
Solving the Sliding Tile Puzzle with
Post-Hoc Optimization

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Malte Helmert

Supervisor: Florian Pommerening

Benedikt Heuser

ben.heuser@unibas.ch

2021-050-257

13.7.2024

Acknowledgments

First and foremost, I would like to thank my supervisor Florian Pommerening for accompa-

nying me with endless patience and readiness to help. Thank you as well to Prof. Nathan

Sturtevant at the Univeristy of Alberta for allowing me to use his HOG2 research code and

for taking the time to help me get familiar with it. I also extend my gratitude to the habitual

dwellers of the ZG at the department, who made writing this thesis a much less solitary

task. Finally, I greatly appreciate that I was given the opportunity to work on this topic by

my examiner Prof. Malte Helmert.

Abstract

Solving the sliding tile puzzle is an important benchmark problem for testing informed

search algorithms as it provides a large state space and is straightforward to implement.

The key to finding solutions for the sliding tile puzzle e�ciently, is to use high quality

heuristic functions, that guide the state space search. Popular search algorithms such as the

IDA* algorithm use these functions in combination with the path cost from the start node

to decide which nodes to expand. The post-hoc optimization heuristic is one such function,

that promises particularly high quality by combining the combination of many overlapping

pattern database heuristics into a single value with the use of linear programming. Our

thesis explores the impact of various inputs to the heuristic in the form of pattern database

collections and compares their performance with the state-of-the-art.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Sliding Tile Puzzle . 3

2.2 Early Abstraction Heuristics for the STP . 5

2.3 Pattern Databases . 5

2.4 Combining Multiple Pattern Databases . 6

2.5 Maximum Matching Pairs . 7

2.6 Weighted Vertex Cover Heuristic . 8

2.7 Post-Hoc Optimization . 9

2.8 O✏ine Post-Hoc Optimization . 10

3 Post-Hoc Optimization for the Sliding Tile Puzzle 11

3.1 Adapting Post-Hoc to the Domain . 11

3.2 Relationship to Existing Heuristics for the Puzzle 12

3.3 Pattern collections . 12

3.4 Optimizing O✏ine Post-Hoc Optimization . 14

4 Experiments 15

4.1 Methodology . 15

4.2 Pattern Sizes . 16

4.3 Pattern Connectedness . 17

4.4 Building Weight Vectors for O✏ine Post-Hoc Optimization 18

4.5 Solving the Sliding Tile Puzzle O✏ine . 20

4.6 Performance comparison with PA . 22

5 Conclusion 24

Bibliography 25

1
Introduction

The sliding tile puzzle has been a popular benchmark for comparing search algorithms for

more than 50 years. It continues to provide an intuitive platform for testing and serves

as a representative model for finite state spaces. Modern state-of-the-art sliding tile solvers

employ heuristic search to find solutions for instances of the puzzle. In particular, algorithms

like IDA
⇤ have established themselves as the most popular. They find a deterministic

sequence of actions to get from an initial state to a predefined goal state guided by the

function f(s) = g(s)+h(s). This function indicates to the algorithm which candidate nodes

to expand next during search. The function g(s) maps each state to its distance from the

start state and h(s) is a heuristic function. A heuristic function is function that takes a

state and computes an estimated cost required to get from that state to the goal state.

The solution that IDA* finds is optimal if the heuristic is admissible, which means that the

estimate is a lower bound on the cost of an optimal solution.

Consequently, one of the main ways heuristic search algorithms can be improved is by

designing more accurate heuristic functions. However, the trade-o↵ for such improvements

often lies in an increasing amount of required computational work and memory to compute

these heuristics. Therefore, a balance has to be found between these two aspects.

Considering this, this thesis attempts to evaluate the viability of a particular heuristic

called the post-hoc optimization heuristic for the sliding tile puzzle domain and tries to

find configurations that yield a good performance in a series of experiments. The post-hoc

optimization heuristic belongs to the class of abstraction heuristics, that compute heuristics

based on a smaller abstract version of the state space instead of the full state space itself. The

abstract state space is typically constructed in such a way that an optimal solution is easier

to compute and that solution’s length is then used as the heuristic. The common approach

to abstraction heuristics for the sliding tile puzzle is to use so-called pattern databases [2].

Pattern databases are abstractions that abstract away all but a select number of tiles, which

are collectively called patterns. Pattern databases map abstract states to the length of an

optimal solution within that abstract space where only the tiles in their respective pattern

are considered. Modern solvers typically employ multiple pattern databases and combine

them to compute new heuristics. Korf and Felner explored this by experimenting with

disjoint pattern databases [12]. As the name implies, this method only allows collections of

Introduction 2

pairwise disjoint patterns, which makes their heuristics additive. This leads us to consider

new methods that can extract more information by allowing overlapping patterns to obtain

even better cost estimates. This is where post-hoc optimization comes in.

Post-hoc optimization is a novel approach to pattern databases that allows us to use previ-

ously unavailable collections of pattern databases and use them to compute better heuristics

by including information from more interactions between tiles. It is an extension of ideas

used for the sliding tile puzzle, but has not been tested on it specifically outside of a similar

bachelor thesis which applied post-hoc optimization to the sliding tile puzzle and compared

its performance to previous methods [10]. This thesis attempts to improve on these results

by re-implementing the post-hoc optimization solver and testing its performance for a wider

variety of configurations.

We are motivated by the potential post-hoc optimization shows with regards to the high

quality of heuristics it can provide and the further refinement of the algorithm to the sliding

tile puzzle in particular. Beyond the academic realm, understanding and improving heuristic

search algorithms has practical implications across various domains, from robotics to video

game AI.

In the following chapters we first outline background information and notation for the sliding

tile puzzle, pattern databases and post-hoc optimization for an easy familiarization of the

related theory and the notation we will use in the rest of the thesis. We then discuss the

application of post-hoc optimization to the sliding tile puzzle in particular and describe its

problem specific aspects. Finally, we present the results of our experiments and interpret

their implications.

2
Background

2.1 Sliding Tile Puzzle
The classic sliding tile puzzle (or STP) is a two dimensional combinatorial puzzle composed

of 15 square numbered tiles and one missing tile arranged in a four by four square frame. The

tiles that are orthogonally adjacent to the space of the missing tile can be moved into that

space, creating a new empty space where that tile was previously. The task of the puzzle is

to reach a state where the numbered tiles are in row-wise ascending order starting from the

top left and the empty space is in the top left position. This is a common convention used

in scientific papers and digital implementations of the puzzle. For physical STPs, however,

the goal state is traditionally considered as shown in Figure 2.1.

Figure 2.1: A sliding tile puzzle made of wood.

Formally, we refer to tiles by their labels t 2 {0, ..., 15}, where the blank is represented by the

number 0. A state of the sliding tile puzzle is a bijective function s : {0, ..., 15} ! {0, ..., 15}.

It maps each tile to a position s(t) going row-wise from the top left square. The puzzle is

in a goal state when t = s(t) for every tile in the puzzle.

To represent states we introduce the following notation. A state can be described by writing

the numbers corresponding to the tiles in ascending order of their positions as a tuple. It

should not be confused with the shorthand notation for the permutation matrix. For the

Background 4

1 5 2 3

4 9 7 11

8 13 10 15

12 0 6 14

(a) Unsolved

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Solved

Figure 2.2: Examples of a solved 2.2b and unsolved 2.2a STP state

state depicted in Figure 2.2a we would therefore write:

(1, 5, 2, 3, 4, 9, 7, 11, 8, 13, 10, 15, 12, 0, 6, 14) (2.1)

For the actions of the puzzle we construct a set of operators O = {ht, di | t 2 {1, ..., 15}, d 2

{left, right, up, down}}. Each operator o 2 O corresponds to sliding a tile t in the direction

d. For any state s the set of allowed moves is exactly the set of operators that slide a tile t

that is orthogonally adjacent to the blank into the empty space. Consequently, applying an

operator to a state is equivalent to swapping the position of that tile with the blank. For

example, moving the tile 6 to the left in the state shown in (2.1) would result in the new

state:

(1, 5, 2, 3, 4, 9, 7, 11, 8, 13, 10, 15, 12, 6, 0, 14) (2.2)

We say the distance between two states is exactly the minimum number of moves required

to get from the first state to the other. A path from one state to another is a sequence of

operators ho1, ..., oni that, when applied sequentially, transform the first state to the second

state. In this thesis we often care about optimal solutions to the sliding tile puzzle. A

solution to the puzzle is a path from an initial state to the goal state. We say that a path

incurs a cost equal to its length where cost(o) = 1 for all o 2 O. Hence, an optimal solution

is any solution for which there is no other solution with a lower cost.

The full state space of the STP has one state for every permutation of the tiles 0 to 15.

However, the state space consists of two connected components with equal cardinality, where

the one that contains the goal state is solvable and the other is not because there is no way

to reach the goal state. From any solvable state, when correctly applying the allowed actions

in the puzzle, only other solvable states can be reached, and vice versa. This was shown by

Johnson and Story using a parity argument [9]. The cardinality of the solvable component

is equal to 16!
2 .

The sliding tile puzzle is a specific instance of the more general n-puzzle, which can feature a

square grid of any size greater than two. As a result, the sliding tile puzzle is often referred

to as the 15-puzzle. Other common n-puzzles include the 24-puzzle, with a five-by-five grid,

and the 8-puzzle, with a three-by-three grid. A more general variation is the mn-puzzle,

which does not restrict the grid to a square and includes rectangular grids in addition to the

standard variations. The properties described in the previous section apply to all variants,

and the solving approaches we will discuss are equally applicable to all these variations.

Background 5

2.2 Early Abstraction Heuristics for the STP
State space searches are guided by what we call a heuristic function, which is a function

that maps states to a numeric value that represents an estimate of the distance of a given

state a goal state. For the STP this means calculating an estimate of the number of moves

required to solve the puzzle. The principle idea is that by guiding the search in the direction

of operators that lead to a state with a lower heuristic value, the search algorithm will reach

a goal state faster than by exploring the state space blindly. There are many ways of cal-

culating heuristics, but abstraction heuristics have been the prevailing approach for puzzles

such as the STP. Abstraction heuristics are a class of heuristics that utilize abstractions. An

abstraction is a surjective function mapping states to a (usually smaller) state space. The

key idea here being, that the number of moves to solve the abstract puzzle can then be used

as the heuristic for the full puzzle.

A heuristic h is termed admissible when it maps each state to a value that is less than or equal

to the value given by the perfect heuristic. The perfect heuristic h
⇤ maps each state to the

minimum cost of an optimal solution from that state to the goal state. Importantly, search

algorithms such as the popular IDA* algorithm are guaranteed to yield optimal solutions

when used with an admissible heuristic.

An example of an admissible abstraction heuristic for the sliding tile puzzle is obtained by

ignoring the constraint that tiles can only be moved into an empty space. Counting the

number of moves required to move each tile to its goal position yields a value known as the

Manhattan distance. The Manhattan distance is an admissible heuristic because it results

from removing a constraint from the problem, making the new abstract problem ”easier”

to solve since each tile can be moved while ignoring other tiles. The Manhattan distance

has been a popular heuristic for the sliding tile puzzle due to its ease of implementation.

However, as we will see in the following sections, better performance can be achieved.

2.3 Pattern Databases
Modern sliding tile puzzle solvers commonly employ pattern databases (PDBs), a widely

used type of abstraction heuristic in search and planning [2]. They are what first allowed

for Rubik’s Cube to be solved optimally [11]. For the sliding tile puzzle, they were first

introduced in 1996 by Culberson and Schae↵er [1, 2].

We define a pattern as a subset of the set containing all 16 tiles, including the blank. For

any such pattern P ✓ {0, . . . , 15}, we consider an abstract state space SP . Each abstract

state sP 2 SP is a function P ! {0, . . . , 15} that maps each tile in the pattern to a position,

analogous to the previous definition of states of the puzzle in section 2.1.

The abstraction provided by the pattern lies in the inclusion or exclusion of tiles. The

behavior of the included tiles in the abstract puzzle is similar to their behavior in the full

puzzle. Swapping the position of the blank with a tile not in the pattern simply changes the

position of the blank without incurring costs. We sometimes represent the excluded tiles in

the pattern with the ⇤ symbol or do not write them at all, rendering them indistinguishable

from one another. The size of the abstract state space for a pattern P is given by 16!
(16�|P |)! .

A pattern database is a mapping similar to a lookup table that assigns each abstract state a

Background 6

0 12

14 13 15

9

(a)

0

9

12 13 14 15

(b)

Figure 2.3: Examples two abstract states for the pattern {9, 12, 13, 14, 15}. 2.3a shows an
arbitrary abstract state and 2.3b shows the abstract goal state for the same pattern.

heuristic value and are typically pre-computed using a breadth first search over the abstract

state space. That value is exactly that state’s distance from its respective goal state. The

distance between states s1, s2 2 SP in the context of the abstract state space is the cost of

the shortest path ↵s1,s2 , where for every o 2 ↵s1,s2 :

costP (o) =

8
<

:
1 if t 2 P

0 otherwise
(2.3)

A pattern database heuristic is a function hP : S ! N that maps a full state to the value

that the pattern database for the pattern P mapped to the abstract state that corresponds

to this full state. All pattern database heuristics are admissible because every solution to

the full puzzle is also a solution to the abstract puzzle. Therefore, the lowest cost solution

to the abstract puzzle can only have lower or equal cost to the lowest cost solution to the

full puzzle.

2.4 Combining Multiple Pattern Databases
Individual PDB heuristics are admissible, but they do not incorporate any information

pertaining to excluded tile’s positions. While it is therefore possible to perform a search using

only a single pattern database heuristic, we would like our heuristic to be more informed.

Therefore, in order to construct informed heuristics modern solvers typically use multiple

pattern databases and combine their respective heuristics. In the following we will describe

such methods for combining pattern databases.

Since each individual pattern database heuristic is admissible, any algorithm that always

chooses any single one of these heuristics and discards the rest will be admissible as well.

In particular, it makes sense to choose the heuristic that yielded the highest value, as it

will be the closest estimate to the real cost. In this thesis we refer to this as the maximum

heuristic.

Due to the way we construct PDBs, for any set of disjoint patterns (patterns, where each

tile apart from the blank is only in one of the patterns) we can use the sum of all pattern

database heuristics, as each tile’s costs only count towards a single heuristic. We will refer

to this heuristic the plain additive database heuristic PA. The patterns used in the sum

can be determined during execution or be constant for every iteration of the search. If

Background 7

they are constant we say the pattern databases are statically-partitioned and dynamically-

partitioned if the choice of patterns is redetermined for each iteration. At the time of

this thesis, statically-partitioned database heuristics outperform dynamically-partitioned

heuristics because of the increased overhead evaluating the collection of patterns causes.

The best-performing static pattern collections for the sliding-tile puzzle in the literature

have been (in order) the 7-8, 6-6-3, and 5-5-5 partitions shown in Figure 2.4 [4]. We interpret

these images such that each set of tiles with same color is a single pattern. The tiles they

represent are the tiles that would be at that location in the goal state. In the case of disjoint

patterns we can display them all in the same image. However, in later parts of this thesis

we use multiple images to represent overlapping patterns.

(a) 7-8 (b) 6-6-3

(c) 5-5-5

Figure 2.4: Visual representations of the three disjoint pattern collections with the best
performance for the sliding tile puzzle. Each tile’s color corresponds to a single pattern that
it belongs to.

2.5 Maximum Matching Pairs
The idea for the maximum matching pairs comes from an extension on the idea of the

Manhattan distance. It involves incorporating information about linear conflicts [6]. A

linear conflict occurs when two tiles are adjacent and already in their goal row or column

but are not in the correct order. The Manhattan distance heuristic would have these tiles

move through each other, which is impossible without one tile moving out of the way for

the other to pass. We can therefore improve the heuristic by adding two to the heuristic

value for the moves needed to resolve each conflict.

Consider a pattern that consists of two tiles. There are two possible scenarios: either the

Background 8

two tiles can move to their goal positions without getting in each others’ way or they get

into a linear conflict where one needs to move out of the way for the other to pass. In the

first of these cases the heuristic that the corresponding pattern database will map to will

be exactly the sum of the Manhattan distances of the two tiles. In the second the heuristic

would be exactly two higher because of the linear conflict, which is advantageous because it

means the quality of the heuristic is better. We call this the pairwise distance of these two

tiles. But now consider the state where a row of the puzzle contains the tiles (3, 1, 2, 4). In

this case tiles 3 and 1 are in a conflict as well as tiles 3 and 2. We are able to resolve both

linear conflicts if the tile 3 moves out of the way, meaning we only need to add two to the

heuristic once.

From this observation comes the idea for themaximum matching pairs heuristic (MM) which

was described by Felner in 2015 [3]. To calculate it we construct a graph called a mutual-cost

graph where we represent each tile with a vertex and connect each pair of vertices with an

edge labeled with their pairwise distance. The task is then to select edges in such a way

that no vertex is connected to two of the selected edges while maximizing the sum of their

labels, which can be done in O(n3) [14]. This sum is then exactly the value of the maximum

matching pairs heuristic. For simplicity, the labels are only assigned the values exceeding

their Manhattan distance, which helps with clarity and has other advantages we will see in

the next section.

Felner develops the idea of MM further by generalizing the maximum matching pairs to

higher-order groups of tiles, which transforms the graph into a hypergraph, for which the

problem is NP-complete [5]. The task is then to choose a set of hyperedges of the MCG

without vertices in common, so that the sum of the weights of the edges and hyperedges is

maximized.

2.6 Weighted Vertex Cover Heuristic
Similar to the maximum matching pairs heuristic, Felner describes the weighted vertex cover

heuristic. Consider the example state (3, 2, 1, 4) where each of the tile 1, 2 and 3 are in a

linear conflict with each other. In this case the mutual-cost graph can be drawn as shown

in Figure 2.5.

1

2

3

4

2

2

2

Figure 2.5: A mutual-cost graph for the state (3, 2, 1, 4). Nodes that are in a linear conflict
are connected by an edge with a weight of two.

The idea is that if there is an edge with a label of 2 connecting two vertices in the mutual-cost

graph, we know that either the first tile has to use two moves more or the other tile does.

So to receive an admissible heuristic, we need to assign a number of moves to each vertex

Background 9

such that all constraints are met, and the total number of moves is minimized. In other

terms, the problem that must be solved here is called the weighted vertex cover problem. A

vertex cover is a set of vertices whose combined set of edges to which they are incident to

are the set of all edges of a graph. Consequently, the minimum vertex cover is the smallest

set of vertices that form a vertex cover. For example, if the weights are all equal to two, as

in Figure 2.5, multiplying the number of nodes in our minimum vertex by two directly gives

us the value of the weighted vertex cover heuristic for this state. When this problem is then

translated into the context of a weighted graph for arbitrary pattern sizes we arrive at the

general formulation of the weighted vertex cover. We must assign an integer value to each

vertex, so that for each hyperedge, given a hypergraph with weighted edges, the sum of the

values assigned to each vertex is at least as large as the weight of the hyperedge [3].

2.7 Post-Hoc Optimization
Post-hoc optimization (PHO) was first introduced by Pommerening, Röger and Helmert in

2013 [15]. The general idea is to solve a linear program constructed from multiple PDB

heuristics by minimizing the sum of the costs of moving tiles.

We start by defining a set of variables X that holds a variable Xo 2 X for every operator

o 2 O. Each variable represents the number of occurrences of operator o in a solution from

the current state. Every solution to the puzzle must fulfill the constraints of the form shown

in (2.4). As a result, we know that the sum of all variables must be a lower bound on the

cost of an optimal solution.

X

o2O

Xo � hP (s) (2.4)

From the admissibility of pattern database heuristics we can see that for any pattern P

the pattern database heuristic is a lower bound on the sum of all variables induced by the

pattern. Because the cost operators that do not a↵ect the tiles in the pattern have a cost

of zero, we can tighten the bound to the set of operators that a↵ect the pattern.

X

o2OP

Xo � hP (s) (2.5)

We then construct a linear program (LP) from a set of patterns. Minimizing the sum of

all variables Xo is equivalent to minimizing the length of our solution. Because we want

minimize the number of moves in our solution, we write the objective function as the sum

of all variables, and we use (2.5) for each pattern as our constraints.

minimize
P

o2O
Xo

subject to
P

o2OP
Xo � hP (s) for all patterns P 2 {P1, ..., Pn}

Xo � 0 for o 2 O

(2.6)

We call the function that maps a state to the solution of its linear program the post hoc

optimization heuristic.

Background 10

2.8 Offline Post-Hoc Optimization
Computing a linear program for every generated state is computationally expensive be-

cause it can mean computing thousands of LPs during search. O✏ine post-hoc optimization

(OPHO) is a variant of post-hoc optimization originally described by Höft, Speck and Seipp

in a paper where they explored ways of reusing previously computed results using a tech-

nique called sensitivity analysis [7]. The idea is to precompute a single linear program for

each of a set number of sample states, allowing us to then use the results for the search

by maximizing over the estimates. The main idea is that for an large number of sample

states the OPHO heuristic approaches the PHO heursitic in terms of heuristic quality as it

becomes more and more likely that at least one partition is at least close to optimal for that

state.

The dual of a linear program is a second LP that is derived from the first (called the primal)

such that variables in the primal become constraints in the dual and the constraints of the

primal become the variables of the dual. Additionally the objective sense is inverted. The

strong duality theorem states that any optimal solution to the primal has a solution to the

dual which is equivalent [13]. If we rewrite our LP from (2.6) we get the dual:

maximize
P

Pi2{P1,...,Pn}
YihP (s)

subject to
P

i if t2Pi
Yi 1 for every tile t 2 {1, ..., 15}

Yi � 0 for i 2 {1, ..., n}

(2.7)

The dual solution is the set of weights Y that assign a weight between zero and one to each

of the PDB heuristics. We call this a cost partition, as it partitions the cost of multiple

PDB heuristics such that the weighted sum is admissible.

Because of the duality theorem we know that the weighted sum of the heuristics is exactly

equal to the heuristic value computed by the primal. Therefore, the key idea is that if

we precompute these weights for a number of sample states, we can then reuse the cost

partitions during search. In other words the o✏ine post-hoc optimization heuristic is the

maximum value of the weighted sums of the weights Y with the PDB heuristics for a given

state and where S is a set of sample states.

h
OPHO(s) = max

s02S

X

Pi2{P1,...,Pn}

YihPi(s) (2.8)

3
Post-Hoc Optimization for the Sliding Tile Puzzle

The sliding tile puzzle has been a popular benchmark problem for several decades. The

e↵orts to solve it more e�ciently have inspired many developments in state space search

guided by heuristics. While post-hoc optimization was formulated for arbitrary planning

tasks, it is an extension of the ideas originally developed for the sliding tile puzzle. In the

following sections we will discuss how we adapt post-hoc optimization back to the puzzle

that inspired it.

3.1 Adapting Post-Hoc to the Domain
In its general form, post-hoc optimization uses one variable per operator. We can reduce the

number of the variables needed by using the domain-specific properties of the STP domain.

Consider the operators Xh1,upi, Xh1,downi Xh1,lefti and Xh1,righti. Each of of these variables

represents the number of times the first tile is moved in a particular direction. Whenever one

of these variables appears in the linear program, all four of these variables appear together.

This means we can combine all directions into a single variable Xt per tile, reducing the

number of variables we need to account for in our calculations by a factor of four. This

grouping of the variables is called a relevant operator partition. (3.1) shows the new form of

the LP.

minimize
P

t2T Xt

subject to
P

t2P Xt � hP (s) for all patterns P 2 {P1, ..., Pn}

Xt � 0 for t 2 T

(3.1)

During search, each generated node requires us to solve exactly such a linear program. How-

ever, the only change in between each of the problems is on the right-hand side. Whenever

a new state is expanded, the pattern database heuristic values are retrieved and replaced.

Restarting the linear program solver from the previous problem’s solution can help reduce

the time it takes for the solver to evaluate the linear program. In our implementation this

is handled by the CPLEX library.

Post-Hoc Optimization for the Sliding Tile Puzzle 12

3.2 Relationship to Existing Heuristics for the Puzzle
Consider the case where we are using post-hoc optimization with the set of all patterns of

size one. In this scenario, the values that the LP assigns to each of the constraint variables

will be exactly their Manhattan distance. This is because in the abstract state space of a

pattern database with a pattern of size one, the tile can simply move to its goal position

without any conflicts, which results in the PDB heuristic being the same heuristic as the

Manhattan distance of that one tile. If this is the case, the constraints of the linear program

will each be of the form Xt � h{t}(s) with a single variable per constraint. Therefore, each

variable only appears once. The optimal solution to the LP will then be to assign exactly

the value of the respective PDB heursitics to the variables. Finally, because the objective

function is the sum of all variables the PHO heuristic will have the exact same value as the

MD heuristic.

Furthermore, a pattern database with a pattern of two tiles exactly maps states to the

pairwise distances of two tiles. Therefore, using post-hoc optimization with only patterns

of size two means that every solution must assign values to these two such that their sum

is at least their pairwise distance. This is a similarity of post-hoc optimization with the

weighted vertex cover heuristic. The nodes in the MCG for the WVC are exactly the

variables of PHO. The WVC heuristic requires the sum of the assigned values to be at least

the value of the edge label while PHO also requires the sum to be at least as large as the

value of the PDB heuristic on the right hand side of the constraints. However, there is

an important di↵erence between the two. The most commonly used form of the post-hoc

optimization heuristic allows real values to be assigned to each of the LP variables, whereas

the weighted vertex cover heuristic only permits integer values. Restricting the values to

integers e↵ectively makes the problem harder to solve if P 6= NP, as it is in NP while PHO is

solvable in polynomial time [3]. However, the quality of the heuristic can be slightly reduced

in some cases. This is because in linear programs the optimal solution can also be a real value

that is lower than the rounded up integer solution. Note that post-hoc optimization does

not explicitly exclude a restriction to integer values, so WVC heuristic is exactly equivalent

to the PHO as an integer program version.

3.3 Pattern collections
The performance of post-hoc optimization for a given state of the sliding tile puzzle depends

on the collection of patterns used, making it crucial to identify pattern collections that

perform well for arbitrary instances of the puzzle. However, testing every possible collection

of patterns is infeasible due to the number of possibilities (22
15

) and limited computational

resources, as will be outlined in Section 4.1. To calculate the post-hoc optimization heuristic

for a given state, we must select a collection of pattern databases and solve a linear program

with constraints corresponding to these databases. The quality of these constraints directly

impacts the heuristic’s e↵ectiveness. Therefore, our primary contribution in this thesis is

to present guiding intuitions for choosing high-quality pattern collections, despite the vast

number of possible combinations that make exhaustive testing impractical.

In a first direction, when comparing the performance of di↵erent collections of pattern

Post-Hoc Optimization for the Sliding Tile Puzzle 13

size mem. p. PDB ratio req. total num. patterns

1 0.22 KB ⇡ 14 3.30 KB 15
2 3.13 KB ⇡ 13 319.26 KB 102
3 40.67 KB ⇡ 12 18.50 MB 455
4 488.65 KB ⇡ 11 667.00 MB 1365
5 5.54 MB ⇡ 10 1.62 GB 3003
6 55.37 MB ⇡ 9 290.00 GB 5005
7 0.48 GB ⇡ 8 3.08 TB 6435
8 3.86 GB ⇡ 7 24.83 TB 6435
9 27.06 GB ⇡ 6 135.43 TB 5005

Table 3.1: Columm one shows the required memory for a PDB of the given size. Column
two shows how many of that size of PDB require the same amount of memory as one of the
size that is one larger. The third column indicates how much memory is required to store
all PDBs of that size. The last column shows the number of patterns that exist of the given
size.

databases we must consider their sizes. Consider the case of two collections A and B con-

taining an equal number of patterns, but the sum of the sizes of the respective pattern

database files is larger for A than B. The pattern databases for A requires more memory

and more computational work to generate than those for collection B. Furthermore, as we

described previously, the larger PDBs have a larger abstract state space, that potentially

holds more information relevant to the heuristic. Therefore, if we run the same algorithm

once with collection A and once with collection B, and we were to measure a shorter run

time for A than for B, that does not mean that A is strictly better than B. For reference, in

Table 3.3 we tabulated the sizes up to size nine along with the size ratio between each size

and the next, and the number of patterns that exist for that size. Note that the required

memory of a pattern database only depends on the size of its pattern.

This observation leads us to our first intuition. With some prior indication through ex-

ploratory testing of our solver, we came to the hypothesis that a smaller set of large over-

lapping PDBs might yield a better performance than a large set of small PDBs. Natuarally,

the sets must be chosen such that the sum of the required memory is equal as we described

above. The reason we believe this might be the case is that using fewer large PDBs reduces

the number of constraints for which the LP must be solved.

The second intuition we formulated was that pattern connectedness would have a correlation

with the performance of PHO. We introduce here a measure for connectedness for which this

hypothesis can be tested. We call the connectedness of a pattern P the sum of orthogonally

adjacent pairs in that pattern.

|{(t1, t2) | t1, t2 2 Pi where t1, t2 are orthogonally adjacent and t1 6= t2}| (3.2)

Intuitively, we expect patterns where the majority of tiles are placed next to each other in

their respective goal positions to perform better than patterns that consist of many small

non-adjacent groups of tiles. The motivation behind this is that to get any tile into its

target position the tiles around it are the most likely to have to be moved out of the way or

swapped places with that tile.

To further examine these intuitions we designed experiments that isolate these factors as

Post-Hoc Optimization for the Sliding Tile Puzzle 14

well as possible which we describe in Chapter 4.

3.4 Optimizing Offline Post-Hoc Optimization
O✏ine post-hoc optimization is a slightly di↵erent approach from the regular post-hoc opti-

mization heuristic. While PHO computes a linear program for every generated node, o✏ine

post-hoc optimization calculates sets of weights upfront for a series of sample states.

We include this variant of post-hoc optimization in this thesis on the one hand because it

allows us to observe the weights that are given to di↵erent patterns, shedding some light on

their individual relevance and on the other because we would like to test whether we are able

to find configurations that yield performance that is close to the performance of regular post-

hoc optimization with shorter run times. The fundamental trade-o↵ lies between accuracy

and computation time. Using more sample states improves the heuristic, but also makes

the heuristic more expensive to compute. This is because for each additional set of weights

an additional weighted sum as can be seen in (2.8) must be evaluated.

In this thesis we choose the set of sample states uniformly from the solvable component of

the full state space of the puzzle. We do this because the solver should be general in the

sense that it should work well for arbitrary states. Therefore, choosing states like this is the

most representative method for the expected input.

One decisive advantage of calculating cost partitions in advance is that we can optimize the

collection of weights over which we maximize during the search. In this thesis we explore this

in two main ways. The first is to reduce the number of heuristics in the sum. If a particular

PDB heuristic is always given a weight that approaches zero, we can simply remove the

pattern entirely without significantly sacrificing heuristic quality. For PDB heuristics that

have a weight of exactly zero for every sample state doing this does not impact the heuristic

at all, so cutting these does not even have any trade o↵. We will see in Chapter 4 that

this can drastically reduce the number of heuristics that need to be included. The second

optimization that we can perform is to reduce the number of cost partitions that need to be

compared. Trivially, we can remove any duplicate cost partitions, where each of the weights

are the same. Furthermore, we can check if any of the partitions yield the same heuristic

value as the partition calculated for that state for many of the other sample states. If so,

we can remove those other partitions. This reduces the number of weighted sums that we

need to calculate to find the maximum heuristic out of the set of weight vectors during the

search.

4
Experiments

In this section we present the experiments conducted to evaluate our hypotheses. We at-

tempt to find pattern collections for which the performance of post hoc optimization is

satisfactory. We also determine the overhead solving a linear program for every visited state

creates and quantify the quality of the heuristic for di↵erent collections and variations.

4.1 Methodology
We will briefly describe the setup we used to run our experiments. We programmed a

custom implementation of a sliding tile puzzle solver in the C++ programming language on

top of the existing HOG2 research code by Sturtevant [17]. HOG2 provides a sliding tile

puzzle state space implementation and an interface for generating pattern databases. It also

implements the IDA* search algorithm which performs the core search. For each expanded

node, a linear program’s bounds are updated using values retrieved from pattern database

files generated in a precomputation step. Solving the linear program is handled by IBM’s

CPLEX solver version 22.1.1 using the C-callable interface [8].

Experiments use the Python package Lab [16] to run various configurations of the solver on a

series of benchmark sliding tile puzzle instances. In this thesis we use two sets of benchmarks.

The first is the set of 100 Korf instances [4], named after Richard Korf, who used them in

his research. The Korf instances include states with very long optimal solutions. This can

cause problems when running a very large amount of runs because experiments would need

to run for too long to get results in a reasonable time. Therefore we constructed a second

set of 100 instaces where solution lengths are limited to between 12 and 25 moves, which we

will refer to as the Heuser instances analogously and for simplicity. We used a random-walk

from the goal state with a set walk length of 25 and removed any states where the optimal

solution was under 12 moves. We did this until we had exactly 100 instances.

The metrics we use to determine the performance of a run are the following:

- System total run time: We measure the system time from the moment the search

algorithm starts to the termination of said search. Lower run times imply a more

e�cient execution of the search.

Experiments 16

- Number of expanded nodes: We use the number of expanded nodes as a metric for

the heuristic quality. If the solver expands fewer nodes there is less ambiguity about

which move should be made next from a current state.

- Number of generated nodes: Analogously to the number of expanded nodes, the

number of generated nodes provide a similar metric that is usually about three to four

times the number of expansions, as there are always between two and four possible

directions the blank tile can go for any given state.

- Memory usage: The memory usage of the solver on a given algorithm is an indi-

cator of its resource e�ciency. Runs can have very low run times but high memory

requirements and might therefore still not be preferable.

- Generated nodes per time: By measuring the number of generated nodes against

the run time we can get a sense of the average computational work required per

expansion.

4.2 Pattern Sizes
In a first experiment, we want to test our hypothesis holds, namely that it is preferable to

use a small collection of large pattern databases over a large collection of small patterns.

To ensure that the amount of memory is roughly equal for all collections we need to construct

them such that the sum of the required memory the of PDBs in each collection is equal. We

can ensure this by constructing collections using a number of PDBs of a given size. We can

then build a collection using smaller PDBs of a given size with the same total memory by

multiplying that number by ratio between the memory requirements of the respective PDBs

sizes. We can see from Table 3.3 that for small PDB sizes there are not enough such patterns

to satisfy this constraint. Consider the case of ten patterns of size three, which is near the

minimum number of such PDBs for which collections are consistently sampled such that

each tile is included in at least one pattern. To reach the same amount of memory usage we

would need 10 ⇤ 13 = 130 PDBs of size two which exceeds the number of unique patterns

of that size. If, conversely, we choose very large PDBs we run into memory constraints in

terms of the storage needed to store all PDBs of the given size. Consequently, we perform

the experiment with collections of the sizes four to six.

In Table 4.1 we present the results of running this experiment with 200 uniformly sampled

pattern collections per PDB size. Each of the collections were tested on the Korf instances

as well as the Heuser instances set. We can see that the average number of expansions is

the lowest for the 550 patterns of size four. This shows that using many small PDBs can

work well with PHO, and does not directly confirm our hypothesis. On the other hand, we

can clearly see that the average number of generated nodes per second and the average run

time are significantly better for the large PDBs. We believe that this is a result of the LP

taking longer to solve as the number of constraints are increased. This means, that if we

want to get the best heuristic out of a limited amount of memory, it can be worthwhile to

use many small PDBs. The 100 Heuser instances are used in addition to the Korf instances

because the have the property that every solution is between lengths 12 and 25. When

Experiments 17

collections expansions run time gen. per second memory

550 patterns of size 4 3319451 33.21 sec 3162.59 331.7 MB
50 patterns of size 5 98868551 270.65 sec 11356.11 333.2 MB
5 patterns of size 6 17171635 22.04 sec 23941.32 372.1 MB

550 patterns of size 4 720 665.05 ms 3630.4 331.7 MB
50 patterns of size 5 723 483.43 ms 8061.5 339.4 MB
5 patterns of size 6 767 258.74 ms 9687.7 382.2 MB

Table 4.1: The results of PDB size comparison experiment on the Korf (top) and Heuser
(bottom) instances. The columns show the average number of expansions, the average run
time instance, the average number of generated nodes per second and the average memory
utilization.

the solution lengths are short, the e↵ect of the di↵erence in heuristic quality is less strong,

therefore, we can see more clearly for this set of instances how the run time is impacted by

the speed at which nodes are processed by the solver. Additionally we can see, that for the

Korf instances the five patterns of size six produced a lower heuristic quality than the 550

of size four, but still significantly outperformed the 50 PDBs of size five. We were not able

to find an explanation to why this e↵ect was not present for the Heuser instances.

In summary, we found that if we are solely interested in the heuristic quality, it is generally

preferable to use many smaller PDBs. However, the solver needs more time to find a solution

to the linear program, which means that for the domain of the 15-puzzle, using a small set

of large PDBs finds solutions with a shorter average run time.

4.3 Pattern Connectedness
To verify our hypothesis that pattern connectedness correlates with a collection’s perfor-

mance, we investigated the e↵ect of pattern connectedness on the solver’s performance by

designing sets of pattern collections that were identical in both the number of patterns and

their sizes. We show four such collections with varying levels of connectedness in Figure 4.1.

We found that indeed the collection (a) with the most connected patterns outperformed

the others on average with a shorter run time and less expansions for every instance out

of the 100 Korf instances used in the experiment. The collections with lower scores in

connectedness generally performed worse. However, the number of expansions was lower

than expected for the collection (c). It achieved better results than collection (b) despite a

lower connectedness score. We attribute this to the two-by-two chequered patterns in the

collection, whose connected two-by-two squares have the advantage of better incorporating

information on local conflicts. We come to this conclusion because the collection (d) replaces

exactly these patterns with even less connected pairs and yields the poorest performance of

these collections.

Furthermore, after having explored connectedness on a curated set of pattern collections

with four large patterns we would like to verify if our hypothesis holds for a wider selection

of collections. To do this we calculated the connectedness for each possible pattern of a

given size and sorted the patterns into bins according to their connectedness. We repeatedly

randomly sampled 15 patterns from the same bin to build series of collections with similar

connectedness scores. We can see from Figure 4.2 that the distribution of connectedness is

Experiments 18

collection expansions run time gen. p. sec. memory connectedness
a 947769 1.21 sec 26081.86 13.22 GB 36
b 22855157 24.31 sec 28390.91 13.22 GB 22
c 10602617 11.47 sec 29116.58 13.22 GB 14
d 24372382 25.70 sec 28612.02 12.71 GB 8

Table 4.2: Results of running four specific pattern collections from Figure 4.1 composed of
two patterns of size eight and two of size seven on the set of 100 Korf instances. Column
one shows the total number of expansions for all instances. Column two shows the average
run time per instance. Column three shows the number of generated nodes per second.
Column four shows the average peek memory utilization per instance. Column five shows
the connectedness score.

roughly Gaussian. This means, that if we were to individually use each level of connectedness

as a bin, we would have the problem, that the bins for the most and least connected patterns

would be so small that the same patterns would be selected every time. To combat this,

we made the bins two times as large, grouping two levels of connectedness together. As a

consequence, the average connectedness is not the same for every collection out of a given

bin, which is why we provide the average connectedness of the patterns in the collections

for each connectedness level. Finally, we compared the average performance of each of these

collections with each other.

Table 4.3 shows that the collections containing patterns with high connectedness caused

fewer expansions, while also generating fewer nodes per second. We can see that our hy-

pothesis, namely that more connected patterns are preferable, holds with regards to heuristic

quality. However, we observe that the number of generated nodes per second are inversely

correlated with the connectedness. This likely means that the LP solver is taking longer to

solve LPs where the patterns are more connected.

In summary, connectedness is a good indicator for the heuristic quality that patterns provide.

Conversely, the number of generated nodes per second is generally lower for collections with

connected patterns.

(a) four halves (b) alternating rows and columns

(c) chequered single and double (d) chequered variant

Figure 4.1: Four pattern collections with varying levels of connectedness with 8-8-7-7 pattern
schemes.

4.4 Building Weight Vectors for Offline Post-Hoc Optimization
O✏ine post-hoc optimization can be broken up into two steps, a precomputation step and

a search step. The precomputation step generates the weights for each of the sample states

while the search step performs the actual search using the maximization over the weighted

Experiments 19

(a) Size five (b) Size six

(c) Size seven

Figure 4.2: The distribution of connectedness among all patterns for the pattern sizes five
(a), six (b), and seven (c). It can be observed that the distribution is roughly Gaussian

connectedness expansions run time memory gen. p. second
.87 132290 .27 sec 332.85 MB 9752.91
2.66 115211 2.49 sec 332.85 MB 4413.49
4.33 91008 .96 sec 332.85 MB 3516.44
6.08 77541 2.32 sec 332.85 MB 1991.32

Table 4.3: Results of running 200 generated collections for each of four levels of connect-
edness on the set of 100 Korf instances. The columns show the average connectedness of
patterns in the collections, the average number of expansions, average number of nodes gen-
erated, average run time and average number of expansions per second.

sums with the precomputed weights as the heuristic. In this section we will discuss the

precomputation step. The results of the search step will be discussed in the next section.

In a first direction we explored the weight vectors that the precomputation produces, and try

to observe the e↵ect of the optimizations we described in Section 3.4. Our implementation

calculates a weight vector for every sample state. In a first step, all patterns, that never

recieve a non-zero weight are removed. Next, all weight vectors that are duplicates of other

weight vectors are removed. Finally, we remove any weight vectors for which there is already

another weight vector whose weighted sum with the PDB heuristics for that sample state

yield the same heuristic value.

In initial test, we ran our implementation on each set of all patterns of a given size, up

to size five, for exactly 100 sample states, without any of the optimizations. We observed

Experiments 20

the calculated weights manually. We found that on average each weight vector only had a

small number of non-zero weights. For size four the there were on average 8.56 out of 1820

non-zero weights per vector and 7.4 out of 3003 non-zero weights for size five. This had

the e↵ect, after applying the optimizations the first optimization, namely removing PDBs

that never have a weight of more than zero, reduced the number of PDBs drasticly. For

example, for the patterns of size five, the number of PDBs was reduced from 3003 to 421

from just this optimization. For these experiments the other optimizations, did not remove

any weight vectors. In later experiments we refer to this collection for size five as ’OPHO-5’.

To get an intuition for the patterns that remained we rendered Figure 4.3, which shows each

of these patterns visually.

For large PDBs, we cannot generate all possible PDBs because of the run time and memory

constraints. Therefore we are more limited in what we can try. As we observed in Section

4.3, patterns with a high connectedness score produce a better heuristic than those with

low scores. That implies, that if we were to generate weights for the handmade patterns in

Figure 4.1 from our previous experiments, the most connected PDBs ought to get the highest

weights out of all of them. This was indeed the case. The only patterns that receive non-zero

weights at all, when we run the experiment on 100 sample states are the patterns shown

in Figure 4.4. Every weight vector had exactly two entries with a weight of one while the

others were zero. If we regard the two patterns on the same line as an additive pair, either

the first pair or second pair patterns had a weight of one in 84 of the 100 vectors while the

last pair received a weight of one in 14 vectors, and the remaining patterns account for the

remaining 2. In a later experiment we refer to this set of weight vectors as ’OPHO-4x8-4x7’.

For PDBs of size six, we were not able to compute weights for all 5005 patterns, because our

attempt to do so ran for multiple days without terminating. Therefore, using what we know

from Section 4.4, we decided to test the o✏ine post-hoc optimization on the set of the 25

PDBs of size six with a connectedess score of seven, which is the maximum possible for this

size, together with the 262 patterns with a connectedness score of six. For this collection of

287 patterns we then generated the weights. We noticed that for this collection 45 percent

of weight vectors used a combination of 6 PDBs each with a weight of 0.33. We performed

this once for 100 and once for 1000 sample states. In later experiments we will refer to these

sets of weights as ’OPHO-6*’. The ’*’ indicates that we are only using the PDBs of size six

where the connectedness is at least a value of six.

4.5 Solving the Sliding Tile Puzzle Offline
In Section 4.2 we identified the number of generated nodes per second as a major constraint

for using large collections of small PDBs compared to small collections of large PDBs for

regular post-hoc optimization. We also formulated that we believe that o✏ine post-hoc

optimization could be a good way to get around this. We believe this because OPHO lets us

trim down the selection of PDBs in the collection, and also do not need to solve any linear

programms during search. Instead, we calculate the maximum of the weighted sums of each

PDB heuristic with the weight vectors we produced during the precomputation step. In this

section we try to determine whether this approach can be a good option.

Experiments 21

Figure 4.3: Image representing the patterns that had non-zero weights in the set of weight
vectors ’OPHO-5’, which was computed for the set of all patterns of size five for 100 uniformly
sampled sliding tile puzzle states.

To compare whether o✏ine post-hoc optimization can outperform regular post-hoc optimiza-

tion, we run the collections we described in Section 4.4 with both the o✏ine and regular

post-hoc optimization solvers. For o✏ine post-hoc optimization we used exactly the weight

vector sets ’OPHO-6*’, ’OPHO-5’ and ’OPHO-4x8-4x7’ that we described in Section 4.4.

For regular post-hoc optimization we used the same same PDBs as for OPHO. This means,

for example, ’PHO-6*’ and a sample size of 100 means that we used regular post-hoc opti-

mization with the set of all patterns that received a non-zero weight in the weight vector set

’OPHO-6*’. This keeps the memory utilization and the maximum possible heuristic qual-

ity constant between OPHO and PHO. The reason why we want this is that we primarily

want to observe the number of generated nodes per second and the average run time in this

Experiments 22

Figure 4.4: The patterns shown in this figure are the patterns that received non-zero weights
in the set of weight vectors ’OPHO-4x8-4x7’, which was computed on the set of fourteen
patterns shown in Figure 4.1 for 100 sample states. Each of these patterns received a weight
of exactly one.

algorithm samples PDBs expansions run time memory gen. p. sec.

OPHO-6* 100 178 11260811 249.38 sec 10.12 GB 1415.45
PHO-6* 100 178 10362045 291.24 sec 10.12 GB 1245.23

OPHO-6* 1000 259 10149347 516.87 sec 10.12 GB 655.70
PHO-6* 1000 259 9924651 603.77 sec 10.12 GB 612.35

OPHO-5 100 428 10623867 8354.13 sec 2.35 GB 3959.19
PHO-5 100 428 9824505 11092.18 sec 2.35 GB 3162.64

OPHO-4x8-4x7 100 8 829121 2.12 sec 22.34 GB 12474.14
PHO-4x8-4x7 100 8 829121 1.05 sec 22.34 GB 25926.64

Table 4.4: Shows the results of running the algorithms described in Section 4.4 on the
100 Korf instances. The third column indicates how many PDBs were used by the given
algorithm. We show the number of expansions, the average run time per instance, the
memeroy utilization and the number of generated nodes per second for each of the runs.

experiment.

We can see from Table 4.4, that for larger numbers of PDBs, o✏ine post-hoc optimiza-

tion is able to generate slightly more nodes per second than regular pot-hoc optimization.

Conversely, for small numbers of PDBs such as for ’OPHO-4x8-4x7’ regular post-hoc opti-

mization is faster. We can also see that the heuristic quality for o✏ine post-hoc optimization

is slightly reduced in comparison with regular post-hoc optimization, but even for only 100

sample states OPHO gets very close to PHO heuristic. Additionally, we can observe that for

’OPHO-6*’, the number of generated nodes per second drops when we use a higher number

of samples. We would need to do additional experiments to more rigorously confirm these

e↵ects.

4.6 Performance comparison with PA
Many state-of-the-art sliding tile puzzle solvers use plain additive pattern databases to

achieve short run times. Incorporating our knowledge of choosing pattern collections for

post-hoc optimization we can now compare the performance of the best plain additive pat-

tern database heuristics with the best we were able to find for the post-hoc optimization

heuristic.

To get an estimate of the overhead of the individual solvers of our implementation we ran

Experiments 23

algorithm expansions average run time memory gen. p. sec.

PA-8-7 3744197 .04 sec 5.66 GB 2418129.31
PHO-8-7 3744197 3.60 sec 5.66 GB 32932.30

OPHO-8-7 3744197 .23 sec 5.66 GB 515462.21

PA-6-6-3 59738614 .42 sec .21 GB 4348799.60
PHO-6-6-3 59738614 3.81 sec .21 GB 35932.30

OPHO-6-6-3 59738614 .75 sec .21 GB 463559.95

Table 4.5: Comparison between PA, PHO and OPHO with identical pattern sets on the 100
Korf instances. The columns show the number of expansions, average run time per instance,
memory utilization, and the generated nodes per second.

algorithm expansions average run time memory gen. p. sec.

PA-8-7 3744197 .04 sec 5.66 GB 2418129.31
PHO-8-7 3744197 3.60 sec 5.66 GB 32932.30
PHO-9x7 1282083367 1533.88 sec 5.11 GB 26337.46
PHO-81x6 698209996 2153.28 sec 5.60 GB 1013895.30

PHO-405x5 9825454 11002.28 sec 2.35 GB 3134.14

Table 4.6: Table showing the results of the PA comparison experiment on the Korf instances.
We show the total number of expansions, the average run time per instance, the memory
required and the number of generated nodes per second.

the three algorithms PA, PHO and OPHO with the exact same patterns. When comparing

with PA, we are limited to collections of patterns that are additive. Naturally, if we do

not use overlapping patterns we do not get any benefit from using post-hoc optimization

over PA, but it is the only way we can directly compare the di↵erence in run time for the

algorithms with the same heuristic. The results can be seen in Table 4.5.

In a final experiment, we tried to find collections that use the same amount of memory as

the best performing PA collection ’PA-8-7’. Our approach was to pick unique patterns in

order of connectedness for smaller PDB sizes until the sum of their memory equaled the

memory required for the plain additive PDBs. For the lowest connectedness score, we chose

the remaining number by hand while making sure that each tile was included in a similar

number of patterns. For the patterns of size five this would have resulted in roughly 800

PDBs, for which the overhead was too great for the runs to finish in a reasonable time for

PHO. Therefore, we decided to include a run using only half of the PDBs of size five instead.

We present the results in Table 4.6. Surprisingly, the results for this experiment show that

the quality of the heuristic was best for the plain additive collection. This is something that

we are not fully able to explain and is something we would like explore further. Still, for the

overlapping collections using smaller PDBs caused fewer expansions than the larger PDBs.

Note that we did not perform this experiment for o✏ine post-hoc optimization because the

number of PDBs for OPHO depends on the number of samples making it very di�cult to

specify the exact number of PDBs we want to use. However, the runs for size six in Table

4.4 use only slightly more memory and can serve as a reference.

5
Conclusion

Testing every possible combination of pattern databases is infeasible. We have aimed to

identify configurations that maximize the performance of post-hoc optimization. In doing

so, we have confirmed several intuitions that guide our approach.

Firstly, we have demonstrated for the PDB sizes four to six, given constant memory, post-

hoc optimization causes the least amount of expansions when using a many smaller pattern

databases, when compared to few large PDBs. Conversely, the number of PDBs in the

collection is proportional to the time needed to solve a single linear program during search.

Additionally, we found that pattern connectedness correlates with higher heuristic quality

but also increases the computational intensity of solving linear programs, thereby slowing

down the algorithm. These opposing e↵ects make connectedness a less useful indicator of

runtime e�ciency, but a valuable tool for improving heuristic quality.

Moreover, our experiments with o✏ine post-hoc optimization revealed that only a small

number of patterns are needed to produce an optimal solution for randomly sampled states.

We also showed that o✏ine post-hoc optimization can be a good option if we want to

approximate the performance of a large set small PDBs without solving a linear program at

every generated node.

Finally, we attempted to achieve better a better heuristic quality using post-hoc optimization

than the best plain additive pattern database heuristic using the same memory constraints.

Our results in this experiment were not able to achieve this, however, requiring further

research.

In conclusion, there are several opportunities for further exploration of this topic. We do

not yet claim to have found an optimal way of building pattern collections for post-hoc

optimization. One question that came out of our research was why pattern connectedness

and PDB sizes seem to be partially inversely correlated with number of generated nodes

that our implementation of PHO was able to achieve.

Bibliography

[1] Joseph C. Culberson and Jonathan Schae↵er. Searching with pattern databases. In

Advances in Artifical Intelligence: 11th Biennial Conference of the Canadian Society

for Computational Studies of Intelligence, pages 402–416, Berlin, Heidelberg, 1996.

Springer.

[2] Joseph C. Culberson and Jonathan Schae↵er. Pattern databases. Computational Intel-

ligence, 14(3):318–334, 1998.

[3] Ariel Felner. Early work on optimization-based heuristics for the sliding tile puzzle. In

Planning, Search, and Optimization - Papers Presented at the 29th AAAI Conference

on Artificial Intelligence, AAAI Workshop - Technical Report, pages 32–38, Austin,

Texas, 2015. AI Access Foundation.

[4] Ariel Felner, Richard E Korf, and Sarit Hanan. Additive pattern database heuristics.

Journal of Artificial Intelligence Research, 22:279–318, 2004.

[5] Michael R Garey and David S Johnson. Computers and intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[6] Othar Hansson, Andrew Mayer, and Moti Yung. Criticizing solutions to relaxed models

yields powerful admissible heuristics. Information Sciences, 63(3):207–227, 1992.

[7] Paul Höft, David Speck, and Jendrik Seipp. Sensitivity analysis for saturated post-

hoc optimization in classical planning. In Proceedings of the European Conference on

Artificial Intelligence, pages 1044–1051. IOS Press, 2023.

[8] International Business Machines Corporation. V22.1: User’s Manual for

CPLEX, 2022. URL https://www.ibm.com/docs/en/icos/22.1.1?topic=

optimizers-users-manual-cplex.

[9] Wm. Woolsey Johnson and William E. Story. Notes on the ”15” puzzle. American

Journal of Mathematics, 2(4):397–404, 1879.

[10] Damian Knuchel. Post-hoc optimization for the sliding tile puzzle. Bachelor’s thesis,

University of Basel, 2021.

[11] Richard E Korf. Finding optimal solutions to the Rubik’s cube using pattern databases.

In Proceedings of the fourteenth national conference on artificial intelligence and ninth

conference on Innovative applications of artificial intelligence, pages 700–705, 1997.

https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex

Bibliography 26

[12] Richard E. Korf and Ariel Felner. Disjoint pattern database heuristics. Artificial

Intelligence, 134(1):9–22, 2002.

[13] J. Matousek and B. Gärtner. Understanding and Using Linear Programming. Springer,

Berlin, Heidelberg, 2006.

[14] Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-

rithms and Complexity. 1982.

[15] Florian Pommerening, Gabriele Röger, and Malte Helmert. Getting the most out of pat-

tern databases for classical planning. In Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence, page 2357–2364. AAAI Press, 2013.

[16] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://github.com/aibasel/lab/tree/main. Accessed 13.7.2014.

[17] Nathan Sturtevant. HOG2. https://github.com/nathansttt/hog2. Accessed 13.7.2024.

https://github.com/aibasel/lab/tree/main
https://github.com/nathansttt/hog2

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Sliding Tile Puzzle
	2.2 Early Abstraction Heuristics for the STP
	2.3 Pattern Databases
	2.4 Combining Multiple Pattern Databases
	2.5 Maximum Matching Pairs
	2.6 Weighted Vertex Cover Heuristic
	2.7 Post-Hoc Optimization
	2.8 Offline Post-Hoc Optimization

	3 Post-Hoc Optimization for the Sliding Tile Puzzle
	3.1 Adapting Post-Hoc to the Domain
	3.2 Relationship to Existing Heuristics for the Puzzle
	3.3 Pattern collections
	3.4 Optimizing Offline Post-Hoc Optimization

	4 Experiments
	4.1 Methodology
	4.2 Pattern Sizes
	4.3 Pattern Connectedness
	4.4 Building Weight Vectors for Offline Post-Hoc Optimization
	4.5 Solving the Sliding Tile Puzzle Offline
	4.6 Performance comparison with PA

	5 Conclusion
	Bibliography

