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Automated Planning & State Spaces

« Find action sequence leading from initial state to goal state

« Let our state space be S = (S, A, cost, T, sy, S.)

« Our objective is to find a sequence of actions (a,, a,, ..., a,) where we start at s, and end at s € S.with a, € A
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Optimal Planning

Optimal Planning is concerned with finding a sequence of actions with minimal cost
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Planning Formalisms

Proo= (O, P, A, s4, 0)
« Consists of objects O, predicates P, action schemas A, an initial state s, and a set of goal conditions
» Predicates describe relationships between objects
» Action schemas potentially change the relationships described between objects
« The initial state is given by predicates depicting certain relationships between objects

» All states that adhere to the goal conditions are goal states

Initial State Goal State
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Why Planner Portfolios?
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Offline Portfolios:

An offline portfolio is a schedule of planners
paired with time allocations

Is trained to produce a sequence

Does not take task specific information into
account

Doesnt require extra computational overhead for

each task

Offline Portfolios and Online Portfolios

Online Portfolios:

An online portfolio is a function with input being
the current task and a history of attempted
planners and the output is a planner time
allocation pair

Is trained to make predictions

Takes task specific information into account
Requires extra computational overhead for each

task
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Previous Work on Online Portfolios

« Delfi (Katz et al., 2018; Sievers et al., 2019a)

« Used Supervised Learning

« Had to train multiple networks to make multiple predictions
« Additional networks require progressively longer to train

« Doesn’t scale well
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Why use Reinforcement Learning for Online Planner Portfolios?
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Reward Functions & Reward Shaping

« Reward is a metric for quality of an action given a
certain state

« Reward determines how & what agent learns

« Proper reward construction integral to agent’s

SUCCesSS
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Reward Functions & Reward Shaping

» Sparse rewards - slow learning
« Shaped rewards - faster learning , local optima potential
« Extreme reward shaping (dense rewards) - much faster learning, even more local optima potential

 Reward below is the reward for our reward shaping DDPG

¢ g - B . -
—11 iff no planner can solve in timeLeft any more
—10 iff plannerTime< (
R=¢ . : :
-1 iff some planners can still solve
1+ 10=* timeLeftEpisode iff current planner and time allocation solves task
s - timePerEpisode—timeForBest Planner ’ L plé e - “ ) e
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Bellman equation & Deep Q-Networks
V(s) = max{R(s,a) +~vV(s')}

 DON is a RL algorithm for discrete action spaces that combines Q-Learning with deep neural
networks

« Uses Bellman equation to calculate expected Q-values

* Network determines Q-values of state action pairs

« Selects action with highest Q-value for given state
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Our DQN

Constant amount
of Time

Image,

History Planner choice » Full action
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Actor-Critic methods & Deep Deterministics Policy Gradients

Consist of Actor & Critic networks

. . . Actor (policy)
Actor network estimates «continous» action

 Critic networks estimates Q-value of state action pair TD Ervor __

 In this project only Actor Critic used DDPG m
State Critic (Value ] E
4" function) b=

Reward

—[ Environment ]'7
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Our DDPG

Actor

Planner selection,

Time allocation

Critic

Image,
History,

Planner selection,
Time allocation
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Discrete-Continous Hybrid Action Spaces

» Hybrid action spaces have discrete and
continous action components

* Most RL agents made to work on either
continous or discrete action spaces

+ Difficult to deal with combination

» Multiple agents interacting in a single

environment - multi-agent RL
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Multi-Agent Reinforcement Learning

* Multiple agents interacting in the same environment

« Cooperative MARL v.s. Adversarial MARL

« Cooperative MARL - e.g., agents learn to play hide and seek together (Baker et al., 2019)
« Adversarial MARL - e.g., agents compete while playing hide and seek (Baker et al., 2019)

« Can we formulate online planner portfolio learning as a cooperative MARL environment?
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Image,
History

Our MARL
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Experiments
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Sparse Rewards DDPG
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Reward Shaping DDPG

Percent correct (%)

70 A

60 A

50 A

40 -

30 -

20 A

10 A

|‘|’WHW" AL

AR

[ 1

100

200

300

T

400

500

600

episode number/10

Titel Vortrag, Autor, DD.MM.YY

Universitat Basel 20



Percent correct (%)

MARL with MSE reward
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Future Work

Insufficient amount of task data - generate more task data

Insufficient quality of samples - e.g., Prioritized Experience Replay

Insufficient stability and sample efficiency in current RL - Supervised Learning

Task representation optimal as input? - Research into alternative methods for encoding PDDL

tasks
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Conclusion

* RL approach could not outperform SL approaches such Delfi (Katz et al., 2018; Sievers et al.,
2019a)

» Likely due to size and quality of tasks in data set

» For Delfi max number of predictions n=2

* n>10 likely not very helpful > maybe SL approach doesnt need to scale much
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Questions?
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