Remo Christen

Department of Mathematics and Computer Science
University of Basel

9. April 2021

Introduction Background

@00000

Classical Planning — Example

Initial state

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction

@00000

1/19

Introduction Background Results Conclusion

0O@0000

Classical Planning

N=(V,0,sy,s.) where
® Vs a finite set of variables
e O is a finite set of operators with vars(pre) = vars(eff)
® 5y is the initial state

® s, is the goal state

Initial state Goal

Op 01 On
O O

2/19

Introduction
[o]e] lele]e]

Unsolvability

Ideal Outcomes of a Search

® Task is solvable, return a (optimal) plan.

® Task is provably unsolvable.

® Task is provably unsolvable.

® \We don't know.

3/19

Introduction
[o]e] lele]e]

Unsolvability

Ideal Outcomes of a Search

® Task is solvable, return a (optimal) plan.

® Task is provably unsolvable.

® Task is provably unsolvable.

® \We don't know.

Can the 15 puzzle be unsolvable?

3/19

Introduction Background

000e00

Unsolvability — Example

The 14-15 puzzle

4/19

Introduction Background

000e00

Unsolvability — Example

The 14-15 puzzle is unsolvable.

4/19

Introduction

000e00

Unsolvability — Example

The 14-15 puzzle is unsolvable.

1 10

o
.M 14

How can this be proven?

nE
14 IN

5 5

—

=]
[El=]=]-]
BERA

_J

—

HEERD

HEER
2

4/19

Introduction Background eor’ Results Conclusion

0000e0

Parity Argument

Parity arguments can be expressed as follows for a given task I1:

® Define parity function f with domain {0,1} (conceptually {even, odd}).

® Ensure that f satisfies the following conditions:

f(s0) # f(s)
f(s) =f(s") for all transitions s — s’

e Existence of f proves [1 unsolvable.

5/19

Introduction Background eor’ Results Conclusion

O0000e

Parity Argument — Example

B
7]
10
5]

OE
1314 IN

14

|5
a

LLslel-
l@gﬂ
BERA

HEEAO

6/19

Introduction 3ackgro Results Conclusion

O0000e

Parity Argument — Example

B
7]
10
5]

o1 2]
1314 IN

14

|5
a

LLslel-

l@gﬂ

BERA
]

HEEAO

How can we construct parity functions automatically?

6/19

Background Results Conclusion

[Je]

Field F,

We construct parity functions as potential functions over F».

® F; is the smallest finite field with two elements {0,1}.

® [, captures the parity property of integer arithmetic over. ..

... addition, subtraction and multiplication.
even + even = even even X even = even
even = odd = odd even X odd = even
odd = odd = even odd X odd = odd

7/19

Background eor: Results Conclusion

[Je]

Field F,

We construct parity functions as potential functions over F».

® F; is the smallest finite field with two elements {0,1}.

® [, captures the parity property of integer arithmetic over. ..

... addition, subtraction and multiplication.
0 £ 0 =0 0 x 0 =0
0 £ 1 =1 0 x 1 =0
1+ 1 = 0 1 x 1 =1
logical XOR logical AND

7/19

Background Results Conclusion

oe

Potential Functions over F,

Potential Functions over R
o(s) =D rerw(f) - [s = f] where
® 5 is a state

e F is a set of features (conjunctions of atoms)

® w is a weight function: F — R

8/19

Conclusion

Results

Background
oe

Potential Functions over F,

Potential Functions over R F»

s) =
o(5) = Brer wlf) Als b=] where
® s is a state
e Fis a set of features (conjunctions of atoms)
® w is a weight function: F—=R F — F;

To define a potential function, we must choose F and w.

8/19

Background Results Conclusion
oe 000 ofo

Introduction

Potential Functions over F,

Potential Functions over R F»

o(5) = @rer w(F) Als |= 7] where

® s is a state
e Fis a set of features (conjunctions of atoms)

® w is a weight function: F—=R F — F;

To define a potential function, we must choose F and w.

How can we find potential functions that encode parity arguments?

8/19

Theory
@00000

Separation Constraints

Given a feature set F, construct constraints such that a satisfying weight function
results in a potential function encoding a parity argument.

Separation Constraints

p(s0) 7 #(s)

o(s) = p(s) for all transitions s — s’

Problem: solving constraints in the number of transitions is generally not feasible.

9/19

Theory
@00000

Separation Constraints

Given a feature set F, construct constraints such that a satisfying weight function
results in a potential function encoding a parity argument.

Separation Constraints

p(s0) # P(s4)

o(s) = p(s) for all transitions s — s’

Problem: solving constraints in the number of transitions is generally not feasible.
Can we compute parity functions efficiently?

9/19

Theory
[o] lele]e]e]

Theoretical Result

Result to be shown

Efficient constraints exist for up to two-dimensional features.

Approach

e Construct constraints for all operators instead of transitions.

e Difference in parity must be independent of s and s'.

Let A; be ¢(s) @® ¢(s') across transition t = s > .

10/19

Background Theory Results Conclusion

00e000

One-dimensional Features

® Only the atoms/features mentioned in operator o are affected by o.

e A, is fully determined by o for all transitions t = s > s’ (in TNF).

pre(o) = {V(),o — 3, V170 — |:|}
eff(o) = {Voo 0, V1o — 3}

11/19

Theory Results Conclusion

00e000

One-dimensional Features

® Only the atoms/features mentioned in operator o are affected by o.
e A, is fully determined by o for all transitions t = s > s’ (in TNF).

pre(o) = i Voo =3, V1o D} ~__No other atoms/features are changed across
eff(o) = 3 {Voo 0O, Vig s 3} any transition s SN

11/19

Theory Results Conclusion

000e00

Two-dimensional Features (I)

Given. ..
® atoms a and 3,
® variables V = var(a) and V = var(a),
e feature f = a A 3,
® and operator o,
there are two relevant cases:
1. V,V € vars(o)

same as one-dimensional features

2. V € vars(o), V ¢ vars(o)

more complex, see next slide

eg. f= \/070 — 3 A Vl,O —

eg. = VO,O — 3A V071 — 1

12/19

Theory
000080

Two-dimensional Features (II)

Reminder: f = a A a,
V = var(3) € vars(o), 1 :
Lo 1O e BB
1

Operator o cannot determine A; across 0
t =s 2 s’ because [s |= 3] is unknown:

® [s|=3] = A; determined by a eg. f=VWo—3AVi1—1
® [s}E3] = [s}Ef]and [[~ f] eg. f=Voo—3AVo1+2

Solution

Ensure that both cases lead to the same contribution to A;.

13/19

Background Theory Results Conclusion

O0000e

Two-dimensional Features (I11)

For every variable V ¢ vars(o):

C = @ w(f) for all atoms 3 € V

f=aANa,
a € produced(o) U consumed(o)

VO,l'_>1/\VO,O’_>3@ V0,1D—>2/\... V071I—>3/\... V071l—>|:|/\...
Vo,lb—)l/\\/()’ol—)D@ -

V0,1D—>1/\\/170'—>3 ®
V0,1D—>1/\V1’0i—>|:|

14 /19

Theory
O0000e

Two-dimensional Features (I11)

For every variable V ¢ vars(o):
e 1
_] o
C=€p w(f) forallatomsde V ; . .
f=aANa,
1

a € produced(o) U consumed(o) 0

Mutex Optimization
Skip atoms that are h>-mutex with pre(o) or eff(o).

»
VO,l’_>1/\VO,O'—>3€9 V0,1I—>2/\... \/0’1'—>3 .. \/071'—>|:|
Voo 1A Vo=~ O®| _

V0,1'—>1/\\/1,0i—>3 ®
Vo,l'—)l/\\/lgoi—ﬂj

14/19

Results

@00

Experimental Results

¢ Unsolvable benchmark with 19 domains
3unsat, bag-barman, bag-gripper, bag-transport, bottleneck, cave-diving,
chessboard-pebbling, document-transfer, mystery, over-nomystery, over-rovers,

over-tpp, pegsol, pegsol-rowb, sliding-tiles, tetris, unsat-nomystery,
unsat-rovers, unsat-tpp

® Unsolvability proven by parity in 2 domains

pegsol: 22/24 instances
sliding-tiles: 20/20 instances

15/19

Results Conclusion

(o] lo}

Sliding Tiles Domain

Size #States Time Memory
sliding-tiles (20) 3 x3/4 105/108 255 59931 KiB
15 Puzzles (100) 4 x4 10%3 2.7 min 91798 KiB
24 Puzzles (50) 5x5 10%® 2.0h 637 952 KiB

16 /19

ooe

Results Conclusion

Parity Dead-End

Arguments Potentials Aidos 1
pegsol (24) 22 4 24
sliding-tiles (20) 20 - 10

® pegsol

Cyclic mod 2 property may be essential.
® sliding-tiles

Mutexes seem crucial.

Instances of size 3 X 4 and larger are hard.

17/19

Conclusion

[Je]

Summary

® Parity arguments can prove unsolvability.

They can be automatically computed as potential functions over F.

e Compact constraints exist for up to two-dimensional features.

Parity arguments are useful for very few domains.

When suitable, they can be powerful.

18/19

Conclusion

oe

Questions

19/19

Appendix
00000

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

Define a total order over cells, ignoring blank.

Define sy to have no misorderings.
® There are 18 moves that affect #misorderings.
e Difference in #misorderings is always even.

® #misorderings mod 2 is a parity function
for the 14-15 puzzle (sp + 0,5, — 1). (

1/6

Appendix
00000

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

® Define a total order over cells, ignoring blank.

® Define sp to have no misorderings.

There are 18 moves that affect #misorderings.

e Difference in #misorderings is always even.

6o
6o

® #misorderings mod 2 is a parity function
for the 14-15 puzzle (sp + 0,5, — 1).

1/6

Appendix
00000

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

® Define a total order over cells, ignoring blank.

® Define sp to have no misorderings.

® There are 18 moves that affect #misorderings.
=> Difference in #misorderings is always even.

~> #misorderings mod 2 is a parity function
for the 14-15 puzzle (sp ++ 0,5, = 1).

1/6

Appendix
0e0000

Outcomes of Best Implementation (Sparse Vector)

By Parity By h?> Not Time Memory Error
3unsat (30) - - 25 (+13) 5 - -
bag-barman (20 - - - 20 - -
bag-gripper (25) - - - 16 - 9
bag-transport (20) - 15 2(+1) (+1) 5 7 -
bottleneck (25) - 10 4 +a 11 - -
cave-diving (25) - 1 10(+2) (+2) 14 - -
chessboard-pebbling (23) - - 9(i2) (13 13 1 -
document-transfer (20 - 2 2 16 - -
mystery (9) - 9 - - - -
over-nomystery (24) - 2 9 (+2) (+8) 13 - -
OVEr-rovers (20) - 3 8 (+3) (+4) 9 - -
over-tpp (30) - 1 13 (+7) 16 - -
pegsol (24) 22 - 2 - - -
pegsol-row5 (15 1 2 6 (+1) (+2) 6 - -
sliding-tiles (20) 20 - - - - -
tetris (20) - - - 20 - -
unsat-nomystery (150) - 32 101 (+8) (+30) 17 - -
unsat-rovers (150) - 62 40 (+32) (+34) 48 - -
unsat-tpp (25) - 1 - 24 - -
Sum (684) 43 140 231 (+51) (+108) 253 (+215) (—74) 8 (—266) (—34) 9

2/6

Appendix
[o]e] lele]e]

Implementation Comparison — Sparse Set

Peak Memory (in KiB) Total Time (in s) e
ag-barman
T T TTTTT] T \N\w?(falled :

failed

QO bag-gripper
A bag-transport

[] bottleneck

% cave-diving

102 [

+ chessboard-pebbling

Ju—y
[}
(<)}

(O document-transfer

/\ mystery
[] over-nomystery

10° |-

over-rovers

Sparse Set

—_
o
o1

over-tpp
pegsol

)

pegsol-row5

sliding-tiles

T
L Y

AN

L

—

S
N
T

Ll Ll Lo
10° 10°
Full Bitset

| | | X tetris

10*

=
o
S

- unsat-nomystery

O unsat-rovers

failed ©
=
o
0
—
o
o
—
o
N

failed

Full Bitset

A unsat-tpp

3/6

Appendix
[e]e]e] le]e]

Implementation Comparison — Sparse Vector

Peak Memory (in KiB) Total Time (in s) X 3unsat

+ bag-barman
failed T T T O bag-gripper
A bag-transport
[] bottleneck

failed

% cave-diving

106 102 [

+ chessboard-pebbling

(O document-transfer

/\ mystery

SR

[[] over-nomystery

100 L

over-rovers

Sparse Vector

10°

over-tpp
pegsol

pegsol-row5

10—2 [

sliding-tiles

10*
10 10° 10°

Sparse Set

! L L X tetris

- unsat-nomystery

O unsat-rovers

failed ©
=
o
.
—
o
o
—
o
N

failed

Full Bitset

A unsat-tpp

4/6

Appendix
0000e0

Sliding-tiles Domain — Full Results

Size #States Impl. Total Time Peak Memory (in KiB)

sliding-tiles 5 ,.ng Full 10s 105019
(geometric) 3x 3/4 10 /10 Sparse 25s 59931

15 Puzzles 13 Full 3.0 min 1388748
(arithmetic) 4x4 10 Sparse 2.7 min 91798

24 Puzzles g5 10 Sparse 2.0h 637 952

(arithmetic)

5/6

Pegsol Case Study

| eeoe | | |
| o0 o of — - |
L_° J L
- .II_ L
E 8B
SEmEnnE
L

6/6

	Introduction
	Background
	Theory
	Results
	Conclusion
	Appendix
	Appendix

