introduction Background Theory Results Conclusion

Unsolvability – Example

The 14-15 puzzle

is unsolvable.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

−→ . . . −→

Q How can this be proven?

4 / 19

Introduction Background Theory Results Conclusion

Unsolvability – Example

The 14-15 puzzle is unsolvable.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

−→ . . . −→
−→. . . −→

Q How can this be proven?

4 / 19

Introduction Background Theory Results Conclusion

Unsolvability – Example

The 14-15 puzzle is unsolvable.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

−→ . . . −→
−→. . . −→

. . .

. . .

. . .

. . .

Q How can this be proven?

4 / 19

Introduction Background Theory Results Conclusion

Parity Argument

Parity arguments can be expressed as follows for a given task Π:

• Define parity function f with domain {0, 1} (conceptually {even, odd}).

• Ensure that f satisfies the following conditions:

• f (s0) 6= f (s∗)

• f (s) = f (s ′) for all transitions s → s ′

• Existence of f proves Π unsolvable.

5 / 19

Introduction Background Theory Results Conclusion

Parity Argument – Example

even odd

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

. . .

. . .

. . .

. . .

Q How can we construct parity functions automatically?

6 / 19

Introduction Background Theory Results Conclusion

Parity Argument – Example

even odd

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

. . .

. . .

. . .

. . .

Q How can we construct parity functions automatically?

6 / 19

Introduction Background Theory Results Conclusion

Field F2

We construct parity functions as potential functions over F2.

• F2 is the smallest finite field with two elements {0, 1}.
• F2 captures the parity property of integer arithmetic over. . .

. . . addition, subtraction

even ± even = even
even ± odd = odd
odd ± odd = even

and multiplication.

even × even = even
even × odd = even
odd × odd = odd

7 / 19

Introduction Background Theory Results Conclusion

Field F2

We construct parity functions as potential functions over F2.

• F2 is the smallest finite field with two elements {0, 1}.
• F2 captures the parity property of integer arithmetic over. . .

. . . addition, subtraction

0 ± 0 = 0
0 ± 1 = 1
1 ± 1 = 0︸ ︷︷ ︸

logical XOR

and multiplication.

0 × 0 = 0
0 × 1 = 0
1 × 1 = 1︸ ︷︷ ︸

logical AND

7 / 19

Introduction Background Theory Results Conclusion

Potential Functions over F2

Potential Functions over R

ϕ(s) =
∑

f ∈F w(f) · [s |= f] where

• s is a state

• F is a set of features (conjunctions of atoms)

• w is a weight function: F 7→ R

8 / 19

Introduction Background Theory Results Conclusion

Potential Functions over F2

Potential Functions over R F2

ϕ(s) =
∑

f ∈F w(f) · [s |= f]

ϕ(s) =
⊕

f ∈F w(f) ∧ [s |= f] where

• s is a state

• F is a set of features (conjunctions of atoms)

• w is a weight function: F 7→ R F 7→ F2

To define a potential function, we must choose F and w .

8 / 19

Introduction Background Theory Results Conclusion

Potential Functions over F2

Potential Functions over R F2

ϕ(s) =
∑

f ∈F w(f) · [s |= f]

ϕ(s) =
⊕

f ∈F w(f) ∧ [s |= f] where

• s is a state

• F is a set of features (conjunctions of atoms)

• w is a weight function: F 7→ R F 7→ F2

To define a potential function, we must choose F and w .

Q How can we find potential functions that encode parity arguments?

8 / 19

Introduction Background Theory Results Conclusion

Separation Constraints

Idea

Given a feature set F , construct constraints such that a satisfying weight function
results in a potential function encoding a parity argument.

Separation Constraints

ϕ(s0) 6= ϕ(s∗)

ϕ(s) = ϕ(s ′) for all transitions s → s ′

Problem: solving constraints in the number of transitions is generally not feasible.

Q Can we compute parity functions efficiently?

9 / 19

Introduction Background Theory Results Conclusion

Separation Constraints

Idea

Given a feature set F , construct constraints such that a satisfying weight function
results in a potential function encoding a parity argument.

Separation Constraints

ϕ(s0) 6= ϕ(s∗)

ϕ(s) = ϕ(s ′) for all transitions s → s ′

Problem: solving constraints in the number of transitions is generally not feasible.

Q Can we compute parity functions efficiently?

9 / 19

Introduction Background Theory Results Conclusion

Theoretical Result

Result to be shown

Efficient constraints exist for up to two-dimensional features.

Approach

• Construct constraints for all operators instead of transitions.

• Difference in parity must be independent of s and s ′.

Let ∆t be ϕ(s)⊕ ϕ(s ′) across transition t = s
o−→ s ′.

10 / 19

Introduction Background Theory Results Conclusion

One-dimensional Features

• Only the atoms/features mentioned in operator o are affected by o.

• ∆t is fully determined by o for all transitions t = s
o−→ s ′ (in TNF).

1 2

30

1

0 1

o−−→
1 2

3

pre(o) =

eff (o) =

{V0,0 7→ 3,V1,0 7→ �}

{V0,0 7→ �,V1,0 7→ 3}

No other atoms/features are changed across

any transition s
o−→ s ′.

11 / 19

Introduction Background Theory Results Conclusion

One-dimensional Features

• Only the atoms/features mentioned in operator o are affected by o.

• ∆t is fully determined by o for all transitions t = s
o−→ s ′ (in TNF).

1 2

30

1

0 1

o−−→
1 2

3

pre(o) =

eff (o) =

{V0,0 7→ 3,V1,0 7→ �}

{V0,0 7→ �,V1,0 7→ 3}
No other atoms/features are changed across

any transition s
o−→ s ′.

11 / 19

Introduction Background Theory Results Conclusion

Two-dimensional Features (I)

Given. . .

• atoms a and ā,

• variables V = var(a) and V̄ = var(ā),

• feature f = a ∧ ā,

• and operator o,

1 2

30

1

0 1

o−−→
1 2

3

there are two relevant cases:

1. V , V̄ ∈ vars(o) e.g. f = V0,0 7→ 3 ∧ V1,0 7→ �

same as one-dimensional features

2. V ∈ vars(o), V̄ /∈ vars(o) e.g. f = V0,0 7→ 3 ∧ V0,1 7→ 1

more complex, see next slide

12 / 19

Introduction Background Theory Results Conclusion

Two-dimensional Features (II)

Reminder: f = a ∧ ā,
V = var(a) ∈ vars(o),
V̄ = var(ā) /∈ vars(o).

Operator o cannot determine ∆t across
t = s

o−→ s ′ because [s |= ā] is unknown:

1 2

30

1

0 1

o−−→
1 2

3

• [s |= ā] ⇒ ∆t determined by a e.g. f = V0,0 7→ 3 ∧ V0,1 7→ 1

• [s 6|= ā] ⇒ [s 6|= f] and [s ′ 6|= f] e.g. f = V0,0 7→ 3 ∧ V0,1 7→ 2

Solution

Ensure that both cases lead to the same contribution to ∆t .

13 / 19

Introduction Background Theory Results Conclusion

Two-dimensional Features (III)

For every variable V /∈ vars(o):

C =
⊕

f = a ∧ ā,
a ∈ produced(o) ∪ consumed(o)

w(f) for all atoms ā ∈ V

1 2

30

1

0 1

o−−→
1 2

3

Mutex Optimization

Skip atoms that are h2-mutex with pre(o) or eff (o).

V0,1 7→ 1 ∧ V0,0 7→ 3 ⊕
V0,1 7→ 1 ∧ V0,0 7→ � ⊕
V0,1 7→ 1 ∧ V1,0 7→ 3 ⊕
V0,1 7→ 1 ∧ V1,0 7→ �

=

V0,1 7→ 2 ∧ . . .

=

V0,1 7→ 3 ∧ . . .

=

V0,1 7→ � ∧ . . .

14 / 19

Introduction Background Theory Results Conclusion

Two-dimensional Features (III)

For every variable V /∈ vars(o):

C =
⊕

f = a ∧ ā,
a ∈ produced(o) ∪ consumed(o)

w(f) for all atoms ā ∈ V

1 2

30

1

0 1

o−−→
1 2

3

Mutex Optimization

Skip atoms that are h2-mutex with pre(o) or eff (o).

V0,1 7→ 1 ∧ V0,0 7→ 3 ⊕
V0,1 7→ 1 ∧ V0,0 7→ � ⊕
V0,1 7→ 1 ∧ V1,0 7→ 3 ⊕
V0,1 7→ 1 ∧ V1,0 7→ �

=

V0,1 7→ 2 ∧ . . .

=

V0,1 7→ 3 ∧ . . .

=

V0,1 7→ � ∧ . . .

14 / 19

Introduction Background Theory Results Conclusion

Experimental Results

• Unsolvable benchmark with 19 domains

• 3unsat, bag-barman, bag-gripper, bag-transport, bottleneck, cave-diving,
chessboard-pebbling, document-transfer, mystery, over-nomystery, over-rovers,
over-tpp, pegsol, pegsol-row5, sliding-tiles, tetris, unsat-nomystery,
unsat-rovers, unsat-tpp

• Unsolvability proven by parity in 2 domains

• pegsol: 22/24 instances

• sliding-tiles: 20/20 instances

15 / 19

Introduction Background Theory Results Conclusion

Sliding Tiles Domain

Size #States Time Memory

sliding-tiles (20) 3× 3/4 105/108 2.5 s 59 931 KiB

15 Puzzles (100) 4× 4 1013 2.7 min 91 798 KiB

24 Puzzles (50) 5× 5 1025 2.0 h 637 952 KiB

16 / 19

Introduction Background Theory Results Conclusion

Aidos

Parity
Arguments

Dead-End
Potentials

Aidos 1

pegsol (24) 22 4 24
sliding-tiles (20) 20 – 10

• pegsol

• Cyclic mod 2 property may be essential.

• sliding-tiles

• Mutexes seem crucial.

• Instances of size 3× 4 and larger are hard.

17 / 19

Introduction Background Theory Results Conclusion

Summary

• Parity arguments can prove unsolvability.

• They can be automatically computed as potential functions over F2.

• Compact constraints exist for up to two-dimensional features.

• Parity arguments are useful for very few domains.

• When suitable, they can be powerful.

18 / 19

Introduction Background Theory Results Conclusion

Questions

Q U E

S T I

O N S

19 / 19

Appendix

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

Define a total order over cells, ignoring blank.

Define s0 to have no misorderings.

• There are 18 moves that affect #misorderings.

• Difference in #misorderings is always even.

• #misorderings mod 2 is a parity function
for the 14-15 puzzle (s0 7→ 0, s∗ 7→ 1).

1 / 6

Appendix

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

• Define a total order over cells, ignoring blank.

• Define s0 to have no misorderings.

There are 18 moves that affect #misorderings.

• Difference in #misorderings is always even.

• #misorderings mod 2 is a parity function
for the 14-15 puzzle (s0 7→ 0, s∗ 7→ 1).

1 / 6

Appendix

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

• Define a total order over cells, ignoring blank.

• Define s0 to have no misorderings.

• There are 18 moves that affect #misorderings.

Difference in #misorderings is always even.

#misorderings mod 2 is a parity function
for the 14-15 puzzle (s0 7→ 0, s∗ 7→ 1).

1 / 6

Appendix

Outcomes of Best Implementation (Sparse Vector)

By Parity By h2 Not Time Memory Error
3unsat (30) – – 25 (+13) 5 – –
bag-barman (20) – – – 20 – –
bag-gripper (25) – – – 16 – 9
bag-transport (29) – 15 2 (+1) (+1) 5 7 –
bottleneck (25) – 10 4 (+4) 11 – –
cave-diving (25) – 1 10 (+2) (+2) 14 – –
chessboard-pebbling (23) – – 9 (+2) (+3) 13 1 –
document-transfer (20) – 2 2 16 – –
mystery (9) – 9 – – – –
over-nomystery (24) – 2 9 (+2) (+8) 13 – –
over-rovers (20) – 3 8 (+3) (+4) 9 – –
over-tpp (30) – 1 13 (+7) 16 – –
pegsol (24) 22 – 2 – – –
pegsol-row5 (15) 1 2 6 (+1) (+2) 6 – –
sliding-tiles (20) 20 – – – – –
tetris (20) – – – 20 – –
unsat-nomystery (150) – 32 101 (+8) (+30) 17 – –
unsat-rovers (150) – 62 40 (+32) (+34) 48 – –
unsat-tpp (25) – 1 – 24 – –
Sum (684) 43 140 231 (+51) (+108) 253 (+215) (−74) 8 (−266) (−34) 9

2 / 6

Appendix

Implementation Comparison – Sparse Set

104 105 106 107
104

105

106

107

fa
ile

d

failed

Full Bitset

S
p

ar
se

S
et

Peak Memory (in KiB)

10−2 100 102 104

10−2

100

102

104

fa
ile

d

failed

Full Bitset

Total Time (in s) 3unsat

bag-barman

bag-gripper

bag-transport

bottleneck

cave-diving

chessboard-pebbling

document-transfer

mystery

over-nomystery

over-rovers

over-tpp

pegsol

pegsol-row5

sliding-tiles

tetris

unsat-nomystery

unsat-rovers

unsat-tpp

3 / 6

Appendix

Implementation Comparison – Sparse Vector

104 105 106 107
104

105

106

107

fa
ile

d

failed

Sparse Set

S
p

ar
se

V
ec

to
r

Peak Memory (in KiB)

10−2 100 102 104

10−2

100

102

104

fa
ile

d

failed

Full Bitset

Total Time (in s) 3unsat

bag-barman

bag-gripper

bag-transport

bottleneck

cave-diving

chessboard-pebbling

document-transfer

mystery

over-nomystery

over-rovers

over-tpp

pegsol

pegsol-row5

sliding-tiles

tetris

unsat-nomystery

unsat-rovers

unsat-tpp

4 / 6

Appendix

Sliding-tiles Domain – Full Results

Size #States Impl. Total Time Peak Memory (in KiB)

sliding-tiles

(geometric)
3× 3/4 105/108

Full 1.0 s 105 019
Sparse 2.5 s 59 931

15 Puzzles
(arithmetic)

4× 4 1013
Full 3.0 min 1 388 748
Sparse 2.7 min 91 798

24 Puzzles
(arithmetic)

5× 5 1025 Sparse 2.0 h 637 952

5 / 6

Appendix

Pegsol Case Study

−→ . . . −→

6 / 6

	Introduction
	Background
	Theory
	Results
	Conclusion
	Appendix
	Appendix

