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Classical Planning

SAS+ Planning Task Π = 〈V , I ,O, γ〉
State variables V with finite domain

Initial state I

Operators O with precondition and effect

Goal γ
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Classical Planning

Task induces a graph called state space

Nodes correspond to states

Arcs correspond to operators
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Example

Little/big endian binary countdown

V ={v , b0, b1}
dom(v) ={undecided, little endian, big endian}
dom(b0) =dom(b1) = {0, 1}

I ={v 7→ undecided, b0 7→ 1, b1 7→ 1}
γ ={b0 7→ 0, b1 7→ 0}
O ={〈{v 7→ undecided}, {v 7→ little endian}〉,
〈{v 7→ undecided}, {v 7→ big endian}〉,
〈{v 7→ big endian, b0 7→ 1, b1 7→ 1}, {b1 7→ 0}〉,
. . . }
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Example

U11start

L11 L01 L10 L00

B11 B10 B01 B00
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Heuristic

A heuristic h assigns a value to each state.
Lower values for ’better’ states.
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Simple Hill-climbing

Simple Hill-climbing is a heuristic search algorithm.

s := I
while γ * s do

if ∃s ′ ∈ succ(s) with h(s ′) < h(s) then
s := s’

else
return fail

return s
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Simple Hill-climbing

Simple Hill-climbing is guaranteed to find a goal state if the
heuristic is descending and dead-end avoiding (DDA).

Descending: each reachable, solvable (non-goal) state has an
improving successor.

Dead-end avoiding: Only solvable successors are improving.
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DDA Heuristic
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Potential Heuristic

Weighted count of the partial assignments that agree with the given
state.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

P set of all possible partial assignments

w weight function

Dimension of hpot is maximal |p| with w(p) 6= 0.



Introduction (P)DDA Basel Measure vs. Novelty Width Lin. Algebra Experiments Conclusion

Potential Heuristic

Weighted count of the partial assignments that agree with the given
state.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

P set of all possible partial assignments

w weight function

Dimension of hpot is maximal |p| with w(p) 6= 0.



Introduction (P)DDA Basel Measure vs. Novelty Width Lin. Algebra Experiments Conclusion

DDA Potential Heuristic
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Correlation Complexity

Definition (Correlation Complexity)

The correlation complexity of a planning task Π is defined as the
minimal dimension of all DDA potential heuristics for Π.

Measures how ’hard’ a planning task is.
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DDA Potential Heuristic
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DDA Potential Heuristic
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DDA Potential Heuristic
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Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then
the heuristic is practically descending and dead-end avoiding
(PDDA).

DDA ⇒ Simple Hill-climbing finds goal

Simple Hill-climbing finds goal ⇒ PDDA

DDA

SHC

= PDDA

DDA
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Basel Measure

Definition (Basel Measure)

The Basel measure of a planning task Π is defined as the minimal
dimension of all PDDA potential heuristics for Π.

Theorem

Basel measure ≤ correlation complexity.
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Basel Measure

Definition (Basel Measure)
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Example

U11start

L11 L01 L10 L00

B11 B10 B01 B00

Correlation complexity: 2
Basel measure: 1
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Novelty Width

Based on a modification of Breadth First Search.

Not states in the closed list but partial assignments of size k.

If p is not in the closed list, then p is novel.

Novelty width is the smallest k that guarantees to finds a plan.

Measures how ’hard’ a planning task is.
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Novelty Width Algorithm

if γ ∈ I then
return I

open := [I ]
closed := {p | p ⊆ I , |p| = k}
while open is not empty do

s := pop first element of open
foreach s ′ ∈ succ(s) do

if γ ⊆ s ′ then
return s ′

if ∃p∗ ⊆ s ′ with |p∗| ≤ k , p∗ /∈ closed then
insert each p ⊆ s ′ with |p| = k in closed
append s ′ to open

return fail

←

←
←
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Basel Measure vs. Novelty Width

Theorem

Basel measure ≤ novelty width +1
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Basel Measure vs. Novelty Width

Proof sketch:

states of plan found with novelty width algorithm: s0, s1, . . . , sL

chose weights such that si is the only improving successor of si−1
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Basel Measure vs. Novelty Width

Part of the search tree:

si−1

si−1
si

⊇ p∗i
si + {f }

w(p∗i ) := −Ω2i w(p∗i ∪ {f }) := +Ω2i+1

ci

⊇ p∗i
ci ⊇ {f }
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Basel Measure vs. Novelty Width

Simple Hill-climbing follows the plan found by the novelty width
algorithm.
The heuristic is PDDA.

|p∗i | = novelty width

|p∗i ∪ {f }| = novelty width +1

Basel measure is at most novelty width +1.
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Example

U11start

L11 L01 L10 L00

B11 B10 B01 B00

Correlation complexity: 2. Why not 1?
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State Space in 3D-Space

initial
goal

Treat state variables as dimensions.
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Linear Algebra

Definition (Vectorization)

Let Π = 〈V , I ,O, γ〉 a planning task with only {0, 1} domains. The
vector

−−→
ts,s′ ∈ R|V | is the vectorization from the state s to the state

s ′ where −−→
ts,s′ [i ] := s ′(vi )− s(vi )

for each i ∈ {1, . . . , |V |}.

Assume: w({v 7→ 0}) = 0 for each v ∈ V .
For 1-dimensional potential heuristics:

hpot(s ′)− hpot(s) =
∑
vi∈V

w({vi 7→ 1}) · −−→ts,s′ [i ]

Weight function w corresponds to a linear mapping.
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Planning Task in 3D-Space

initial goal

h(s ′) ≥ h(s)

h(s ′) < h(s)
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Separating Hyperplane
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Example

U11start

L11 L01 L10 L00

B11 B10 B01 B00

For each DDA heuristic:
h(L01) ≥ h(L10)⇒ −−−−→tL10,L01

h(B01) < h(B10)⇒ −−−−−→tB10,B01
−−−−→
tL10,L01 =

−−−−−→
tB10,B01 6=

−→
0 ⇒ no separating hyperplane exists ⇒ h is at

least 2-dimensional ⇒ correlation complexity is at least 2.
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Linear Algebra

Detects correlation complexity of at least 2 on more tasks than other
approaches in literature.
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Find Tasks with Basel Measure 1

p w(p)
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Find Tasks with Basel Measure 1

Mixed Integer Program to refine h.

Refine until h is PDDA ⇒ Basel measure = 1.

or solution space is empty ⇒ Basel measure ≥ 2.
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Results

task
Basel
measure

task
Basel
measure

gripper:
visitall-

opt11-strips:

prob01.pddl ≥ 2 problem02-full.pddl 1
prob02.pddl ≥ 2 problem02-half.pddl 1
prob03.pddl ≥ 2 problem03-full.pddl 1
prob04.pddl ≥ 2 problem03-half.pddl ≥ 2

movie: pegsol-08-strips:

prob01.pddl 1 p01.pddl 1
prob02.pddl 1 p02.pddl ≥ 2
prob03.pddl 1
prob04.pddl 1
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Conclusion

Basel measure ≤ correlation complexity.

Basel measure ≤ novelty width +1.

We can use linear algebra to detect a correlation complexity of at
least 2.

Some IPC tasks have Basel measure of 1.

In practice translation can change the Basel measure.
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