Solving the Sliding Tile Puzzle
with Post-Hoc Optimization

Bachelor Thesis Presentation by Benedikt Heuser

The Sliding Tile Puzzle

0 1 2 3
4 5 6 7
8 9 10 "
12 13 14 15

[terative-Deepening A*

f(state) = g(state) + h(state)

Manhattan Distance

S 2 12
9 6 14
" 10 1
13 15 8

Manhattan Distance

Manhattan Distance

Manhattan Distance

Manhattan Distance

Pattern Databases

Plain Additive Pattern Databases

Post-Hoc Optimization

15

minimize: ZXt
t=1

subject to: ZXt > hfi(s)
tEPz'
Xy > 0

for every pattern P; € {P1,..., P}

for every tile t € {1,...,15}

Pattern Sizes

NIV/S Memory Number
1 0.22 KB 15
2 3.13 KB 102
3 40.67 KB 455
4 488.65 KB 1’365
5 5.54 MB 3°003
6 55.37 MB 5’005
7 480.32 MB 6’435

14

13

12

11

10

Pattern Sizes: Results

Experiment:

- 200 collections using uniformly sampled:

5 x size 6
50 x size 5
550 x size 4

- 100 benchmark instances
Results:

- Fewer total expansions for smaller PDBs
- Fewer generated nodes per second for smaller PDBs

Pattern Connectedness

Connectedness (

Pattern Connectedness

Connectedness (

Occurrences

1800

1600 -

1400 -

1200 -

1000 -

800 -

600 A

400 A

200 A

3

4
Connectedness

-

~ 19

Occurrences

1800

1600 A

1400 -

1200 A

1000 A

800 -

60‘) =

400 -

200 - T
0+

3

4

5

~ 19

Connectedness

Pattern Connectedness: Results

Experiment:

- All patterns of size 6 divided into 4 levels of connectedness
- Randomly sample 200 collections per level using 20 PDBs
- 100 benchmark instances

Results:

- Fewer total expansions for connected nodes
- Fewer generated nodes per second for connected nodes

Time vs. Quality

Offline Post-Hoc Optimization
15
minimize: Z X
t=1
subject to: Z X, > hPi(s) for every pattern P; € {P1,..., P}

X > 0 for every tile t € {1,...,15}

maximize: Z Yp, h'i(s)

IA
[

subject to: Z Yp, for every tile t € {1,...,15}

'V

0 for every pattern P; € {P1,...,P,}

Offline Post-Hoc Optimization

1. Calculate weights for N sample states
2. (Optimize weights)
3. During search:

a. Calculate weighted sum of weights with PDB heuristics

b. Use the maximum

Input of 3003 patterns of size 5
100 sample states

421 patterns

Average of 3.6 non-zero weights

80% used exactly three PDBs with a

weight of one

-l'-'l'-l':l"l'--T-lll'-l'-l'-'l-.--l-- m

-'-'-'.l.“.;'-'.';'-"-;':'-;'." ".-..- 1" T
**ﬂ#*i!fﬂtﬂ1#ﬂ:trﬁﬁ+

iy
=t

i]l--l-.ll.-.--.l FE_NIFE
Bk il bl 8 D B R By AU I.-ﬁ-.-. JI-
s AP APl AL s dpa -
AL AP LA Gt hdd Lo
slededpin il s Lo Al XD
CWCN LLEL TN By PET LY PRSI SN L) Sy Py 8
A Pl Bl ol ke

Offline Post-Hoc Optimization: Results

Experiment:

- OPHO vs. PHO
- (421) PDBs from before
- 100 benchmark instances

Results:

- OPHO generates more nodes per second (up to 1’000 sample states)
- Reduced heuristic quality leads to more expansions

Comparison with PA

Collection PA-8-7

Requires 5.66 GB of memory

Comparison with PA: Results

Algorithm Expansions Run Time (s) Memory (GB) Gen. per second

PA-8-7 3°744°197 .04 5.6 2°418°129
PHO-8-7 3°744°197 3.60 5.6 32°932
PHO-9x7 1°282°083°367 1°533.88 5.1 PIRRY
PHO-81x6 698°209°996 2°153.28 5.6 1°013°895
PHO-405x5 9°825°454 11°002.28 2.4 3’134

Summary

In our experiments:

- Many small PDBs provided a better heuristic, but generated fewer nodes per second.
- Connected patterns provided a better heuristic, but generated fewer nodes per second.
- OPHO can achieve lower run times, but requires more expansions.

- For many states, OPHO used additive collections.

- For memory limited to 5.6 GB, plain additive PDBs caused fewer expansions than

PHO.

