
Compilability between Generalized
Representations for Classical Planning

Master’s thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Research Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert, Dr. Gabriele Röger

Supervisor: Dr. Gabriele Röger

Claudia S. Grundke

claudia.grundke@unibas.ch

17-058-538

22 December, 2022

https://ai.dmi.unibas.ch/

Acknowledgments

First, I would like to thank Prof. Dr. Helmert for the opportunity to write my Master’s

thesis in his research group and for the ideas he offered regarding my topic. And secondly,

I am very grateful to my supervisor Dr. Gabriele Röger because of her support and the

feedback she provided during our many meetings.

Abstract

In generalized planning the aim is to solve whole classes of planning tasks instead of single

tasks one at a time. Generalized representations provide information or knowledge about

such classes to help solving them. This work compares the expressiveness of three generalized

representations, generalized potential heuristics, policy sketches and action schema networks,

in terms of compilability. We use a notion of equivalence that requires two generalized

representations to decompose the tasks of a class into the same subtasks. We present

compilations between pairs of equivalent generalized representations and proofs where a

compilation is impossible.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Generalized Classical Planning . 3

2.2 Generalized Potential Heuristics . 7

2.3 Policy Sketches . 8

2.4 Action Schema Networks . 14

3 Compilability between four Generalized Representations 18

3.1 Generalized Potential Heuristics into Policy Sketches 18

3.2 Policy Sketches into Generalized Potential Heuristics 26

3.3 Action Schema Networks into Generalized Potential Heuristics 32

3.4 Generalized Potential Heuristics into Action Schema Networks 36

4 Related Work 41

4.1 Generalized Representations . 41

4.2 Compilability . 43

5 Conclusions 45

5.1 Discussion . 45

5.2 Future Work . 46

Bibliography 48

1
Introduction

In automated planning the aim is to find plans that solve planning tasks. Take for example

the problem of building a tower of blocks from multiple building blocks lying on a table.

This task can be solved by picking up and placing the blocks onto each other such that a

single tower remains. Now, what if there is not a single task that asks for a single tower but

there are many different tasks that ask for different configurations of blocks where different

numbers of blocks are involved? The plan from before is not sufficient because there might

be configurations with more than one tower to be built. This is what generalized planning

is concerned with, solving not only single tasks but whole classes of tasks.

Generalized representations provide information about such classes of tasks that can be used

to solve them. Heuristics for example give an estimation for each state of a planning task

that tells how far or how close the state is to the goal. Generalized heuristics, like generalized

potential heuristics which we consider in this work, can provide these estimates not only for

each state of a single task but for all states of all tasks in a class. Policy sketches are the

second generalized representation we evaluate and by defining subgoals for each state they

decompose the tasks of a class into subtasks. Solving the subtasks of a task then leads to a

solution for the whole task. Lastly, we consider action schema networks which yield policies

to solve the tasks of a class. These policies tell for each state which action should be chosen

to get closer to the goal.

In this work we take a look at these three generalized representations, generalized poten-

tial heuristics, policy sketches and action schema networks, and investigate whether they

can express the same information about a class of tasks. We compare them in terms of

compilability, that means we provide compilations from one generalized representation into

another or proof that no compilation exists.

This work is structured as follows. In Chapter 2 we begin with introducing the concepts

needed to understand our compilations results. Most importantly we explain the basics of

each of the three generalized representations we are going to compare. Chapter 3 then is our

main contribution and presents compilations and counterexamples where a compilation is

impossible. We first show that generalized potential heuristics can be compiled into policy

sketches (Section 3.1) but the reverse direction, that means compiling policy sketches into

generalized potential heuristics, is usually not possible (3.2). Afterwards we show that action

Introduction 2

schema networks and generalized potential heuristics can in general not be compiled into

each other (Sections 3.3 and 3.4). The following Chapter 4 then is concerned with work

related to our compilation results. Lastly, we discuss our results and provide an outlook on

potential future work in Chapter 5.

Summary of Compilation Results
The following is a summary of our compilation results and is shown here as an overview. It

will be discussed in the last chapter.

Compilation into policy sketch:

Theorem 1 Compilation from non-negative integer-valued GP heuristic into equiv-

alent sketch

Theorem 2 Compilation from non-negative real-valued GP heuristic into equiva-

lent sketch

Theorem 3 Compilation from integer-valued (including negative values) GP heu-

ristic into equivalent sketch

Theorem 4 Compilation is not possible from (non-negative integer-valued) GP

heuristic into equivalent sketch with same features

Compilation from policy sketch:

Theorem 5 Compilation not possible from sketch into equivalent GP heuristic (in

general and thus also not with same features)

Theorem 6 Compilation from sketch into similar GP heuristic

Theorem 7 Compilation not possible from sketch into similar GP heuristic with

same features

Compilation from and into action schema network parameters:

Theorem 8 Compilation not possible from ASNet parameters into equivalent GP

heuristic

Theorem 9 Compilation not possible from GP heuristic into equivalent ASNet

parameters

Theorems 5 and 8 hold for heuristics in general and Theorems 1, 2 and 3 can be altered to

hold for heuristics in general.

2
Background

This chapter introduces the notation and concepts which form the basis of the compila-

tion results presented in Chapter 3. Section 2.1 paves the way with the overall setting of

generalized classical planning in which our results are settled. The following three sections

introduce the three generalized representations we want to compile into each other: gener-

alized potential heuristics in Section 2.2, policy sketches in Section 2.3 and action schema

networks in Section 2.4.

2.1 Generalized Classical Planning
Classical planning is concerned with deterministic planning tasks in which a single agent

starts in some initial state and tries to reach a goal state by altering its current state with

some action. The aim is to find a sequence of actions, a plan, that leads from the initial

state to some goal state. We consider the special case of classical planning where each

action has the same cost, i. e. unit-cost planning, because all three considered generalized

representations are based on this.

Generalized planning reasons over whole classes of planning tasks. That means, trying to

find solutions for multiple, possibly infinitely many, related planning tasks at once instead

of finding a solution for each task separately.

Generalized classical planning is therefore concerned with classes of classical planning tasks.

We begin though, with introducing the basic notions of classical planning. The foundation

are state spaces which describe a problem by specifying its states and actions. A state space

can be considered as a graph where each node corresponds to a state and each directed edge

represents an action between two nodes. It is defined as follows.

Definition 1 (State space). A state space is a tuple S = ⟨S,A, T, s0, S∗⟩ where

• S is a finite set of states,

• A is a finite set of actions,

• T ⊆ S ×A× S is the transition relation,

• s0 ∈ S is the initial state, and

Background 4

• S∗ ⊆ S is the set of goal states.

Because we are in the setting of classical planning the transition relation T is considered to

be deterministic. That means, for each pair ⟨s, a⟩ ∈ S ×A there is at most one state s′ ∈ S

such that ⟨s, a, s′⟩ ∈ T holds. So, given a state s and an action a that is applied in this

state, we can predict with certainty what the resulting state s′ will be.

Action schema networks are actually able to handle stochastic transitions because they

were introduced for stochastic shortest path problems (SSPs). With stochastic transitions,

applying an action a in a state s can lead to different successor states s′ with certain

probabilities. But since our focus is on classical planning, we only consider the less general

case of deterministic transitions (which is just the special case where for each state-action

pair there is at most one transition and this transition has probability 1).

Next, we formally define the terms applicability and successor which are important for

reasoning about planning tasks.

Definition 2 (Applicable action, successor state). Let T be a transition relation.

An action a is applicable in state s if there exists a transition ⟨s, a, s′⟩ ∈ T for some state

s′.

The successors of a state s are all states s′ such that ⟨s, a, s′⟩ ∈ T holds for some action a.

Applying actions over and over leads to sequences from which we can derive the current

state. These action sequences are called paths and are defined as follows.

Definition 3 (Path). Let S be a state space with transition relation T .

A path between two states s0 and sn (for some finite n ∈ N≥0) is a sequence of actions

π = ⟨a1, . . . , an⟩ such that there exist states s1, . . . , sn−1 with ⟨si−1, ai, si⟩ ∈ T for 1 ≤ i ≤ n.

The length of a path π is |π| = n which is the number of actions it includes.

Paths that start in the initial state and end in a goal state are most important in planning

as they describe solutions for a state space:

Definition 4 (Plan, solution for a state space). Let S = ⟨S,A, T, s0, S∗⟩ be a state space.

A plan for state s ∈ S is a path from s to some goal state s∗ ∈ S∗.

A solution for state space S is a plan for s0. If a state space has a solution it is called

solvable, otherwise it is unsolvable.

An optimal plan for a state s ∈ S is a plan of s with minimal length among all plans for s

and an optimal solution for state space S is an optimal plan for s0.

With these definitions we can now specify state spaces and their solutions. The following

definition introduces terms to differentiate certain states from each other such that we can

reason further about state spaces.

Definition 5 (Reachable state, solvable state, alive state, dead-end state). A state s is

reachable if there exists a path from the initial state to s.

A state s is solvable if there exists a path from s to some goal state and it is unsolvable if

it is not solvable.

A state s is alive if it is reachable, solvable and not a goal state.

A state s is a dead-end if it is reachable and unsolvable.

Background 5

Note that the initial state is trivially reachable and all goal states are trivially solvable by

the empty path ⟨⟩.
Because the number of states can be huge and thus can be difficult to store explicitly, the core

concept of automated planning are planning tasks that compactly represent state spaces.

The following definition of a planning task complies with the STRIPS formalism [6].

Definition 6 (Planning task). A planning task is a tuple P = ⟨F,A, I,G⟩ where

• F is the finite set of propositions, also called ground atoms, or just atoms,

• A is the finite set of actions where for each action a ∈ A the following is defined:

– Pre(a) ⊆ F is the set of preconditions of a,

– Add(a) ⊆ F is the set of add effects of a, and

– Del(a) ⊆ F is the set of delete effects of a,

• I ⊆ F represents the initial state,

• G ⊆ F represents the set of goal states.

Comparing state spaces with planning tasks, the parallels of actions, initial state and goal

states are easy to see. The relation of states and propositions is not so direct and calls for

more explanation. Each subset of the propositions of a planning task, s ⊆ F , represents the

state where the propositions in s are true and all other propositions, F \ s, are false.

With this we can formally define how a state space can be related to a planning task:

Definition 7 (Induced state space). A planning task P = ⟨F,A, I,G⟩ induces a state space

S = ⟨S,A, T, s0, S∗⟩ where

• S = 2F (power set of F),

• for states s and s′ and action a we have ⟨s, a, s′⟩ ∈ T if Pre(a) ⊆ s and s′ = (s \
Del(a))∪Add(a) hold, that means ⟨s, a, s′⟩ is a transition if s satisfies the preconditions

of a and s′ is s where the delete effects of a are applied and then the add effects,

• s0 = I, and

• for a state s we have s ∈ S∗ if G ⊆ s, so state s is a goal state if the propositions in

G are true in s.

Using this definition we can take over some terminology from state spaces to planning tasks.

A solution of a planning task is a plan that solves the initial state of the planning task, or

analogously a solution of the state space that is induced by a planning task is also a solution

for the planning task itself. Likewise, a planning task is solvable if there exists a plan that

solves its initial state and it is unsolvable otherwise.

We have now covered the necessary concepts from classical planning and will in the following

introduce concepts from generalized planning. As mentioned before, in generalized planning

we do not try to find solutions for single tasks but for multiple planning tasks at once. It is

usually assumed that these tasks are defined over the same planning domain and that they

share a common underlying structure. A domain in this case is defined as follows.

Background 6

Definition 8 (Planning domain). A planning domain (or domain for short) is a tuple

⟨P,A⟩ where

• P is a finite set of predicates, and

• A is a finite set of action schemas.

This definition is based on lifted SSPs from Toyer et al. [23]. The domain definition of Bonet

and Geffner [3] slightly differs from ours but is analogous. Francès et al. [7] additionally

use the concept of a first-order vocabulary which makes their framework slightly more ex-

pressive. We will only consider generalized potential heuristics in the context of domains as

defined above because the use of concept-based features in Francès et al. [7] leads to similar

restrictions compared to the usage of above domain definition.

To obtain a planning task from a domain the predicates and action schemas need to be

grounded with a set of objects. Grounding a predicate from P means instantiating it with

a tuple of objects which yields a proposition (called ground atom). Similarly, grounding an

action schema from A, that means instantiating it with a tuple of objects, yields an action.

Take for example the blocksworld domain where we have blocks on a table that should be

brought from some configurations into other configurations. We might have a predicate on

with arity 2 that specifies whether some block lies on another block. When grounding this

predicate with two block-objects a and b for example we obtain the proposition on(a, b)

which is true if block a lies on block b.

In order to fully specify a planning task we furthermore need an initial state and goal states.

The following definition summarizes what is needed to fully specify a set of tasks for a

domain.

Definition 9 (Class of planning tasks). A class of planning tasks is a set of planning tasks

over the same domain ⟨P,A⟩ where each task has its own instance information ⟨O, I, G⟩
with

• O a set of objects,

• I ⊆ F the initial state (as defined for planning tasks), and

• G ⊆ F the set of goal states (as defined for planning tasks)

where propositions F are obtained from grounding the predicates P with the objects O.

Grounding the predicates P and action schemas A with the objects in O yields a planning

task with initial state I and goal states G.

This definition is based on Toyer et al. [24] and Bonet and Geffner [3] use the term class

of planning tasks analogously. Francès et al. [7] on the other hand define this terminology

differently. What we call a class of planning tasks, they call generalized planning domain

and as mentioned earlier they additionally use a first-order vocabulary.

We have now introduced all basic concepts of our work. In the following three sections we

will introduce each of the three generalized representations we want to compile into each

other.

Background 7

2.2 Generalized Potential Heuristics
Generalized potential heuristics (or GP heuristics for short) were introduced by Francès

et al. [7] and are weighted sums of features. They are a generalized planning variation of

potential heuristics from Pommerening et al. [14]. Their features are mappings from states

to integers while the weights are real-valued and fixed for each feature. Francès et al. [7]

use a certain kind of features that are based on concept languages also called description

logics [1] but for our work the general notion of features as mappings from states to integers

suffices. Generalized potential heuristics are formally defined as follows.

Definition 10 (Generalized potential heuristic, [7]). Let S be a set of states and F a set of

features f : S → Z. Let w : F → R be a weight function mapping features to weights. The

value of the generalized potential heuristic with features F and weights w on state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

The states of S do not have to be from the same task but for the generalized potential

heuristic to be well-defined they should be from tasks from the same class of planning

tasks. A generalized potential heuristic is well-defined on any state of any task of a class

of planning tasks if all its features are well-defined. Because of this Francès et al. [7] derive

their features from the predicates and constants that are shared among all tasks in a class.

They use concept languages [1] to build these features.

Francès et al. [7] use GP heuristics to guide greedy search algorithms and because of that

they are interested in descending and dead-end avoiding GP heuristics. Heuristics that are

descending and dead-end avoiding have no local minima and thus effectively guide greedy

searches [18].

We begin with descending heuristics which are heuristics that assign a lower heuristic value

to at least one successor of each alive state. That means each alive state has at least one

successor with improving heuristic value which a search algorithm can choose as next state.

Descending heuristics are formally defined as follows.

Definition 11 (Descending heuristic, [18]). A heuristic h is descending in task P if every

alive state s of P has a successor state s′ with h(s′) < h(s).

A heuristic is descending in a class Q of planning tasks if it is descending in every task

P ∈ Q.

While a descending heuristic guarantees that there is a successor that looks promising, we

also need dead-end avoidance to guarantee that this successor actually is an improvement.

With a dead-end avoiding heuristic we know that each improving successor of an alive state

is solvable. This is formally defined as follows.

Definition 12 (Dead-end avoiding heuristic, [18]). A heuristic is dead-end avoiding in task

P if all successors s′ with h(s′) < h(s) for alive states s are solvable.

It is dead-end avoiding in a class Q of planning tasks if it is dead-end avoiding in every task

P ∈ Q.

So, with a heuristic that is descending and dead-end avoiding there always is an improving

successor and all improving successors are solvable and thus good choices. A heuristic with

Background 8

these properties can enable polynomial runtime for greedy search algorithms over planning

tasks. Simple hill-climbing with a descending and dead-end avoiding heuristic for example

directly finds a path to a goal which means that the runtime depends on the length of the

discovered plan. Thus in our compilations we aim for the compiled GP heuristics to be

descending and dead-end avoiding.

2.3 Policy Sketches
Policy sketches were introduced by Bonet and Geffner [3] in the context of general policies.

The follow-up work by Drexler et al. [4] presents hand-crafted sketches for certain domains

and shows experimentally that sketches help solving problems of these domains. The second

follow-up work by Drexler et al. [5] presents a method for learning sketches automatically.

Policy sketches describe changes that must happen on the path towards the goal. In contrast

to general policies these changes do not have to happen within a single action application.

To be able to generalize over multiple planning tasks, sketches (as well as general policies)

use features similar to the features of generalized potential heuristics. These features map

states to the natural numbers, i.e. non-negative integers. The features allowed for GP

heuristics in contrast can take values in the full integer numbers.

The changes a policy sketch describes are specified in terms of sketch rules. They tell how

certain features must change if a state satisfies the feature conditions of the rule. Formally,

the syntax of sketch rules is defined as follows.

Definition 13 (Sketch rule). For a set S of states from the same class Q of planning tasks,

let Φ be a set of features that are either boolean, p : S → {⊥,⊤}, or non-negative integers,

n : S → N≥0.

A sketch rule C → E then consists of set C with feature conditions of the form p, ¬p, n > 0

or n = 0, and set E with feature effects of the form p, ¬p, p?, n↓, n↑ or n?.

This definition is based on Bonet and Geffner [3] as well as the following definition of policy

sketches which are just sets of sketch rules.

Definition 14 (Policy sketch). A policy sketch (or sketch for short) for class Q of planning

tasks is a set RΦ of sketch rules C → E over features Φ that are defined for the states of

class Q.

In contrast to the definition of sketches from Bonet and Geffner [3] we do not require goal-

separating features for a sketch to be well-defined. The reason for omitting goal-separation

is discussed at the end of this section.

Before turning to the semantics of feature conditions and effects we present a short example

to illustrate the syntax of policy sketches and sketch rules: For a class of planning tasks

in the blocksworld domain where we have towers of blocks built on a table and want to

place all blocks directly on the table we can take for example the feature set Φ = {H,n}.
Boolean feature H tells whether a block is currently held and numerical feature n represents

the number of blocks currently lying on the table. Then a sketch could look like this:

Background 9

RΦ = {{¬H} → {H}, {} → {H?, n↑}}. This sketch has two rules {¬H} → {H} and

{} → {H?, n↑}. The semantics of sketch rules are discussed in the following.

Intuitively, a sketch rule C → E describes changes that must happen on the path towards

the goal. If a state s satisfies the conditions in C then the effects in E determine which

states are subgoal states that we want to reach from s. For a boolean feature p, a state s

satisfies the feature condition p if p(s) is true and it satisfies the condition ¬p if p(s) is false.

For a numerical feature n, a state s satisfies n > 0 if n(s) is greater zero and it satisfies

n = 0 if n(s) is exactly zero. Satisfying a feature effect is defined as follows:

Definition 15 (Satisfy feature effect and sketch compatibility1). A state pair ⟨s, s′⟩ satisfies
a feature effect set E when the following holds:

1. if, for a boolean feature p, feature effect p (respectively ¬p) is in E, then p(s′) = ⊤
(respectively p(s′) = ⊥) must hold,

2. if, for a numerical feature n, feature effect n↓ (respectively n↑) is in E, then n(s) >

n(s′) (respectively n(s) < n(s′)) must hold, and

3. if boolean feature p (respectively numerical feature n) is not mentioned at all in E,

then p(s) = p(s′) (respectively n(s) = n(s′)) must hold.

The state pair ⟨s, s′⟩ is compatible with sketch RΦ if there is a sketch rule C → E such that

s makes the conditions in C true and ⟨s, s′⟩ satisfies the effects in E.

Additionally, the effect set E can also contain effects p? and n?, as mentioned in Definition

13 of sketch rules. These effects do not put any restrictions on the values of the features p

and n. That means while features not mentioned in an effect set E must not change their

value (third rule in above definition), features mentioned as p? or n? can take any value.

Returning to the example from before, the first sketch rule of the sketch RΦ = {{¬H} →
{H}, {} → {H?, n↑}} states that if boolean feature H is false in a state, then we should

reach a state where H is true while the value of n remains unchanged. This rule describes

that it is good to pick up a block that is not lying on the table. Picking up a block changes

H from false to true and doing this while keeping n, the number of blocks on the table,

unchanged is only possible if a block not lying on the table is picked up. The second sketch

rule, {} → {H?, n↑} tells that in all states it is good to increase n, the number of blocks

directly on the table, no matter if or how the value of H changes.

Sketches were introduced as a tool for the greedy search algorithm SIW to be able to handle

problems of large width. For the variant SIWR that uses sketches Bonet and Geffner [3]

can guarantee polynomial runtime if sketch R has certain properties. Both SIW and SIWR

use the IW algorithm which is a breadth-first search that prunes states based on a measure

of novelty related to the width of a problem. SIWR calls multiple IW searches to solve the

subproblems induced by sketch R. Solving the overall problem can be done in polynomial

time and space if R is terminating, has linear features and there is a fixed bound on the

1 This definition is based on Definition 5 of Bonet and Geffner [3] but uses state pairs instead of transitions.
Furthermore, Bonet and Geffner [3] defined this notion in the context of policy rules and later adjusted
it to sketch rules, which is why their definition uses transitions.

Background 10

sketch width. Bonet and Geffner [3] furthermore require the sketch features to be goal-

separating which we do not aim for though as will be discussed at the end of this section.

The other properties we aim for in our compilations and therefore we introduce them now.

We begin with feature valuations and boolean feature valuations though because these are

needed for the following definitions. Given a finite set of features Φ = {f1, . . . , fN}, a feature

valuation fΦ maps each feature fi to a value of it. Furthermore, the feature valuation

determined by a state s is the feature valuation fΦ where fΦ(fi) = fi(s) for all features fi

in Φ, that means fΦ maps all features to the values they take in state s. A condition or

effect on feature fi then, is true under fΦ if fΦ(fi) satisfies it. Thus, like for state pairs, we

can also say that a feature valuation pair ⟨fΦ, f ′Φ⟩ is compatible with a sketch.

Boolean feature valuations b map each value of a feature valuation to true or false. The

values originally from boolean features remain ⊤ (true) or ⊥ (false). The value of a numerical

feature is mapped to true if it is equal to zero (i. e. if n = 0) and it is mapped to false if it

is larger than zero (i. e. n > 0). This leads to 2|Φ| possible boolean feature valuations for

a feature set Φ because we have for each feature fi in Φ either true or false in the boolean

feature valuation.

The first property we are going to define is termination which is crucial for polynomial

runtime of SIWR as it guarantees that SIWR does not get stuck in infinite loops. To define

it though we first need to introduce policy graphs.

Definition 16 (Policy graph). The policy graph G(RΦ) for policy sketch RΦ has nodes b,

one for each of the 2|Φ| boolean feature valuations over Φ, and edges b → b′ labeled with E

if ⟨b, b′⟩ is compatible with a rule C → E in the policy sketch.

This definition is based on Bonet and Geffner [3] and slightly different because when labeling

the edges it does not ignore pairs ⟨b, b′⟩ of which b is a so-called goal valuation. This

change is a result of our omission of goal-separating features which are needed to enable

goal valuations.

A policy sketch RΦ is terminating if following its rules cannot lead to infinitely long paths.

Since the set of rules is finite, infinitely long paths can only occur if the sketch rules induce

cycles in the policy graph.

Definition 17 (Termination, [3]). A policy πΦ and a policy graph G(πΦ) are terminating

if for every cycle in the graph G(πΦ), i.e., any sequence of edges bi → bi+1 with labels Ei

that start and end in the same node, there is a numerical feature n in Φ that is decreased

along some edge and increased in none. That is, n↓ ∈ Ek for some edge in the cycle, and

n↑ ̸∈ Ej and n? ̸∈ Ej for all others edges in the cycle.

This definition is implicitly stricter compared to that of Bonet and Geffner [3] because we

defined policy graphs differently. With our definition of policy graphs we cannot differentiate

whether a cycle in the graph is before the goal or not. Thus, for a sketch to be terminating we

require that even irrelevant cycles within or behind the goal must comply with Definition 17.

Accepting this stricter termination definition of termination though enables us to drop the

requirement of goal-separating features. This is a beneficial trade-off for us because on the

one hand, our compilation results are not hindered by this stricter definition and they also

Background 11

do not exploit the special case where infinite loops behind the goal make a sketch non-

terminating by our definition. Goal-separating features on the other hand are a broader

restriction to sketches than our version of termination. The omission of goal-separation is

further discussed at the end of the section.

The next property needed to bound the runtime of SIWR is a fixed bound on the sketch

width. First, we define width in general.

Definition 18 (Width, [3]). The width w(P) of a problem P is the minimal k for which

there exists a sequence t0, t1, . . . , tm of atom tuples ti, each with at most k atoms, such that:

1. t0 is true in the initial state of P ,

2. any optimal plan for ti, with i ∈ {0, 1, . . . ,m − 1}, can be extended into an optimal

plan for ti+1 by adding a single action,

3. any optimal plan for tm is an optimal plan for P .

The width is w(P) = 0 iff the initial state of P is a goal state. For convenience, we set

w(P) to 0 if the goal of P is reachable in a single step, and to w(P) = N + 1 if P has no

solution where N is the number of atoms in P .

The last part implies that there is no fixed bound on the width for unsolvable problems

because for these the width grows with the number of atoms. Now we can define sketch

width which is in a sense the maximal width of all subproblems that a sketch can induce.

Definition 19 (Sketch width, [3]). Let RΦ be a sketch for a class of planning tasks Q over

features Φ, and let s be a reachable state in some instance P of Q.

The width of sketch RΦ at state s of problem P , wR(P [s]), is the width of the subproblem

P [s] that is like P but with initial state s and goal states s′ such that s′ is a goal state of P

or the pair ⟨fΦ(s), fΦ(s′)⟩ of feature valuations is compatible with a sketch rule C → E.

For a class Q of planning tasks, the width of sketch RΦ, wR(Q), is the maximal width

wR(P [s]) for any reachable state s in any problem P of Q.

A caveat of this definition is that a fixed bound on the sketch width is impossible for

terminating sketches over tasks with dead ends. This is the case because the sketch width is

determined by the maximal width of the subproblems described in Definition 19. So if one

such subproblem has maximal width N +1 (N is the number of atoms) which is not a fixed

bound on the width, then this width determines the sketch width for the whole task. This

sketch width in turn also has no fixed bound. Extending this argument, this also means

there is no fixed bound on the sketch width for a whole class of planning tasks as soon as it

includes a problem with a dead end.

Consider a terminating sketch R and such a subproblem P [s] with initial state s (a reachable

state within P) that is a dead end in the original task P . Since s is a dead end this directly

implies that we cannot reach any goal of P from s. It follows that any reachable goal state

of P [s] must be a state s′ such that ⟨s, s′⟩ is compatible withR. If no such state existed the

subproblem P [s] would be unsolvable and would have width N + 1 which then also means

that R would have width N + 1 which is not a fixed bound.

Background 12

Hence for a fixed bound on the sketch width to exist in such a case, sketch R must have a rule

with which ⟨s, s′⟩ is compatible and state s′ must be reachable from s (then s′ is a reachable

goal state of subproblem P [s]). This state s′ however, is also a dead end in the original

problem P because s already is a dead end. Let without loss of generality s = s′ hold, so

⟨s, s⟩ satisfies a rule in sketch R. It follows that in the policy graph of R there is a self-loop

at the boolean feature valuation corresponding to state s. This self-loop though does not

comply with the definition of a terminating sketch (Definition 17). We know that in this

self-loop no feature value is decreased because ⟨s, s⟩ satisfies the sketch rule corresponding

to the only edge of the loop and a feature value cannot be decreased in this loop if before

and after rule application the feature valuation (that of state s) remains exactly the same.

Therefore, with a terminating sketch such a (self-)loop is not possible and it follows that a

fixed bound on the sketch width of a terminating sketch is only possible for tasks without

dead ends. That means however, we can never get polynomial runtime of SIWR for tasks

with dead ends because polynomial runtime requires both termination and a fixed bound

on the sketch width.

Drexler et al. [5] adjusted the definition of sketch width by restricting the subproblems P [s]

to have initial states s that are reachable and solvable in P . This change enables a fixed

bound on the sketch width even for terminating sketches over tasks with dead ends, given

that the dead ends cannot be reached when following the sketch. This altered definition of

sketch width is useful for us as it allows us to give a fixed bound on the width of the sketch

compiled from a generalized potential heuristic (Section 3.1, Theorem 1). To differentiate

it from the definition of Bonet and Geffner [3] we call the sketch width defined by Drexler

et al. [5] alive sketch width and to define it we first need to introduce the set of subgoal states

GR(s) and the notion of a closed class of tasks.

Definition 20 (Subgoal states, [5]). For sketch R, the set of subgoal states in state s of

problem P ∈ Q is GR(s). It contains the goal states of P and the states s′ for which the

state pair ⟨s, s′⟩ satisfies a sketch rule from R.

Furthermore, G∗
R(s) ⊆ GR(s) is the set that contains the states from GR(s) that are closest

to s.

Class Q of tasks is closed if the following holds: if we have P ∈ Q then for all reachable

and solvable states s in P we also have P ′ ∈ Q where P ′ is like task P but with initial state

s [5]. Now we can define alive sketch width.

Definition 21 (Alive sketch width [5]). The alive sketch width of sketch R over a closed

class of tasks Q is wR(Q) = maxP∈Q w(P
′) where P ′ is P but with goal states G∗

R(s) and s

is the initial state of both, provided that G∗
R(s) does not contain unsolvable states.

The definitions of sketch width (19) and alive sketch width are analogous in the sense that

they both define the sketch width as the maximal width of the subproblems. They consider

different sets of subproblems though. For (original) sketch width we have a subproblem for

each state s reachable in the original problem and the goal states of each subproblem are the

original goal states together with the subgoals defined by the sketch for state s. For alive

sketch width we have a subproblem only for each state s that is reachable and solvable in the

Background 13

original problem. The goal states of each subproblem are also defined slightly differently.

From the set of original goal states and subgoal states of s only the closest ones which are

also solvable are contained in the goal states of each subproblem.

As mentioned before, alive sketch width enables a fixed bound on the (alive) sketch width

also for tasks with dead ends. This is the case because in the definition we now ignore

subproblems that are unsolvable and which cannot be reached when following the sketch.

The last property Bonet and Geffner [3] require for polynomial runtime of SIWR are linear

features which are defined as follows.

Definition 22 (Linear feature assumption). The features f in Φ are either boolean or

numerical, ranging in the latter case over the non-negative integers N≥0. The value f(s) of

feature f in a state s for problem P can be computed in time bounded by O(bN) where N is

the number of atoms and b bounds the branching factor in P . Numerical features can take

up to O(N) values.

This definition is exactly the same as in Bonet and Geffner [3] except the last part about

the number of values. Bonet and Geffner [3] require that numerical features can only take

up to N values while we allow the number of values to be in O(N). Only being able to use

up to N values is rather restricting and does not appear necessary for polynomial runtime

of SIWR. The time and space complexity of SIWR remains the same for O(N) instead

of N feature values. Thus, we relaxed this restriction and only assume features with up

to O(N) values. This change is relevant only for compilations from generalized potential

heuristics into policy sketches, thus Theorems 1, 2 and 3. These theorems could be adjusted

to the original definition by restricting the number of values of the heuristic itself to N ,

then the compiled sketches would have linear features in the sense of Bonet and Geffner [3]

(Theorem 4 remains a counterexample even if we restricted the whole heuristic to have only

up to N values).

As mentioned previously, we end this section with a discussion on why we do not require goal-

separating features in contrast to Bonet and Geffner [3]. A features set is goal-separating if

we can differentiate goal states from non-goal states using boolean feature valuations derived

from the features set. This notion is defined formally as follows.

Definition 23 (Goal-separation, [3]). Features Φ separate goals from non-goals in a task

class Q iff there is a set of boolean feature valuations K such that for any problem P in Q
and any reachable state s in P , state s is a goal state iff boolean feature valuation fK(s) is

in K. The valuations in K are called goal valuations.

Bonet and Geffner [3] ask for goal-separating features for the time and space bounds of

SIWR and, possibly because of this, also in their definitions of policy sketches and sketch

width. However, we do not deem this property necessary. Search algorithms can usually

detect goal-states on their own and do not have to rely on (generalized) representations to

tell them when a goal state is reached. Hence, we should not require for sketches in general

that their features must be goal-separating.

The feature set Φ = {H,n} for example, of our above mentioned sketch RΦ = {{¬H} →
{H}, {} → {H?, n↑}} is not goal-separating. Although numerical feature n counts the

Background 14

number of blocks directly on the table, it is not goal-separating. With neither n > 0 nor

n = 0 we can differentiate goal states from non-goal states because our goal is to place all

blocks on the table where “all” can be a different number in each task of the same task

class. To make Φ goal-separating we could for example add a third feature G that is true if

all blocks lie directly on the table and it is false otherwise. We would then however, need

to adjust the sketch rules as well.

Next to the definitions of sketches and sketch width, Bonet and Geffner [2]2 require goal-

separating features for the proof of their Theorem 37 (they do not require goal-separation

directly but well-definedness for which goal-separation is needed). This theorem is concerned

with polynomial time and space bounds for the sketch-variant SIWR of SIW. The proof how-

ever is based on the analogous proof for SIW with serializations which need goal-separating

features. The proof itself does not need goal-separation, especially when considering it for

sketches instead of serializations.

The proof shows on the one hand that SIWR finds a solution and on the other hand that

this can be achieved in polynomial time and space. The latter part is based on time and

space bounds of the IW search algorithm (which is called repeatedly during SIW) and that

the number of feature valuations for a task is bounded. Whether the sketch can distinguish

goal states from non-goal states is not relevant here.

The former part, that SIWR finds a solution, also does not require goal-separating features.

We know that SIWR cannot encounter unsolvable subproblems because sketch R has a fixed

bound on the (alive) sketch width (this is a requirement for the polynomial time and space

bounds). Thus the IW searches during SIWR always find either a goal state or a solvable

state that satisfies a sketch rule of R. Furthermore, since the sketch is terminating (this is

also a requirement for the time and space bounds), SIWR only consists of a finite number

of IW searches. Hence, at some point a IW search must find a goal state and thus solve the

whole task.

So, because SIWR recognizes if a IW search found a goal state (and not a state that satisfies

a sketch rule) on its own it is not necessary for the sketch to distinguish goal states from

non-goal states. Hence goal-separation is not needed for SIWR to have polynomial time and

space bounds.

This line of reasoning for dropping the requirement of goal-separation is further affirmed by

Drexler et al. [5], one of the follow-up papers of Bonet and Geffner [3]. This paper does not

mention goal-separation at all and only asks for a terminating sketch with a fixed bound on

the sketch width to guarantee polynomial time and space complexity.

2.4 Action Schema Networks
Action schema networks (ASNets) were introduced in Toyer et al. [23] and extended in Toyer

et al. [24] which will use as basis for this work. ASNets are neural networks whose structure

is adjusted to planning tasks. They are capable of handling (factored) stochastic shortest

2 The proof for the time and space bounds of SIWR is not included in Bonet and Geffner [3], only in the
longer version: Bonet and Geffner [2].

Background 15

path problems but this work only considers them in the context of deterministic planning

tasks as mentioned in Section 2.1. In contrast to generalized potential heuristics and policy

sketches a single ASNet can only solve a single task. Its parameters however can be shared

among all tasks of a class and enable ASNets to generalize. So, for a class of planning tasks

we have one set of ASNet parameters with which we initialize an ASNet for each task that

we want to solve.

An ASNet is built of L proposition layers and L + 1 action layers which alternate within

the network. The first and last layer is always an action layer. All action layers contain an

action module for each action of task P ∈ Q and all propositional layers contain a proposition

module for each proposition in task P . As this structure depends on the propositions

and actions of a specific task, it cannot be reused directly for other tasks. Instead action

modules whose actions are derived from the same action schema share the same weight and

proposition modules whose propositions are derived from the same predicate share the same

weight. These weights are shared among the ASNets of all tasks over the same domain.

This means that during training only a single set of weights needs to be learned and then

these weights can be used to solve all tasks of a domain. Thus, the set of weights for a task

class Q contains L · p+ (L+ 1) · a weights where L is the number of layers, p is the number

of predicates of class Q and a is the number of action schemas of class Q.

Figure 2.1: Illustration of an L-layer ASNet where each rectangle represents a module in
the network. Image taken from Toyer et al. [24].

We say that an ASNet can be initialized for a task P of task class Q with ASNet parameters

θ for class Q. The ASNet parameters consist of the set of learned weights (including the

bias), the number of layers L, the hidden dimension hd, the activation function f , and the

pooling function pool.

An ASNet initialized for a task takes a state (and potentially some other features) as input

and yields a policy for the task. A policy π : A×S → [0, 1] is a probability distribution over

the actions a ∈ A in state s ∈ S [24]. An agent following this policy could choose action a

in state s with probability π(a|s) but since we only consider non-probabilistic tasks it is not

necessary for a policy to offer multiple possible actions for one state. Thus we assume that

an agent following policy π(a|s) always chooses the action a in state s for which π(a|s) is

maximal.

The connections between the modules in two layers are based on relatedness which relies on

Background 16

the concept of lifted propositions [24].3 A lifted proposition is a predicate with a specific

combination of action parameters. So, for example for predicate on with arity 2 and action

schema moveFromBlockToBlock(?toMove, ?currBelow, ?target) a lifted proposition is

on(?toMove, ?target). Each unique lifted proposition has a position within an action schema

which is determined by the first occurrence of it within the preconditions or effects of an

action schema.4

Take for example the action schema moveFromBlockToBlock(?toMove, ?currBelow, ?tar-

get) with preconditions {clear(?toMove), clear(?target), on(?toMove, ?currBelow)}, add

effects {clear(?currBelow), on(?toMove, ?target)} and delete effects {clear(?target), on(

?toMove, ?currBelow)}. The first lifted proposition then is clear(?toMove), the second is

clear(?target) and so on. The last lifted proposition with a position is on(?toMove, ?target)

at position 5 because clear(?target) and on(?toMove, ?currBelow) in the delete set are

already accounted for in the preconditions and thus no new unique lifted propositions.

We can now define relatedness. A proposition p and an action a are related at position

k, written as R(a, p, k), if the lifted proposition corresponding to p is the kth unique lifted

proposition mentioned in the action schema from which a is derived. Using the example

above, for instance, the action moveFromBlockToBlock(blockA, blockB, blockC) is related

to the proposition on(blockA, blockB) at position 3.

An action module in layer l for an action a takes as input vector ula where the hidden repre-

sentations (the outputs) of all proposition modules in the previous layer whose propositions

p are related to a are concatenated. An exception are the action modules in the first layer

of an ASNet which take as input vector u1a that concatenates the truth values of the related

propositions in current state s, the truth values of the related propositions in the goal and

whether action a is applicable in s.5

Within an action module the input vector ula is multiplied with weight W l
a and then a bias

bla is added which both correspond to the lth layer of the ASNet and the action schema from

which a is derived. The result is then passed through a non-linear activation function f , e.

g. tanh, sigmoid or ReLU. So the output of an action module in layer l, corresponding to

action a, called the hidden representation, is ϕla = f(W · ua + bla).

The hidden representation of proposition modules are computed analogously, that means

ψl
p = f(W l

p · vp) where p is the proposition corresponding to the module, W l
p is the weight

corresponding to layer l of the ASNet and the predicate from which p is derived and vlp is

the input vector for the module. Unlike for action modules this input vector vlp is not just a

concatenation of the hidden representations of action modules from the previous layer whose

actions are related to p. All actions derived from the same action schema and related to p

3 One extension to ASNets of Toyer et al. [24] are skip connections that connect two action layers directly.
We do not consider ASNets with skip connections in this work as they do not change our results regarding
the compilation between ASNets and generalized potential heuristics.

4 Since, theoretically, the preconditions and effects are sets we would need to manually number the men-
tioned lifted propositions. However, in practice these are usually written one after another from which a
numbering can be derived.

5 Toyer et al. [24] extend these first input vectors with additional features about the task and the search to
overcome the limited receptive field of ASNets. They use for example information derived from landmarks
found by the LM-cut heuristic [8]. However in this work we only consider ASNets without these additional
input features.

Background 17

at the same position k are pooled together into a single vector to keep the input size fixed

of each proposition module. Then these vectors are concatenated and used as input vector

vlp. Possible pooling methods are for example mean pooling (using the mean of all hidden

representations) or max pooling (using only the maximal hidden representation).

The last piece needed for an ASNet is the output of the final action layer to obtain a

policy for task P ∈ Q. Instead of a hidden representation vector, each action module with

corresponding action a gives a probability π(a|s) that action a should be selected in the

current state s. To normalize these probabilities and to ensure that only applicable actions

have a non-zero probability, a masked softmax activation function is used.

3
Compilability between four Generalized

Representations

After introducing the background of our results in the last chapter, this chapter presents

in which cases compilations are possible between certain generalized representations and in

which cases they are not possible.

The overall aim of our work is to compile generalized representations into other generalized

representations with equivalent behaviour or to show that such compilations are not possible.

For the sake of readability we will often refer to generalized representations with equivalent

behaviour simply as being equivalent. What we consider as equivalent behaviour between

two generalized representations will be explained in each case. In general, we can think of

each representation as a subgoal generator that defines subgoal states for each state s which

should be reached from s. Equivalent behaviour then means that both representations mark

the same states as subgoals for each state s. For policies and many heuristics the subgoals

of a state are direct successor states of it. But with policy sketches and heuristics in general

the subgoals of a state could include any state.

In Section 3.1 we begin with the compilation from generalized potential heuristics into policy

sketches, followed by the opposite direction in Section 3.2. Afterwards, we talk about the

compilation from action schema networks into generalized potential heuristics in Section 3.3

and lastly about the opposite direction in Section 3.4.

3.1 Generalized Potential Heuristics into Policy Sketches
The first results we present are about compilations from generalized potential heuristics

into policy sketches. As our goal is to preserve equivalent behaviour though, we begin with

defining when we consider a generalized potential heuristic and a policy sketch to have

equivalent behaviour.

In general we mean with equivalent behaviour of two generalized representations that they

mark for each state s the same states as subgoals. For policy sketches this is even formally

defined (Definition 20) as the goal states and the states s′ for which the state pair ⟨s, s′⟩
satisfies a sketch rule or in other words for which ⟨s, s′⟩ is compatible with the sketch. In the

Compilability between four Generalized Representations 19

context of equivalent behaviour though we use the term subgoal more loosely and usually

do not include the goal states in the set of subgoal states of a state.

In contrast to policy sketches it is not defined when a (generalized potential) heuristic

considers a state as subgoal of another state. Looking only at the successors of a state

s for example, the subgoals could be all states with smaller heuristic value than s or all

states that have a minimal heuristic value among all successors of s. The latter viewpoint

we will use when comparing action schema networks with generalized potential heuristics

in Section 3.3 and Section 3.4. Only looking at successor states however is not reasonable

when comparing policy sketches with generalized potential heuristics as sketches can define

any state as subgoal of another state. They do not have to be successors or even reachable

from s. Likewise, comparing heuristic values is possible for any two states and not only for

states and their successors.

Therefore, for our comparison of policy sketches and generalized potential heuristics we say

that a GP heuristic hGP defines a state s′ as subgoal of s if it has a better (i. e. lower)

heuristic value than s, that means if hGP(s) > hGP(s′) holds. We then define equivalence of

a GP heuristic and a sketch as follows.

Definition 24 (Equivalent behaviour of a policy sketch and a generalized potential heuris-

tic). A policy sketch R and a generalized potential heuristic hGP show equivalent behaviour

if for all states s and s′ it holds that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with R.

So, for each state s the GP heuristic hGP and the sketch R must define exactly the same

states s′ as subgoals of s. Note that we do not use the term subgoal in the formal definition

and, as mentioned before, mean with it here only states for which the state pair ⟨s, s′⟩
satisfies a sketch rule and in general not goal states as well.

Instead of above equivalence definition we could also use a less strict one. Currently we

consider all states when checking for equivalence. However, we could also take into account

only reachable states s and from s reachable states s′. Then it would be irrelevant whether

a state s′ is a subgoal of a state s or not if we cannot reach s′ from s anyway. We do not

use this less strict definition though because the cases where a compilation is possible also

work for the stricter definition (where all states are considered) and in the cases where a

compilation is not possible the presented counterexamples remain counterexamples even if

we were using the less strict definition (where only reachable states are considered).

With the above definition of equivalent behaviour we will see that in general we can compile

a generalized potential heuristic into a policy sketch with equivalent behaviour. However,

we will also show that the compilation is not possible when we require that the compiled

sketch must use the same features as the GP heuristic.

Our first result, that the compilation from a generalized potential heuristic into a policy

sketch is possible in general, is split into three theorems though. This is the case because

sketches are defined only for non-negative integer-valued features while a GP heuristic might

use the full real numbers. In the first of the three theorems, we consider the special case

of a GP heuristic whose features and weights are in the natural numbers. As a result, the

estimates of the GP heuristic also are natural numbers.

Compilability between four Generalized Representations 20

Theorem 1. Let hGP be a generalized potential heuristic for set F of linear features f :

S → N≥0 over the states S from class Q of planning tasks and weight function w : F → N≥0.

Then there is a terminating policy sketch RΦ over a suitably defined feature set Φ of linear

features for Q such that RΦ is equivalent to hGP. That means it holds for all states s and

s′ in S that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ.

Let, furthermore, task class Q contain only solvable tasks and let hGP be descending and

dead-end avoiding in Q.

Sketch RΦ then has alive sketch width 0.

If, additionally, all tasks of Q have no dead-ends, then RΦ also has sketch width 0.

Proof. For the sketch, we can use the heuristic function as the only feature, i.e. Φ = {hGP}.
This feature furthermore is linear because hGP is a linear combination of linear features.

We show that RΦ = {{} → {hGP↓}} has the desired properties, starting with termination.

A sketch is terminating if the rule-set interpreted as policy is terminating, i.e. for every

cycle in the policy graph there is a numerical feature in Φ that is decreased along some edge

and increased in none. With the given feature, the policy graph has exactly two nodes, one

for hGP = 0 and one for hGP > 0 and the only cycle is a self-loop at the node for hGP > 0

corresponding to the only rule of RΦ. Obviously, feature hGP is decreased along this edge

and never increased in the cycle since this is the only edge. Hence, the rule-set is terminating

and thus the sketch is terminating as well.

Next, we need to show that RΦ is equivalent to hGP, i. e. it holds for all states s and s′

of all tasks in class Q that hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ. This holds

trivially since the only sketch rule of RΦ is {} → {hGP↓}. So, for each state s, the states

s′ with hGP(s) > hGP(s′) are exactly the states for which ⟨s, s′⟩ satisfies the sketch rule

{} → {hGP↓} and thus ⟨s, s′⟩ is compatible with RΦ.

It remains to be shown that the alive sketch width of RΦ is 0 if hGP is descending and dead-

end avoiding for class Q of solvable tasks. Observe that with a dead-end avoiding heuristic,

all successor states s′ of an alive state s with a lower heuristic estimate than s also must

be alive or be a goal state. With a descending heuristic, there always is such a state s′ if

s is not already a goal state. Since the sketch rule asks for lower heuristic estimates, this

means the closest subgoal states of any alive state must again be alive or goal states and

thus solvable.

Consider an arbitrary reachable and solvable state s in some task P ∈ Q. If s is a goal state,

the width of the corresponding subproblem is 0 by definition. Otherwise, by the previous

discussion, there is a subgoal reachable within one step, thus the width of the corresponding

subproblem is again 0 by definition.

Since the subproblems of all reachable and solvable states have width 0, the alive sketch

width is 0.

Lastly, we prove that if the tasks of Q additionally have no dead ends, Rϕ also has sketch

width 0. The argument is analogous to the one for alive sketch width.

Since all tasks in Q are solvable and have no dead ends, all reachable states of any task in

Q are solvable, and hence also alive if they are not goal states. With a descending heuristic

Compilability between four Generalized Representations 21

each such alive state s has a successor s′ with lower heuristic estimate. As the sketch rule

of RΦ asks for lower heuristic estimates, this means the closest subgoal states of any alive

state must again be alive or goal states and thus be solvable. Note that a heuristic is always

dead-end avoiding in a task without dead ends.

Consider an arbitrary reachable state s in some task P ∈ Q. If s is a goal state, the width

of the corresponding subproblem is 0 by definition. Otherwise, by the previous discussion,

there is a subgoal reachable within one step, thus the width of the corresponding subproblem

is again 0 by definition.

Since the subproblems of all reachable states have width 0, the sketch width of Φ is 0.

The result of alive sketch width 0 can in general not be extended to normal sketch width.

Consider for example a task P with three states, initial state s0, a single goal state sg and

a dead end sd, where the only two transitions are from s0 to sg and from s0 to sd. Let h
GP

assign 0 to sg and 1 to s0 and sd, then h
GP satisfies the preconditions of Theorem 1 and the

resulting sketch RΦ = {{} → {hGP↓}} with Φ = {hGP} has alive width of 0.6 The sketch

width of RΦ however has no fixed bound because, by Definition 19, the subproblem P [sd]

is unsolvable and thus its width grows with the number of atoms.

For a (alive) sketch width of 0 the tasks of class Q are assumed to be solvable because a

(alive) sketch width of 0 can only be achieved for solvable tasks. Unsolvable tasks have

maximal width (which is not fixed) by Definition 18 which then determines the bound on

the (alive) sketch width to be maximal and thus not fixed as well. Furthermore hGP needs

to be descending and dead-end avoiding to guarantee an alive sketch width of 0. The latter

restriction holds trivially for tasks without dead ends. But otherwise hGP needs to be dead-

end avoiding explicitly such that unsolvable subproblems cannot be encountered that would

cause the alive sketch width to have no fixed bound. While task solvability and hGP being

dead-end avoiding is necessary for a fixed bound on the alive sketch width in general, being

descending is only needed for the alive sketch width to be 0. With a descending heuristic

each alive state has a successor with lower heuristic value which means that each subproblem

can be solved within one step and we get an alive sketch width of 0. Dropping this restriction

can still lead to a fixed bound on the alive sketch width but the specific value then depends

on the task as well as on hGP.

Although generalized potential heuristics are defined for features over the full integer num-

bers and real-valued weights, we restrict both to be non-negative integer-valued in Theorem

1. This is necessary because sketches are defined only for non-negative integer-valued fea-

tures. So for the presented compilation hGP must be non-negative integer-valued such that

we can use it as feature for RΦ. However with some adjustments we can get similar results

for the full integer numbers and for real numbers.

We first consider the case of non-negative real-valued weights such that hGP can take non-

negative real values as well. There are two differences compared to Theorem 1. The first

is the weight function which now assigns non-negative real values to the features instead of

6 The width of P [gg] is 0 by definition because sg is a goal state. Furthermore, the only goal state of P [s0]
is sg because sd is not solvable and the width of P [s0] is 0 since its goal is one step away from s0. No
more subproblems are relevant for the alive sketch width in this case because sd is unsolvable. So the
maximal width of all subproblems is 0 and thus the alive sketch width is 0 as well.

Compilability between four Generalized Representations 22

non-negative integer values. The features are still in the natural numbers because they must

remain non-negative and they are otherwise integer-valued by definition (Definition 10). The

second difference is that we cannot guarantee that the features of the compiled sketch are

linear.

Theorem 2. Let hGP be the generalized potential heuristic for set F of linear features f :

S → N≥0 over the states S from class Q of planning tasks and weight function w : F → R≥0.

Then there is a terminating policy sketch RΦ over a suitably defined feature set Φ of features

for Q such that RΦ is equivalent to hGP. That means it holds for all states s and s′ in S

that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ.

Let, furthermore, task class Q contain only solvable tasks and let hGP be descending and

dead-end avoiding in Q,sketch RΦ then has alive sketch width 0.

If, additionally, all tasks of Q have no dead ends, then RΦ also has sketch width 0.

The following proof exploits that we have a fixed class of tasks which also means that we

have a fixed set S of states over this class. Then, although the values of hGP can be in the

real numbers, hGP has at most |S| different values because we have one value for each state.

Because of this we can map hGP to a sketch feature in the natural numbers.

Proof. For the sketch RΦ we can use Φ = {n} as feature set where numerical feature n ranks

each state the same as hGP but in the natural numbers instead of in the non-negative real

numbers. It is possible to map hGP to n, that means from the non-negative real numbers

into the natural numbers, which we explain in the following argument.

Observe that the state set S of task class Q is fixed because the class itself is fixed. Thus the

GP heuristic hGP (as well as the features of hGP) can take only finitely many (at most |S|)
different values in class Q. Since hGP is furthermore a subset of R≥0 it is a finite total-order

(i. e. a well-order). That means there is a mapping from hGP to the natural numbers which

is order-preserving (even order-isomorphic). Let f be such a mapping, then n = f ◦ hGP

ranks each state the same as hGP. Note that if hGP is descending and dead-end avoiding n

interpreted as a heuristic over class Q is still descending and dead-end avoiding.

With this n as numerical feature then, the proof of Theorem 1 can be applied directly for

sketch RΦ = {{} → {n↓}} with one exception. The single feature n is not necessarily linear

anymore because depending on f the mapping n = f ◦ hGP might not be computable in

time O(bN) as is required by Definition 22.

This shows that we can compile a generalized potential heuristic into an equivalent policy

sketch even if the heuristic uses values in the non-negative real numbers. This compilation

though might be rather unpractical because of the mapping f from hGP to the natural

numbers which could be quite expensive. Furthermore, this mapping needs to be applied

each time the feature n is evaluated. Thus there is room for improvement here which we

leave as future work though.

The next theorem restricts the weights to the integers again but allows negative values for

the features and weights of hGP. Because of this hGP as well can be negative (but still

integer-valued).

Compilability between four Generalized Representations 23

Theorem 3. Let hGP be the generalized potential heuristic for set F of linear features

f : S → Z over the states S from class Q of planning tasks and weight function w : F → Z.
Then there is a terminating policy sketch RΦ over a suitably defined feature set Φ of linear

features for Q such that RΦ is equivalent to hGP. That means it holds for all states s and

s′ in S that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ.

Let, furthermore, task class Q contain only solvable tasks and let hGP be descending and

dead-end avoiding in Q,sketch RΦ then has alive sketch width 0.

If, additionally, all tasks of Q have no dead ends, then RΦ also has sketch width 0.

Again we exploit that state set S over class Q is fixed because Q is fixed. Because of this

we can compute a lower bound for the GP heuristic hGP and by adding this lower bound

we get a sketch feature (in the natural numbers) which ranks each state the same as hGP.

Proof. For the sketch RΦ we can use Φ = {n} as feature set where n = hGP + |hGP
min| and

hGP
min is a lower bound on the minimal value that hGP can take. Thus n is non-negative

and can be used as feature for sketch RΦ. Note that a possible lower bound hGP
min can be

computed as follows:

Let F , the set of features of hGP, be divided into the following two sets:

• F1 ⊆ F is the set of features f ∈ F with weights w(f) ≥ 0, and

• F2 ⊆ F is the set of features f ∈ F with weights w(f) < 0.

A lower bound on the minimum of hGP then is

hGP
min =

∑
f∈F1

w(f) ·min
s∈S

f(s) +
∑
f∈F2

w(f) ·max
s∈S

f(s).

Computing this lower bound can be rather expensive in general. But in practice the minima

and maxima of the features are often known or easy to compute in and in these cases a

(potentially very rough) lower bound on hGP is feasible to compute. Furthermore, this

lower bound needs to be computed only once. When evaluating n = hGP + |hGP
min| as sketch

feature the lower bound hGP
min is fixed.

Since hGP is a linear combination of a constant number of linear features it can be computed

in linear time and it follows that n = hGP + |hGP
min| can be computed in linear time as well

because hGP
min is constant. Thus the only feature of sketch RΦ is linear.

Note that if hGP is descending and dead-end avoiding n interpreted as a generalized potential

heuristic over class Q is still descending and dead-end avoiding. Thus the remainder of

the proof is analogous to the proof of Theorem 1 with RΦ = {{} → {n↓}} instead of

RΦ = {{} → {hGP↓}}.

These last two results show that we can compile non-negative real-valued GP heuristics as

well as integer-valued GP heuristics into equivalent policy sketches. Using SIWR with the

resulting sketches leads to behaviour comparable to enforced hill-climbing [9] with the GP

heuristic itself. Both algorithms use breadth first searches to find states with lower heuristic

Compilability between four Generalized Representations 24

value than a current state.7 While enforced hill-climbing aims explicitly at states with lower

heuristic value, SIWR does this only implicitly. It aims at states that satisfy a sketch rule

of sketch R which are just the states with lower heuristic value if R is a sketch compiled

from a GP heuristic as described in the proofs of Theorems 1, 2 and 3.

The last two results can be combined to compile a GP heuristic over the full real numbers

into an equivalent sketch. The lower bound described in the proof of Theorem 3 can be

applied to real-valued GP heuristics as well and then the compilation described in the proof

of Theorem 2 can be used. We do not prove this formally though.

In addition, all three of the presented compilations can be altered such that heuristics

in general can be compiled into policy sketches. The restriction of linear features would

need to be extended to the whole heuristic which limits the pool of applicable heuristics

but is necessary if the runtime guarantees of the SIWR search algorithm should be kept.

Furthermore, the compilations could become more expensive, since for example we would

need to compute the minimal value of the whole heuristic for the states of task class Q
instead of the minimal values of the features of a GP heuristic.

That the presented compilations rely on class Q being fixed is a rather unpleasant caveat.

Thus, the question also remains open whether compilations are possible when not all con-

ceivable tasks are included in the class. But instead of investigating these topics further we

now turn to a different kind of compilation.

So far all presented compilations use the GP heuristic more or less directly as sole feature

for the sketch although the GP heuristic itself has features that the sketch could use. So,

instead of enveloping a GP heuristic into a sketch we can also ask whether a sketch can

express equivalent behaviour if it uses the same features as the underlying GP heuristic.

We will now show that a generalized potential heuristic with feature set F cannot be com-

piled into a policy sketch that uses the same features F . This holds even if we restrict the

features to be non-negative integers as needed for sketches.

Theorem 4. There exist a task class Q and a generalized potential heuristic hGP with

feature set F of linear features f : S → N≥0 over the states S of class Q and with weight

function w : F → N≥0 such that there is no sketch RF with the same features F that is

equivalent to hGP. That means it does not hold for all states s and s′ of all tasks in Q that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RF .

The example proving this theorem in the following exploits the ability of generalized po-

tential heuristics to weigh one feature against another. The policy sketch is not able to

replicate this prioritization as it can only define that a numerical feature should increase or

decrease but not by how much.

Proof. Let hGP(s) = 10·n1(s)+1·n2(s) be a generalized potential heuristic over task class Q
with feature set F = {n1, n2} of non-negative integer-valued features. And let the following

be the state space of a task P ∈ Q with the mentioned feature values in each state (action

names are omitted for simplicity):

7 SIWR uses IW instead of a standard breadth-first search like enforced hill-climbing.

Compilability between four Generalized Representations 25

s0 sa1

sb1

sa2

sb2

sg

n1 = 10
n2 = 10
hGP = 110

n1 = 9
n2 = 15
hGP = 105

n1 = 11
n2 = 9

hGP = 119

n1 = 10
n2 = 1

hGP = 101

n1 = 8
n2 = 40
hGP = 120

n1 = 1
n2 = 1
hGP = 11

We will now prove that for P there is no sketch RF equivalent to hGP by showing that no

sketch RF can define exactly the same states as subgoals as hGP.

Observe that for state s0 the successor sa1 is defined as a subgoal because we have hGP(s0) >

hGP(sa1) while sb1 is not defined as a subgoal because of hGP(s0) < hGP(sb1). From this we

can infer that policy sketch RF must have a sketch rule whose feature effect set tells that

n1 must decrease or n2 must increase. There are three possible effect sets that capture this

idea: {n1↓, n2↑}, {n1?, n2↑} and {n1↓, n2?}. So, to ensure that RF defines sa1 as subgoal

of s0 but not sb1 we need a sketch rule with one of these effect sets.

Analogously, for state sa1 the successor sa2 is defined as a subgoal because hGP(sa1) >

hGP(sa2) holds and sb2 is not defined as a subgoal because of hGP(sa1) < hGP(sb2). Hence,

RF must have a sketch rule whose effect set tells that n1 must increase or n2 must de-

crease. Again there are three possible effect sets to achieve this: {n1↑, n2↓}, {n1?, n2↓} and

{n1↑, n2?}. Note that this effect set triple is completely different compared to the triple

mentioned before. They are even orthogonal in a sense because the first triple tells that n1

must decrease while n2 increases and the second triple tells the opposite, n1 must increase

while n2 decreases.

Therefore, policy sketch RF must have two rules, one with an effect set of the first triple,

which we will call r1, and one with an effect set of the second triple, which will call r2. The

feature conditions of both rules have to be {}, {n1 > 0}, {n2 > 0}, or {n1 > 0, n2 > 0} but

which one of these is chosen does not matter for P since all its states satisfy these conditions

(the empty one is trivially satisfied by any state).

As hGP(s0) > hGP(sa1) requires, we now have that ⟨s0, sa1⟩ is compatible with RF because

of sketch rule r1 and for hGP(sa1) > hGP(sa2) we have that ⟨sa1, sa2⟩ is compatible with RF

because of sketch rule r2. However sketch RF = {r1, r2} is not equivalent to hGP. That is,

we also have that ⟨s0, sb1⟩ is compatible with RF because of sketch rule r2. But this is not

allowed since hGP(s0) < hGP(sb1).

Therefore, it does not hold for all states s and s′ of P ∈ Q that hGP(s) > hGP(s′) iff ⟨s, s′⟩ is
compatible with RF . And since we covered all options for sketch RF

8 this shows that there

is no equivalent sketch for hGP over task P ∈ Q that uses the same features as hGP.

8 We covered all options for the two rules r1 and r2 but adding more rules does not change the result. All
further rules must use one of the mentioned effect sets and condition sets, so they will be like r1 or r2
and add no further information.

Compilability between four Generalized Representations 26

This shows that we cannot compile a generalized potential heuristic into an equivalent policy

sketch when both must use the same features. The ability of GP heuristics to aggregate and

weigh feature values against each other can in general not be replicated with policy sketches.

So the first three presented compilations showed that policy sketches can express the same

as generalized potential heuristics given the correct features. However, in all three cases the

features were just the heuristics themselves. The compiled sketches used the GP heuristics

directly instead of replicating their behaviour. The last result of this section in contrast

showed that the compilation is not possible when the GP heuristic and the sketch must use

the same features. Hence, given the same features a policy sketch is no more expressive than

a generalized potential heuristic.

This raises the question whether a compilation is possible in the opposite direction. That

means can we compile a policy sketch into an equivalent generalized potential heuristic that

uses the same features? This would show that, given the same features, GP heuristics are

more expressive than sketches. Among other results this question is answered in the next

section.

3.2 Policy Sketches into Generalized Potential Heuristics
In this section we investigate if and how we can compile policy sketches into generalized po-

tential heuristics. We will see that the compilation is only possible for a relaxed equivalence

definition and is not possible when the same features must be used.

As before (Definition 24), we consider a policy sketch and a generalized potential heuristic

equivalent if it holds for all states s and s′ of all tasks in Q that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ.

The first result of this section shows that in general we cannot compile a policy sketch into

an equivalent generalized potential heuristic.

Theorem 5. There exist a task class Q and a policy sketch RΦ with feature set Φ over the

states of class Q such that there is no generalized potential heuristic hGP that is equivalent

to RΦ. That means it does not hold for all states s and s′ of all tasks in Q that

hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible with RΦ.

The example in the following proof exploits that a policy sketch can define a state as subgoal

of some state and at the same time define it to not be a subgoal of another state. We will

see that in the presented case a generalized potential heuristic is not able to replicate this

behaviour.

Proof. Let Q be a class of planning tasks and let RΦ = {{p, q} → {¬p,¬q}, {¬p,¬q} → {p}}
be a sketch with features Φ = {p, q} (both p and q are boolean) over the states of class

Q. Furthermore, let the following be the state space of a task P ∈ Q where each state is

annotated with the feature values of it (p(s) = ⊤ is shortened to p and p(s) = ⊥ is shortened

to ¬p same as for q):

Compilability between four Generalized Representations 27

s0 s1 s2 s3

p
q

¬p
¬q

p
¬q

¬p
q

We will now show that there is no generalized potential heuristic hGP for this task and

sketch such that it holds for all states s and s that hGP(s) > hGP(s′) iff ⟨s, s′⟩ is compatible

with RΦ.

Observe that the state pair ⟨s0, s⟩ is compatible with RΦ only for s = s1. That means, the

only subgoal which is not a goal state of s0 is s1. Thus for the generalized potential heuristic

hGP to be equivalent to RΦ it must hold that

hGP(s0) > hGP(s1),

hGP(s0) ≤ hGP(s2), and

hGP(s0) ≤ hGP(s3).

Furthermore, since ⟨s1, s⟩ is compatible with RΦ only for s = s2, we have

hGP(s1) > hGP(s2),

hGP(s1) ≤ hGP(s0), and

hGP(s1) ≤ hGP(s3).

From hGP(s0) > hGP(s1) and h
GP(s1) > hGP(s2) we can then infer that hGP(s0) > hGP(s2)

holds. But this is not possible since, as seen above, we must also have hGP(s0) ≤ hGP(s2).

Hence, it does not hold for all states s and s′ of P that hGP(s) > hGP(s′) holds iff ⟨s, s′⟩ is
compatible with RΦ. That means, for the above task P and sketch RΦ there is no generalized

potential heuristic that is equivalent to RΦ.

So, in general we cannot compile a policy sketch into an equivalent generalized potential

heuristic. From this it directly follows that we also cannot compile a sketch into a GP

heuristic where both use the same features. This answers the question at the end of the last

section whether GP heuristics are more expressive than policy sketches when both use the

same features. Neither is more expressive than the other since, given the same features, we

cannot compile them into each other.

Furthermore, this negative result for the compilation of sketches into GP heuristics even

holds for heuristics in general. The contradiction derived in the proof does not use any

specifics of generalized potential heuristics.

The proof exploits that with our definition of equivalence the subgoals must be preserved

exactly. In some cases this is impossible for a heuristic as it might “accidentally” mark a

state as subgoal for one state although the state was defined as subgoal for another state.

This happened in the example of above proof. Because s1 is a subgoal of s0 (by the first rule

of sketch RΦ) the heuristic value must decrease from s0 to s1 and because s2 is a subgoal of

s1 (by the second rule of RΦ) its heuristic value must be even lower. So, s2 also has a lower

heuristic value than s0 and is marked in a sense transitively as subgoal of s0. This however,

Compilability between four Generalized Representations 28

is not allowed as no sketch rule explicitly defines s2 as subgoal of s0 and our equivalence

definition requires that subgoals (and non-subgoals) are preserved exactly.

Heuristics cannot differentiate in this case in contrast to policy sketches which can declare

a state as subgoal or non-subgoal depending on the current state. At least in the presented

example, this differentiation however is not necessary. Defining s2 as subgoal of s0 makes

sense in this case as it must be passed on the path towards the goal. So with sketches in

general it might happen that a state close to the goal is declared as non-subgoal because of

the current state. But this does not necessarily mean that a heuristic should give this state

a high (i. e. “bad”) heuristic value.

Because of that we relax the equivalence requirement in the following and do not anymore

demand that the subgoals are preserved exactly. It now suffices that the heuristic value

improves, i. e. decreases, between two states if those states satisfy a sketch rule. We can

think of this as similar behaviour instead of equivalent behaviour. The following theorem

and proof show that in this case a compilation is possible.

Theorem 6. Let RΦ be a terminating sketch over linear features Φ for class Q of tasks.

Then there is a generalized potential heuristic hGP over a suitably defined feature set F and

weight function w : F → R such that it holds for all states s and s′ of class Q that

if ⟨s, s′⟩ is compatible with RΦ then we have hGP(s) > hGP(s′).

Let additionally RΦ have an alive sketch width of 0 and let for all alive states s the set G∗
R(s)

contain at least one s′ such that the pair ⟨s, s′⟩ is compatible with RΦ.

Then is hGP also descending and dead-end avoiding.

Proof. For the feature set F of the generalized potential heuristic hGP we can use the

following: for each possible feature valuation fΦ,i over the sketch features Φ of RΦ, the

feature set F of hGP contains a feature fi that is 1 if fΦ,i is true in a state s and 0 otherwise.

Note that because the features in Φ are linear, the size of F is bounded by O(N |Φ|) where

N is the maximal number of atoms over the tasks in Q.

With this feature set F for hGP exactly one feature fi ∈ F is true in each state s because

fi is associated with the feature valuation fΦ,i = fΦ(s). It follows that for every state s of

a task from Q, we have hGP(s) = w(fi) for feature fi ∈ F associated with feature valuation

fΦ,i = fΦ(s).

We can determine the weights w of each feature fi ∈ F with the following algorithm:

1: Let V be the set of all feature valuations fΦ,i

2: Initialize w : F → R
3: for n = 0,−1,−2,−3, . . . do
4: remove := ∅
5: for all fΦ,i ∈ V do
6: if there is no fΦ,j ∈ V such that ⟨fΦ,j , fΦ,i⟩ satisfies a sketch rule of RΦ then
7: w(fi) := n
8: remove := remove ∪ {fΦ,i}
9: V := V \ remove

10: if V = ∅ then
11: return w

Compilability between four Generalized Representations 29

Note that in line 7, fi is the feature from F associated with feature valuation fΦ,i. Intu-

itively, the above algorithm selects in each iteration all current “worst” feature valuations,

that means feature valuations that the sketch considers to be no more beneficial than the re-

maining ones in V . After setting their weights to the current maximal value n these “worst”

feature valuations are removed from V .

Observe that for a terminating sketch this algorithm finishes in a finite number of iterations.

Since a terminating sketch induces a strict partial order over the feature valuations (The-

orem 33 of Bonet and Geffner [3]), following such a sketch never leads to cycles of feature

valuations. Thus, there are feature valuations that are maximal in the sense that they are

never mentioned as second component of all feature valuation pairs that satisfy a sketch

rule. In other words, the sketch never defines these feature valuations as subgoals.

In the first iteration of above algorithm the weights of the hGP-features associated with

these maximal feature valuations are set to 0 and the feature valuations are removed from

V (maximal feature valuations are never mentioned as second component and thus make

the condition in line 6 of above algorithm true). Removing feature valuations from V does

not change the fact that a terminating sketch induces a strict partial order over the feature

valuations remaining in V . Hence, there are again maximal feature valuations. The next

iteration of the algorithm then sets the corresponding weights to -1 and removes these

maximal feature valuations from V .

This argument can be repeated until V is empty because after each iteration there will be

other feature valuations that are maximal and thus going be removed from V . Since there

is a finite number of feature valuations in V this means that V becomes empty after a finite

number of iterations and the algorithm will terminate.

We will now prove that with features and weights defined that way it holds for the resulting

generalized potential heuristic hGP and two states s and s′ from a task in Q that hGP(s) >

hGP(s′) if ⟨fΦ(s), fΦ(s′)⟩ is compatible with RΦ.

Let fΦ,i = fΦ(s) hold, i. e. fΦ,i is the feature valuation that is true in state s, for the

feature valuation fΦ over the features Φ from sketch RΦ and for a state s from a task in Q.

Let analogously fΦ,j = fΦ(s
′) hold and let ⟨fΦ,i, fΦ,j⟩ satisfy a sketch rule from RΦ. With

the compilation described above we have for fΦ,i the associated feature fi ∈ F and weight

w(fi) and analogously for fΦ,j we have fj ∈ F and w(fj).

Since ⟨fΦ,i, fΦ,j⟩ satisfies a sketch rule, we know that with the algorithm described above

fΦ,j cannot be removed from V while fΦ,i is still in V . (As long as there is any fΦ,i still

in V such that ⟨fΦ,i, fΦ,j⟩ satisfies a sketch rule, the condition in line 6 is not satisfied and

fΦ,j is not removed from V .) Thus fΦ,i must be removed in an earlier iteration than fΦ,j

which also means that w(fi) is set to the value of an earlier iteration than w(fj). As we

know from discussing the termination of the algorithm, in each iteration at least one feature

valuation is removed from V if RΦ is terminating. Thus, indeed both feature valuations are

removed from V eventually and also fΦ,i is removed before fΦ,j .

From this it follows that w(fi) > w(fj) is true because earlier iterations are associated with

larger numbers. Furthermore, as mentioned previously, with the described compilation we

have hGP(s) = w(fi) for feature fi ∈ F associated with feature valuation fΦ,i = fΦ(s).

Hence, since w(fi) > w(fj) holds, also h
GP(s) > hGP(s′) holds.

Compilability between four Generalized Representations 30

It remains to be shown that hGP is descending and dead-end avoiding if RΦ has an alive

sketch width of 0 and G∗
R(s) contains for all alive states s at least one state s

′ such that the

pair ⟨fΦ(s), fΦ(s′)⟩ satisfies a sketch rule of RΦ. We begin with proving dead-end avoidance.

A heuristic is dead-end avoiding if all successors s′ of an alive state s with h(s) > h(s′) are

solvable. Since we already showed that hGP(s) > hGP(s′) if ⟨fΦ(s), fΦ(s′)⟩ satisfies a sketch

rule of RΦ, we need to prove that s′ is solvable for s′ being a successor of an alive state s

and ⟨fΦ(s), fΦ(s′)⟩ satisfying a sketch rule of RΦ.

Let s and s′ be such states, then we know that s′ ∈ G∗
R(s) because there cannot be subgoal

states that are closer than successors of s (also s cannot be in G∗
R(s) because RΦ is termi-

nating). Furthermore, we know that for all alive s the set of closest subgoals G∗
R(s) does

not contain unsolvable states because RΦ has a alive sketch width of 0 (a fixed bound on

the alive sketch width suffices for this argument).

Hence, because s′ is in G∗
R(s) of alive state s it follows that s′ is solvable and thus hGP is

dead-end avoiding.

Lastly, we show that hGP is descending which is the case if every alive state s has at least

one successor s′ with hGP(s) > hGP(s′). As for dead-end avoidance it suffices to show that

every alive state s has at least one successor s′ with ⟨fΦ(s), fΦ(s′)⟩ satisfying a sketch rule

of RΦ.

Because RΦ has an alive sketch width of 0, we know that for all alive states s the states in

G∗
R(s) are reachable within one step and G∗

R(s) is not empty (the last part only requires

bounded alive sketch width). So, the states in G∗
R(s) are successors of alive state s. Further-

more, for all alive s the set G∗
R(s) contains at least one state s

′ such that ⟨fΦ(s), fΦ(s′)⟩ sat-
isfies a sketch rule of RΦ (this is a requirement of the theorem and prevents that G∗

R(s) only

contains goal states). Thus, there is a successor s′ of alive state s such that ⟨fΦ(s), fΦ(s′)⟩
satisfies a sketch rule of RΦ which proves that hGP is descending.

This shows that when only requiring similar behaviour instead of equivalent behaviour we

can compile a policy sketch into a generalized potential heuristic. But the presented compila-

tion is rather expensive and the question arises whether there is a more efficient compilation.

One approach to find a more efficient compilation than in Theorem 6 could be to use the

boolean feature valuations of a sketch as the features of the GP heuristic instead of all feature

valuations. This does not work, however. Take for example a sketch RΦ = {{} → {n↓}}
with single numerical feature n. Since there are only two boolean feature valuations n > 0

and n = 0 which are furthermore mutually exclusive, the GP heuristic would have only two

different values and it would not be able to differentiate any two states with n > 0. So, for

example a state with n = 10 would be treated the same as a state with n = 5000 although

the sketch clearly marks the first state as a subgoal of the second one.

A more promising option might be a compilation where we keep the features of the sketch.

In this case we could differentiate above states with n = 10 and n = 5000 because feature

n (multiplied with some weight) is the whole GP heuristic. However, the next result shows

that such a compilation also is not possible in general.

Theorem 7. There exist a task class Q and a policy sketch RΦ with feature set Φ over

the states of class Q such that there is no generalized potential heuristic hGP with the same

Compilability between four Generalized Representations 31

features Φ for which the following holds for all states s and s′ of Q:

if ⟨s, s′⟩ is compatible with RΦ then hGP(s) > hGP(s′).

The example in the following proof exploits that a policy sketch can declare a feature increase

beneficial in some states and a decrease of the same feature beneficial in other states. We

will show that a generalized potential heuristic cannot express this when using the same

features as the sketch.

Proof. Let Q be a class of planning tasks and let RΦ = {{p} → {n↓}, {¬p, n = 0} → {n↑}}
be a sketch with features Φ = {p, n} (p is boolean and n numerical) over the states of class

Q. Furthermore, let the following be the state space of a task P ∈ Q where each state is

annotated with its feature values (p(s) = ⊤ is shortened to p and p(s) = ⊥ is shortened to

¬p):

s0 s1 s2 s3

p
n = 10

p
n = 0

¬p
n = 0

¬p
n = 100

We will now show that there is no generalized potential heuristic for this task and sketch

such that it holds for all states s and s that if ⟨s, s′⟩ is compatible with RΦ then we have

hGP(s) > hGP(s′).

Since the GP heuristic hGP must use the same features as RΦ we know that it is of the form

hGP(s) = wp · p(s) + wn · n(s)

where wp and wn are the weights of the respective features that are yet to be determined

and n maps states to non-negative integers (because it is derived from a sketch feature).

Although we use the same letter here, the heuristic feature p is not exactly the same as the

sketch feature p because we need a number for the heuristic while the sketch feature returns

⊤ or ⊥ for a state. Common choices are 0 or -1 in case of p = ⊥ and 1 in case of p = ⊤.

For the following argument we just require that p(s) > p(s′) holds if we have p = ⊤ in s

and p = ⊥ in s′ (the reverse would be fine as well since weight wp can compensate this).

Observe that because ⟨s0, s1⟩ is compatible with RΦ it must hold that hGP(s0) > hGP(s1).

From this we can infer that wn · 10 > wn · 0 holds because we have p(s0) = p(s1) (feature p

is true in both states).9 From wn · 10 > wn · 0 it follows that we have wn > 0.

Similarly, because ⟨s2, s3⟩ is compatible with RΦ it must hold that hGP(s2) > hGP(s3) and

from that we know that wn · 0 > wn · 100 holds because we have p(s2) = p(s3) (feature p is

false in both states). Hence we must also have wn < 0.

But this is a contradiction as we cannot have wn > 0 and wn < 0 at the same time.

Therefore, for task P and sketch RΦ there is no generalized potential heuristic over the

same features as RΦ such that it holds for all states s and s′ that if ⟨s, s′⟩ is compatible

with RΦ then we have hGP(s) > hGP(s′).

9 hGP(s0) = wp · p(s0) + wn · n(s0) = wp · p(s0) + wn · 10
hGP(s1) = wp · p(s1) + wn · n(s1) = wp · p(s1) + wn · 0

Compilability between four Generalized Representations 32

This shows that even with a less strict behaviour comparison than in Theorem 5 we cannot

compile a policy sketch into a generalized potential heuristic that uses the same features.

The question whether there is a more efficient compilation than the one presented in Theorem

6 remains open though. However, as the other presented compilation results in this section

are all negative there might not be an efficient compilation at all. Furthermore, as we proved

equivalence impossible, we would only get a generalized potential heuristic with similar

behaviour anyway. So whether such a compilation would be relevant is an open question as

well. In the future it might be more promising to investigate under which restrictions we

can efficiently compile a policy sketch into an equivalent generalized potential heuristic or

equivalent heuristic in general.

Summing up our compilation results of the last two sections we can say that in general

policy sketches are more expressive than generalized potential heuristics (Theorems 1, 2, 3

and 5) but when restricting both to use the same features neither is more expressive than the

other (Theorems 4 and 5). A compilation from sketches into GP heuristics though becomes

possible when asking only for similar behaviour and not requiring both to use the same

features (Theorems 6 and 7).

With this we finish our comparison of policy sketches and generalized potential heuristics

and move on to compilations between action schema networks and generalized potential

heuristics.

3.3 Action Schema Networks into Generalized Potential Heuristics
While the last two sections were concerned with the compilation between generalized po-

tential heuristics and policy sketches, the following two sections talk about the compilation

between generalized potential heuristics and action schema networks (ASNets).

Since we aim for equivalent behaviour with our compilations we first need to define when

some ASNet parameters and a generalized potential heuristic are equivalent. In the fol-

lowing we abuse notation for the sake of readability and denote the set {s′ | ∃s, a :

argmax⟨s,a,s′⟩∈T π(a|s)} as argmaxs′:⟨s,a,s′⟩∈T π(a|s).

Definition 25 (Equivalent behaviour of some ASNet parameters and a generalized potential

heuristic). Given a task class Q, we say that a generalized potential heuristic hGP and some

ASNet parameters θ have equivalent behaviour if for all states s of all tasks P in Q it holds

that

arg max
s′:⟨s,a,s′⟩∈T

π(a|s) = arg min
s′:⟨s,a,s′⟩∈T

hGP(s′)

where T is the set of transitions of the state space induced by task P and π is the policy of

the ASNet initialized for P with θ.

That means the successors s′ with minimal hGP-value must exactly be the states that can

be reached with actions a for which π(a|s) is maximal. So, policy π declares a successor as

subgoal if its policy value is maximal and heuristic hGP marks a successor as subgoal if its

heuristic value is minimal among all successors.

In contrast to the comparison of sketches and GP heuristics, we only consider successor

states and not arbitrary state pairs here. While we can compare the heuristic values of two

Compilability between four Generalized Representations 33

arbitrary states (as done in the last two sections), a (ASNet) policy is only concerned with

the successors of each state. More precisely, it selects for each state the action to apply in

this state. That is why we chose successors as basis for the comparison of GP heuristics and

ASNets instead of arbitrary state pairs.

Furthermore, in the previous two section states with lower heuristic value were considered

subgoals when comparing sketches and GP heuristics. Now instead, we consider the (suc-

cessor) states with minimal heuristic value as subgoals and compare them against the states

for which the policy is maximal. We chose this as basis for our comparison of ASNets and

GP heuristics as it better reflects that there can be qualitative differences between the suc-

cessors of a state. When looking at two successors of the same state the successor with lower

heuristic value, or respectively with higher policy, value is preferable compared to the other

successor.

Using the above equivalence definition, we will now show that in general it is not possible

to compile some ASNet parameters into an equivalent generalized potential heuristic.

Theorem 8. There exists a task class Q with a task P ∈ Q and ASNet parameters θ such

that there is no generalized potential heuristic hGP over Q that is equivalent to θ. That

means there is no hGP for which the following holds for all states s in task P :

arg max
s′:⟨s,a,s′⟩∈T

π(a|s) = arg min
s′:⟨s,a,s′⟩∈T

hGP(s′),

where T are the transitions of the state space induced by P and π is the policy of the ASNet

initialized for P with θ.

The following proof shows this with an example. If two states s1 and s2 have the same

two successors s3 and s4 then the policy of an ASNet can select either s3 or s4 (expressed

formally, it picks the actions with which these states can be reached) depending on whether

the current state is s1 or s2. With a generalized potential heuristic the same state is picked

no matter whether the current state is s1 or s2 because the heuristic value of the successors

is not influenced by the current state (the current state only influences which states are

successors).

For a single task this is might be irrelevant as we will always reach either s1 or s2 but never

the other one when following a heuristic and always choosing the successor with minimal

heuristic value, e. g. with steepest-ascent hill-climbing. So, we never observe the choice of

the heuristic for the other state. But for a class of planning tasks this becomes relevant.

Take for example a class with a task where s1 is the initial state and another task where

s2 is the initial state. Then, we can observe for the first task which successor the heuristic

chooses in s1 and we can observe for the second task which successor the heuristic chooses

for s2.

Proof. We proof this with an example. Consider a task class Q over the domain ⟨{X,Y, Z},
{A1, A2}⟩ where the predicates X, Y and Z as well as both action schemas A1 and A2 are

nullary (i. e. they do not take any arguments). The actions obtained from grounding A1

and A2 are

A1() = ⟨{}, {X(), Z()}, {}⟩ and

Compilability between four Generalized Representations 34

A2() = ⟨{}, {Y (), Z()}, {}⟩.

So, the actions derived from both action schemas A1 and A2 have no preconditions and their

only effects are that Z() is made true and X() or respectively Y () is made true.

Since all predicates and actions are nullary we slightly abuse notation in the following and

use X, Y , Z directly as propositions. The actions A1() and A2() we will call a1 and a2.

Let P be a planning task in Q whose state space contains the following subgraph:

s1 s2

s3

s4

a1

a2

a1

a2

¬X,¬Y,¬Z ¬X,¬Y,Z

X,¬Y, Z

¬X,Y, Z

The ASNet for which we will show that its parameters cannot be compiled into a GP heuristic

comes next. The idea of this ASNet is that whether action a1 or a2 is chosen only depends

on the value of Z in the current state s. This is achieved by choosing the parameters such

that the output for action a1 is 0 if Z is true and it is 1 if Z is false. And the output for

action a2 is mirrored, that means it is 1 if Z is true and it is 0 if Z is false. We first show

the structure of the ASNet and then list its notation and parameters.

Let the following be an ASNet for task P :

ReLU(W 1
1 · u11 + b11) = ϕ11

a1

ReLU(W 1
2 · u12 + b12) = ϕ12

a2

u11

u12

ReLU(W 1
X · v1X + b1X) = ψ1

X

X

ReLU(W 1
Z · v1Z + b1Z) = ψ1

Z

Z

ReLU(W 1
Y · v1Y + b1Y) = ψ1

Y

Y

ReLU(W 2
1 · u21 + b21) = ϕ21

a1

ReLU(W 2
2 · u22 + b22) = ϕ22

a2

π(a1|s)

π(a2|s)

Notation

• ReLU(x) = max(0, x)

• x, y and z are 1 if X, Y and Z, respectively, are true in current state s and 0 if

they are false in s

• gX , gY and gZ are 1 if X, Y and Z, respectively, are true in the goal and 0

otherwise

• mi is 1 if action ai is applicable in current state s (i ∈ {1, 2}) and 0 if it is not

applicable

First action layer

Compilability between four Generalized Representations 35

• u11 =


x

z

gX

gZ

m1

, W 1
1 =

(
0 −1 0 0 0

)
, b11 = 1, thus ϕ11 = −z + 1

• u12 =


y

z

gY

gZ

m2

, W 1
2 =

(
0 1 0 0 0

)
, b12 = 0, thus ϕ12 = z

Proposition layer

• v1X = ϕ11, W
1
X = 0, b1X = 0, thus ψ1

X = 0

• v1Y = ϕ12, W
1
Y = 0, b1Y = 0, thus ψ1

Y = 0

• v1Z =

(
ϕ11

ϕ12

)
, W 1

Z =
(
0 1

)
, b1Z = 0, thus ψ1

Z = z

Second (final) action layer

• u21 =

(
ψ1
X

ψ1
Z

)
, W 2

1 =
(
0 −1

)
, b21 = 1, thus ϕ21 = −z + 1

• u22 =

(
ψ1
Y

ψ1
Z

)
, W 2

2 =
(
0 1

)
, b22 = 0, thus ϕ22 = z

Observe that the unique maximum of this ASNet’s policy π occurs for action a1 if Z is false

in the current state and it occurs for action a2 if Z is true in the current state because the

output of the last a1-action-module is ϕ21 = −z + 1 and the output of the last a2-action-

module is ϕ22 = z. In other words, since both actions a1 and a2 are always applicable, policy

π chooses action a1 if Z is true in the current state and otherwise, if Z is false, it chooses

action a2.

In particular, for above task P , the unique maximum of π in state s1 is π(a1|s1) because Z
if false in s1 and it is π(a2|s2) in state s2 because Z is true in s2. That means, we have

arg max
s′:⟨s1,a,s′⟩∈T

π(a|s1) = {s3} and

arg max
s′:⟨s2,a,s′⟩∈T

π(a|s2) = {s4}.

So, policy π chooses action a1 in state s1 leading to state s3 but in state s2 it chooses

a2 leading to s4. Thus, for a generalized potential heuristic hGP equivalent to the ASNet

parameters θ it must hold that

arg min
s′:⟨s1,a,s′⟩∈T

hGP(s′) = {s3} and

arg min
s′:⟨s2,a,s′⟩∈T

hGP(s′) = {s4}.

Compilability between four Generalized Representations 36

However, this is impossible, since both states s1 and s2 have the same two successors s3 and

s4 whose heuristic values hGP(s3) and h
GP(s4) are not influenced by whether s1 or s2 is the

current state. So, we always have

arg min
s′:⟨s1,a,s′⟩∈T

hGP(s′) = arg min
s′:⟨s2,a,s′⟩∈T

hGP(s′)

which can be equal to either {s3} or {s4} but not both at the same time.

This shows that an equivalent generalized potential does not exist for all possible ASNet

parameters and classes of planning tasks.

The presented example shows that we cannot compile ASNet parameters into a general-

ized potential heuristic in all cases. This even holds for heuristics in general and not only

generalized potential heuristics. The above proof exploits that in the presented example a

heuristic cannot choose different subgoals depending on whether the current state is s1 or

s2. This applies to all heuristics and not only generalized potential heuristics.

This special case though, which we exploited in the proof and where the policy chooses a

different successor depending on the current state, is unnecessary in the considered setting

where all actions have the same action costs. No matter the current state, in our example

either s3 is the best successor, s4 is the best successor or both are equally good. In the first

two cases the policy should always prefer the same successor no matter whether the current

state is s1 or s2. In the latter case it is not necessary that the policy differentiates s3 and

s4 based on the current state.

Therefore, potential future work could be concerned with restrictions under which it becomes

possible to compile an ASNet into a (generalized potential) heuristic. For now though, we

move on and look at the opposite direction, whether we can compile a generalized potential

heuristic into an action schema network.

3.4 Generalized Potential Heuristics into Action Schema Networks
The last compilation we consider in this work is the one from a generalized potential heuristic

into ASNet parameters which we will discuss in this section.

As before (Definition 25), for a task class Q we consider a GP heuristic hGP and some ASNet

parameters θ equivalent if for all states s of all tasks P in Q it holds that

arg max
s′:⟨s,a,s′⟩∈T

π(a|s) = arg min
s′:⟨s,a,s′⟩∈T

hGP(s′)

where T is the set of transitions of the state space induced by task P and π is the policy of

the ASNet initialized for P with θ. That means the successors s′ with minimal hGP-value

must exactly be the states that can be reached with actions a for which π(a|s) is maximal.

Based on this our final result shows that in general we cannot compile a generalized potential

heuristic into ASNet parameters.

Theorem 9. There exist a task class Q, a task P ∈ Q and a generalized potential heuristic

hGP over Q such that there are no ASNet parameters θ equivalent to hGP. That means, for

Q there are no ASNet parameters θ such that the following holds for all states s in task P :

arg max
s′:⟨s,a,s′⟩∈T

π(a|s) = arg min
s′:⟨s,a,s′⟩∈T

hGP(s′)

Compilability between four Generalized Representations 37

where T are the transitions of the state space induced by P .

To prove this we exploit that an ASNet cannot combine hidden representations if the corre-

sponding propositions and actions are not related. The example is built such that a whole

state must be taken into account to replicate the information of the GP heuristic. But the

actions and propositions are constructed such that they are independent in the sense that

all actions are related to exactly one proposition and no two actions share the related propo-

sition. Because of this the corresponding action schema network is not able to combine or

spread information and thus never has access to all information of a state at once.

Proof. Consider a task class Q over the domain ⟨{X,Y }, {A,B}⟩ where all predicates (X

and Y) and all action schemas (A and B) are unary, i. e. they take a single argument. The

action schemas are defined as follows:

A(o) = ⟨{}, {X(o)}, {}⟩

B(o) = ⟨{}, {Y (o)}, {}⟩

So, the actions derived from A and B have no preconditions and their only effects are making

the propositions X(o) and Y (o), respectively, true.

Let P ∈ Q be the task that is derived from the domain of Q with instance informa-

tion ⟨{o1, o2}, {}, {X(o1), X(o2), Y (o1), Y (o2)}⟩. That means, P describes the task of get-

ting from the initial state {} where no propositions are true to the goal {X(o1), X(o2),

Y (o1), Y (o2)} where all propositions are true. Task P has propositions X(oi) and Y (oi),

actions ai = ⟨{}, {X(oi)}, {}⟩ derived from A and actions bi = ⟨{}, {Y (oi)}, {}⟩ derived from

B for i ∈ {1, 2}.
Let, furthermore, hGP(s) = fd(s)− 3 · fX(s)− 2 · fY (s) be a generalized potential heuristic

over the states s of class Q with the following features over objects o:

fX(s) = |{o | s |= X(o)}|,

fY (s) = |{o | s |= Y (o)}|,

fd(s) = abs(fX(s)− fY (s)).

Feature fX counts the number of objects o for which proposition X(o) is true in state s,

feature fY does the same for proposition Y (o) and feature fd is the difference between the

first two features. The following table gives an overview of the possible values of hGP in

task P . For states where it makes no difference whether o1 or o2 is chosen the rows are

abbreviated and use oi and oj .

Thus, in task P , heuristic hGP(s) = fd(s) − 3 · fX(s) − 2 · fY (s) prefers states where the

number of true X-propositions and true Y -propositions is equal and if they are equal hGP

prioritizes making X-propositions true over making Y -propositions true.

To prove that there are no ASNet parameters θ that are equivalent to hGP, we first take a

look at the ASNets that can be initialized for P . The general structure of ASNets initialized

for task P is shown in Figure 3.2.

Compilability between four Generalized Representations 38

Figure 3.1: Overview of the values of hGP(s) = fd(s)− 3 · fX(s)− 2 · fY (s) in task P .

States s fX(s) fY (s) fd(s) hGP(s)
{} 0 0 0 0

{X(oi)} 1 0 1 -2
{Y (oi)} 0 1 1 -1

{X(o1), X(o2)} 2 0 2 -4
{Y (o1), Y (o2)} 0 2 2 -2
{X(oi), Y (oj)} 1 1 0 -5

{X(o1), X(o2), Y (oi)} 2 1 1 -7
{X(oi), Y (o1), Y (o2)} 1 2 1 -6

{X(o1), X(o2), Y (o1), Y (o2)} 2 2 0 -10

u1a1

u1a2

u1b1

u1b2

f(W 1
A · u1a1

+ b1A) = ϕ1a1

a1

f(W 1
A · u1a2

+ b1A) = ϕ1a2

a2

f(W 1
B · u1b1 + b1B) = ϕ1b1

b1

f(W 1
B · u1b2 + b1B) = ϕ1b2

b2

f(W 1
X · v1X1

+ b1X) = ψ1
X1

X(o1)

f(W 1
X · v1X2

+ b1X) = ψ1
X2

X(o2)

f(W 1
Y · v1Y1

+ b1Y) = ψ1
Y1

Y (o1)

f(W 1
Y · v1Y2

+ b1Y) = ψ1
Y2

Y (o2)

. . .

. . .

. . .

. . .

f(WL+1
A · uL+1

a1
+ bL+1

A) = ϕL+1
a1

a1

f(WL+1
A · uL+1

a2
+ bL+1

A) = ϕL+1
a2

a2

f(WL+1
B · uL+1

b1
+ bL+1

B) = ϕL+1
b1

b1

f(WL+1
B · uL+1

b2
+ bL+1

B) = ϕL+1
b2

b2

π(a1|s)

π(a2|s)

π(b1|s)

π(b2|s)

Figure 3.2: General structure of an ASNet initialized for task P

The weight parameters W l
i and bli of all modules, the hidden dimension hd, the activation

function f and the number of layers L can be chosen freely for the following argument. The

input vectors of all modules are as follows (i ∈ {1, 2}):

u1ai
=

 x

gX

mai



u1bi =

 y

gY

mbi


ulai

= ψl−1
Xi

for all 2 ≤ l ≤ L+ 1

ulbi = ψl−1
Yi

for all 2 ≤ l ≤ L+ 1

vlXi
= ϕlai

for all 1 ≤ l ≤ L

vlYi
= ϕlbi for all 1 ≤ l ≤ L

Notation:

• x and y are 1 if X and Y , respectively, are true in current state s and 0 if they

are false in the current state

• gX and gY are 1 if X and Y , respectively, are true in the goal and 0 otherwise

Compilability between four Generalized Representations 39

• ma is 1 if action a is applicable in current state s and 0 if it is not applicable

(a ∈ {a1, a2, b1, b2})

Observe that, because there are no connections between modules in different “rows” and

because all actions are always applicable, the only thing that can change the result of π(ai|s)
is the truth value of X(oi) in current state s and the only thing that can change the result

of π(bi|s) is the truth value of Y (oi) in s. Furthermore, for all actions the output is the

same if their inputs have the same truth value, i. e. π(ai|s) = π(aj |s) for all i, j with

X(oi) = X(oj) in s and π(bi|s) = π(bj |s) for all i, j with Y (oi) = Y (oj) in s. These

observations hold because all modules of actions ai within a layer l share the same weight

W l
A, activation function f and hidden representation dimension hd (the latter two are even

shared among all modules in the ASNet). The same argument applies for the modules of

actions bi and propositions X(oi) and Y (oi).

To prove non-equivalence, we will now show that for state s1 = {X(o1)} policy π and

heuristic hGP do not choose the same successors. That means we will show for s1 that it

does not hold that

arg max
s′:⟨s1,a,s′⟩∈T

π(a|s1) = arg min
s′:⟨s1,a,s′⟩∈T

hGP(s′).

To obtain the successors that hGP chooses, we take a look at all successors of s1 = {X(o1)}
and their heuristic values:

s2 = {X(o1), X(o2)} via action a2 with hGP(s2) = −4

s3 = {X(o1), Y (o1)} via action b1 with hGP(s3) = −5 and

s4 = {X(o1), Y (o2)} via action b2 with hGP(s3) = −5.

As s3 and s4 have the minimal heuristic values, heuristic hGP chooses these two states and

we have

arg min
s′:⟨s1,a,s′⟩∈T

hGP(s′) = {s3, s4}.

Therefore, policy π must pick these states as well which means it must hold that

arg max
s′:⟨s1,a,s′⟩∈T

π(a|s1) = {s3, s4}.

In the following we will show that the policy π of the ASNet initialized for task P cannot

achieve this. As we are considering all possible options for the ASNet parameters θ we do

not have concrete values that would tell us directly which successors policy π chooses in s1

(or more formally which actions it chooses that lead to the successors). But we can compare

π in state s1 with π in state s0 = {} to determine for which actions π is maximal in s1,

that means which actions it chooses in s1. To prove our argument we are going to derive

a connection between the policy value of action a2 in state s1 and the policy value of the

actions b1 and b2 in the same state, i. e. we aim for a connection between π(a2|s1) and

π(bi|s1) (i ∈ {1, 2}).
Based on the above mentioned observations of the ASNet for P we know the following:

1. π(a1|s0) = π(a2|s0) because X(o1) = X(o2) = ⊥ in s0,

Compilability between four Generalized Representations 40

2. π(a1|s0) = π(a2|s0) = π(a2|s1) because X(o2) = ⊥ in s1 like X(o1) and X(o2) in s0,

and

3. π(b1|s0) = π(b2|s0) = π(b1|s1) = π(b2|s1) because Y (o1) = Y (o2) = ⊥ in both s0 and

s1.

We furthermore know that in s0 policy π must assign a higher value to the a-actions than

to the b-actions. This is the case because to be equivalent to the GP heuristic hGP policy π

must choose the same successors as hGP which chooses state {X(o1)} or {X(o2)} reachable

via actions a1 or a2 respectively. That means we have π(ai|s0) > π(bj |s0) for i, j ∈ {1, 2}
or combined with 1. and 3. we can write it as π(a1|s0) = π(a2|s0) > π(b1|s0) = π(b2|s0) =
π(b1|s1) = π(b2|s1). With this we have now derived a connection between the policy values

of the a-actions in state s0 and the policy values of the b-actions in state s1, that is we have

π(ai|s0) > π(bj |s1) (i ∈ {1, 2}). Our goal however is to derive such a connection in the same

state s1. We can achieve this by combining the result of the last step π(ai|s0) > π(bj |s1) with
2. which yields π(a2|s1) = π(ai|s0) > π(bj |s1). This can be shortened to π(a2|s1) > π(bj |s1)
and means that in state s1 policy π chooses action a2 over the actions b1 and b2.

Since a2 leads to state s2 while b1 and b2 lead to s3 and s4 respectively we now know that

arg max
s′:⟨s1,a,s′⟩∈T

π(a|s1) ̸= {s3, s4}

holds from which it directly follows that we have

arg max
s′:⟨s1,a,s′⟩∈T

π(a|s1) ̸= arg min
s′:⟨s1,a,s′⟩∈T

hGP(s′).

Hence, in state s1 heuristic hGP and policy π do not choose the same successors. This means

that the generalized potential heuristic hGP and the ASNet parameters θ are not equivalent

in class Q.

Together with Theorem 8, this shows that ASNets and generalized potential heuristics can-

not be compiled into each other in general. However, we again exploited a rather artificial

special case (the task is built from independent subproblems) to show that a GP heuristic

cannot be compiled into some ASNet parameters in general. On the one hand does hGP

unnecessarily require that P is solved by alternating ai and bi actions, and on the other

hand is it rather unlikely in practice that there are absolutely no actions that are related to

the same propositions.

Potential future work on this is thus to investigate under which restrictions the compilation

might become possible and whether these restrictions are relevant in practice. One option for

example, is to alter how equivalence is defined. Instead of comparing successors with minimal

heuristic value and successors with maximal policy value we could compare successors that

have a lower heuristic value than the current state with successors whose policy value is

larger zero.

Here, we finish the part about our contributions though. In the next chapter we will take a

closer look at the works from which GP heuristics, sketches and ASNets originate and other

related work.

4
Related Work

This work lies in the area of generalized planning, so other work related to ours is for example

Hu and De Giacomo [10], Levesque [11] and Srivastava et al. [21]. Our focus though is on

generalized representations that appear comparable. Hence, we present work related to

these in Section 4.1.

To the extend of our knowledge, this is the first work about compilability between generalized

representations. But as discussed in Section 4.2 compilability in automated planning has

already been considered.

4.1 Generalized Representations
The generalized representation most important to our work are generalized potential heuris-

tics as all our compilations aim to compile from or into them. They were introduced by

Francès et al. [7] and are based on potential heuristics from Pommerening et al. [14]. These

original potential heuristics work only for single tasks and are sums over the potentials of all

facts. A fact here is a tuple of a variable and a value of it. The potential function maps all

facts to real numbers. Expressed in terms of generalized potential heuristics the potential

function is a combination of a feature and its weight, while the fact is a component of the

feature that maps a state to the current value of each variable. This dependency on the

variables of a task prevents potential heuristics from generalizing.

Shortly after the introduction of potential heuristics, Seipp et al. [17] presented optimiza-

tion functions that yield better informed potential heuristics. They also combined multiple

potential heuristics to improve the heuristic guidance even further. Later, Pommerening

et al. [15] extended potential heuristics such that they can handle more kinds of features.

The features they consider are single facts, as before, or conjunctions of facts. This version

of potential heuristics only distinguishes itself from generalized potential heuristics by the

features it uses and that it does not use the feature values directly but whether a feature is

present or not in a state. Pommerening et al. [15] furthermore evaluate potential heuristics

with binary features, i. e. pairs of facts, and they present a hardness result for potential

heuristics with higher-dimensional features.

When using features as abstractions over states, which GP heuristics do, they can generalize

Related Work 42

over multiple tasks and potentially all infinitely many tasks of a domain. Francès et al. [7]

use features based on concept languages (also called description logics [1]) and aim for

generalized potential heuristics that are descending and dead-end avoiding to greedily solve

planning tasks in polynomial time. They present some hand-crafted GP heuristics that

are descending and dead-end avoiding as well as a method to learn such GP heuristics

automatically.

Policy sketches were introduced by Bonet and Geffner [2, 3]. This theoretical work is largely

concerned with general policies of which sketches are a generalization and the serializations

underlying them. All three can be used to decompose problems into subproblems with small

width such that the greedy search algorithm SIW can solve the overall problem in polynomial

time and space. General policies and policy sketches both are sets of rules that define

subgoals for each state depending on whether this state satisfies the conditions of a rule.

The difference between general policies and policy sketches is that with the first the subgoals

must be reachable within one step while it can take multiple steps with the latter. Both

induce serializations though that decompose planning tasks into subtasks with potentially

low width such that these can be solved efficiently. Same as the generalized potential

heuristics of Francès et al. [7] policy sketches (and general policies and serializations) also use

features as abstractions of states to be able to generalize over multiple tasks. Furthermore,

Bonet and Geffner [3] also construct their considered features using concept languages.

The work on policy sketches of Bonet and Geffner [3] was extended by Drexler et al. [4]. They

present hand-crafted policy sketches for certain domains and prove that these sketches have

the properties needed such that SIWR can solve problems of these domains in polynomial

time and space. They furthermore empirically evaluate SIWR with their presented sketches.

The second follow-up work on policy sketches from Drexler et al. [5] is concerned with

learning policy sketches automatically and proves for some resulting sketches that they have

the properties needed for SIWR to solve tasks in polynomial time and space.

The last generalized representation we evaluated are action schema networks (ASNets).

They were introduced by Toyer et al. [23] as one of the first neural network architectures for

planning tasks. Toyer et al. [24] then expanded their work on ASNets, most importantly by

extending the architecture with skip connections and a more expressive pooling mechanism.

ASNets are neural networks whose structure is based on the connections between related

actions and propositions from a planning task. The relatedness of actions and propositions

depends on the action schemas of a domain which enables ASNets to generalize over multiple

tasks. When Toyer et al. [23] first introduced ASNets they considered a proposition and

an action to be related if the proposition is mentioned in the preconditions of effects of

the action. Toyer et al. [24] refined this concept by differentiating which kind of “role” a

proposition takes within an action. They furthermore added so-called skip connections to

the architecture of ASNets that directly connect action modules of different layers to better

propagate information and thus mitigate the limited receptive field of ASNets.

Toyer et al. [24] also expand the experimental evaluation of ASNets from Toyer et al. [23]

and they present an example to show how the interpretability of ASNets can be improved

with sparsity regularisation.

Another generalized representation that appears interesting to compare against are STRIPS

Related Work 43

hypergraph networks (STRIPS-HGNs) introduced by Shen et al. [20] based on the bachelor’s

thesis of Shen [19]. Same as ASNets also STRIPS hypergraph networks are a neural network

structure for planning tasks. In contrast to the other three considered generalized represen-

tations STRIPS-HGNs are able to generalize over tasks from different domains and not only

tasks from a single domain. They take as input hypergraphs representing the delete relax-

ation of a task to compute heuristic estimates. A STRIPS-HGN has three building blocks,

one that encodes the hypergraph into a latent representation, one that processes this latent

hypergraph, and a last block that decodes the processed hypergraph into a heuristic value.

The processing block is applied multiple times and takes as input the original hypergraph

and the latent hypergraph from its last application.

Since a STRIPS-HGN operates on hypergraphs induced by delete relaxations it can handle

tasks independently of their domain. Furthermore, a single STRIPS-HGN works for all

considered tasks in contrast to ASNets where a new ASNet must be initialized for each

considered task. Because of that it seems unlikely that it is possible to compile STRIPS-

HGNs into one of the other three representations. Nonetheless, it might be interesting

to investigate whether GP heuristics, policy sketches or ASNets could be compiled into

STRIPS-HGNs.

4.2 Compilability
Compilability can be used as a means of comparing expressiveness as we do in this work

where we compare whether certain generalized representations can express the same infor-

mation about a class of classical planning tasks.

Nebel [13] evaluate the expressiveness of different propositional planning formalisms such

as STRIPS [6]. They compare the expressiveness of different formalisms by requiring that

the size of the compilation result grows at most polynomially and they differentiate whether

plan size in the new formalism is preserved exactly, linearly, or polynomially. Compared to

this our work is rather strict because we aim for compilations that preserve not only plan

size but even require that the same plans can be expressed.

Thiébaux et al. [22] argue that PDDL-like axioms improve expressiveness of planning for-

malisms by means of compilability. They use the compilation schemes of Nebel [13] to

show that PDDL-like axioms cannot be compiled away if plan size and the size of domain

descriptions may grow at most polynomially.

Also using the compilation schemes of Nebel [13], Röger et al. [16] describe a compilation

from a subset of the Golog [12] agent programming language to the ADL fragment of PDDL.

They discuss which restrictions are necessary such that a compilation remains possible and

thus identify a maximal fragment that can be compiled into ADL.

While we compare three rather different concepts, a heuristic, a policy produced from a

neural network, and a generalization of policies Helmert and Domshlak [8] compile different

heuristics into each other. They present connections between heuristics based on delete

relaxations, critical paths, abstractions, and landmarks by compiling them into each other

and proving for some cases that a compilation is not possible. Based on that they then

introduce the landmark cut heuristic (LM-cut heuristic) which is a good approximation of

Related Work 44

the perfect heuristic over delete-relaxed planning tasks. Toyer et al. [23, 24] use features

derived from this heuristic as additional input for ASNets to overcome the limited receptive

field of ASNets.

5
Conclusions

The aim of this work was to find compilations or proofs that compilations are impossible

between three generalized representations. In this last chapter we discuss our results and

present potential future work.

5.1 Discussion
First, we present the summary of our compilation results:

Compilation into policy sketch:

Theorem 1 Compilation from non-negative integer-valued GP heuristic into equiv-

alent sketch

Theorem 2 Compilation from non-negative real-valued GP heuristic into equiva-

lent sketch

Theorem 3 Compilation from integer-valued (including negative values) GP heu-

ristic into equivalent sketch

Theorem 4 Compilation is not possible from (non-negative integer-valued) GP

heuristic into equivalent sketch with same features

Compilation from policy sketch:

Theorem 5 Compilation not possible from sketch into equivalent GP heuristic (in

general and thus also not with same features)

Theorem 6 Compilation from sketch into similar GP heuristic

Theorem 7 Compilation not possible from sketch into similar GP heuristic with

same features

Compilation from and into action schema network parameters:

Theorem 8 Compilation not possible from ASNet parameters into equivalent GP

heuristic

Conclusions 46

Theorem 9 Compilation not possible from GP heuristic into equivalent ASNet

parameters

Theorems 5 and 8 hold for heuristics in general and Theorems 1, 2 and 3 can be altered to

hold for heuristics in general.

The first three theorems are concerned with the compilation of generalized potential heuris-

tics into equivalent policy sketches in general. These results can even be adjusted to hold

for heuristics in general because the compiled sketches just use the heuristics directly as fea-

ture. If we require however that the compiled sketch must use the same features as the GP

heuristic (Theorem 4) then the compilation is not possible anymore. This means, sketches

are at least as expressive as (GP-) heuristics given suitable features but when using the same

features they cannot express everything a GP heuristic can express.

In the reverse direction compilation is even in general not possible (Theorem 5). We cannot

compile a policy sketch into an equivalent (generalized potential) heuristic in general and

thus especially not when requiring the GP heuristic to use the features from the sketch.

A compilation from policy sketches into generalized potential heuristics becomes possible

when we are less strict in our comparison (Theorem 6). But even in this case a compilation

where the features remain the same is not possible (Theorem 7).

Combining the two directions of compilations shows that sketches are strictly more expressive

than GP heuristics given suitable features. But when restricting both representations to use

the same features the compilation is impossible in both directions. On the one hand are

policy sketches able to differentiate subgoals based on the current state which GP heuristics

are not capable of to the same degree. And on the other hand can GP heuristics weight

features against each other which sketches cannot do. This indicates that there are (at least

theoretical) scenarios where it is beneficial to use a generalized potential heuristic and there

are scenarios where it is preferable to use a policy sketch.

The compilation between action schema networks and generalized potential heuristics is in

both directions not possible in general. Theorem 8 even holds for heuristics in general and

shows that we cannot compile ASNet parameters into an equivalent heuristic. Similar to

policy sketches, ASNet policies can base their decisions on more local information compared

to GP heuristics. ASNet policies can differentiate successor states that seem equally good

choices based on the current state which GP heuristics cannot do. They, on the other

hand, are capable of aggregating information even when actions and propositions are not

explicitly related with each other which is not possible with ASNets as their structure is

based on relatedness. So, as with sketches, there seem to be scenarios where it is better to

use ASNets and there are scenarios where GP heuristics appear to be the better choice.

5.2 Future Work
Based on the compilation results we presented, there are multiple interesting lines of future

work which we present in this section.

First of all, we investigated compilations between generalized potential heuristics and policy

sketches and between generalized potential heuristics and action schema networks. Potential

Conclusions 47

compilations between policy sketches and action schema networks are not included in this

work and thus researching these is a natural next step. Furthermore, STRIPS hypergraph

networks are a fourth generalized representation which we discussed as related work but did

not present compilations or counterexamples for. It might be worth investigating whether

the three generalized representations we covered and STRIPS hypergaph networks can be

compiled into each other.

We showed that in general it is not possible to compile ASNet parameters and generalized

potential heuristics equivalently into each other. Potential future work is thus to find cases

in which a compilation is possible. It might also be worth investigating whether a different

notion of equivalent behaviour is useful. We compared whether the same successors have

a minimal heuristic value and a maximal policy value. Instead one could compare whether

the same successors have an improving heuristic value, i. e. a lower heuristic value than the

current state, and a policy value larger than zero. On the one hand would we then consider

only states that actually have a better heuristic value than the current state. But on the

other hand would we take into account not only the best successors an ASNet policy chooses

but all possible successors.

Similarly, one could investigate under which restrictions it is possible to compile policy

sketches into generalized potential heuristics and when it is possible to compile sketches and

GP heuristics with the same features into each other.

Also interesting would be to research whether all three generalized representations are able to

solve the same task classes (equally well) instead of requiring equivalent behaviour. Similar

to the work of Nebel [13] one could compare generalized representations by the size of the

plans they yield for a task class and by the size of the representations themselves needed to

express certain information about a class.

Bibliography

[1] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to De-

scription Logic. Cambridge University Press, 2017.

[2] Blai Bonet and Hector Geffner. General policies, serializations, and planning width.

arXiv preprint arXiv:2012.08033, 2020.

[3] Blai Bonet and Hector Geffner. General policies, representations, and planning width.

In Proceedings of the AAAI Conference on Artificial Intelligence, pages 11764–11773,

2021.

[4] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Expressing and exploiting the

common subgoal structure of classical planning domains using sketches. In Proceed-

ings of the International Conference on Principles of Knowledge Representation and

Reasoning, pages 258–268, 11 2021.

[5] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Learning sketches for decom-

posing planning problems into subproblems of bounded width. In Proceedings of the

International Conference on Automated Planning and Scheduling, pages 62–70, 2021.

[6] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[7] Guillem Francès, Augusto B Corrêa, Cedric Geissmann, and Florian Pommerening.

Generalized potential heuristics for classical planning. In Proceedings of the Interna-

tional Joint Conferences on Artificial Intelligence, pages 5554–5561, 2019.

[8] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:

What’s the difference anyway? In Proceedings of the International Conference on

Automated Planning and Scheduling, pages 162–169, 2009.

[9] Jörg Hoffmann. A heuristic for domain independent planning and its use in an enforced

hill-climbing algorithm. In International Symposium on Methodologies for Intelligent

Systems, pages 216–227. Springer, 2000.

[10] Yuxiao Hu and Giuseppe De Giacomo. Generalized planning: Synthesizing plans that

work for multiple environments. In Proceedings of the International Joint Conference

on Artificial Intelligence, pages 918–923, 2011.

[11] Hector J Levesque. Planning with loops. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 509–515, 2005.

Bibliography 49

[12] Hector J Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B

Scherl. Golog: A logic programming language for dynamic domains. The Journal of

Logic Programming, 31(1-3):59–83, 1997.

[13] Bernhard Nebel. On the compilability and expressive power of propositional planning

formalisms. Journal of Artificial Intelligence Research, 12:271–315, 2000.

[14] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-

negative to general operator cost partitioning. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 3335–3341, 2015.

[15] Florian Pommerening, Malte Helmert, and Blai Bonet. Higher-dimensional potential

heuristics for optimal classical planning. In Proceedings of the AAAI Conference on

Artificial Intelligence, pages 3636–3643, 2017.

[16] Gabriele Röger, Malte Helmert, and Bernhard Nebel. On the relative expressiveness

of ADL and Golog: The last piece in the puzzle. In Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning, pages 544–550,

2008.

[17] Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions

for potential heuristics. In Proceedings of the International Conference on Automated

Planning and Scheduling, volume 25, pages 193–201, 2015.

[18] Jendrik Seipp, Florian Pommerening, Gabriele Röger, and Malte Helmert. Correlation

complexity of classical planning domains. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 3242–3250. AAAI Press, 2016.

[19] William Shen. Learning heuristics for planning with hypergraph networks. Bachelor’s

thesis, The Australian National University, 2019.

[20] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-independent

planning heuristics with hypergraph networks. In Proceedings of the International Con-

ference on Automated Planning and Scheduling, volume 30, pages 574–584, 2020.

[21] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Learning generalized

plans using abstract counting. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 8, pages 991–997, 2008.

[22] Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of pddl axioms.

Artificial Intelligence, 168(1-2):38–69, 2005.

[23] Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing Xie. Action schema networks:

Generalised policies with deep learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, pages 6294–6301, 2018.

[24] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning

for generalised planning. Journal of Artificial Intelligence Research, 68:1–68, 2020.

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Generalized Classical Planning
	2.2 Generalized Potential Heuristics
	2.3 Policy Sketches
	2.4 Action Schema Networks

	3 Compilability between four Generalized Representations
	3.1 Generalized Potential Heuristics into Policy Sketches
	3.2 Policy Sketches into Generalized Potential Heuristics
	3.3 Action Schema Networks into Generalized Potential Heuristics
	3.4 Generalized Potential Heuristics into Action Schema Networks

	4 Related Work
	4.1 Generalized Representations
	4.2 Compilability

	5 Conclusions
	5.1 Discussion
	5.2 Future Work

	Bibliography

