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Abstract

Planning as heuristic search is the prevalent technique to solve planning prob-
lems of any kind of domains. Heuristics estimate distances to goal states in order
to guide a search through large state spaces. However, this guidance is often
moderate, since still a lot of states lie on plateaus of equally prioritized states
in the search topology. Additional techniques that ignore or prefer some ac-
tions for solving a problem are successful to support a search in such situations.
Nevertheless, some action pruning techniques lead to incomplete searches.

We propose an under-approximation refinement framework for adding ac-
tions to under-approximations of planning tasks during a search in order to find
a plan. For this framework, we develop a refinement strategy. Starting a search
on an initial under-approximation of a planning task, the strategy adds actions
determined at states close to a goal, whenever the search does not progress
towards a goal, until a plan is found. Key elements of this strategy consider
helpful actions and relaxed plans for refinements.

We have implemented the under-approximation refinement framework into
the greedy best first search algorithm. Our results show considerable speedups
for many classical planning problems. Moreover, we are able to plan with far
less actions than standard greedy best first search.
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Chapter 1

Introduction

Classical planning is the problem of finding a plan from an initial state to a
goal state with some given actions. For human beings, solving problems can be
a challenging and time consuming task. To save time, domain-specific solvers
that can be run on a computer were developed for specific kinds of problems.
These solvers work quite good as they take advantage of domain specific knowl-
edge provided by the user. This knowledge allows for developing e.g. accurate
heuristics and action pruning techniques that guide searches through large state
spaces. However, implementing a solver for each domain is costly, which has
called for planning systems that are able to solve problems of arbitrary domains.
The challenge of developing a domain-independent planner based on heuristic
search is to find general heuristics and action pruning techniques that work well
for a considerable amount of domains.

A lot of search heuristics have been developed for heuristic-forward search
planners over the past years. Although they calculate almost perfect heuristic
estimates, a search is still confronted to a lot of states having the same heuristic
value. We can avoid many of these states by pruning actions. In fact, most
planning problems contain a vast amount of actions that are not used for an
optimal plan. Table 1.1 shows the relation between available actions and actions
included in a plan of some planning tasks that were used in last IPC challenges.
We observe that some tasks require less than 1% of available actions to build
an optimal plan.

Some action pruning techniques for satisficing planning eliminate actions
previously to a search [10, 5] (static action pruning). Helpful actions, a method
implemented into the FF planner [9], prune actions locally (i.e. transitions) dur-
ing a search (dynamic action pruning). While the technique introduced by
Haslum and Peter Jonsson [5] is computational costly and keeps a lot of actions,
the method of Hoffmann and Nebel [9] and the method of Nebel, Dimopoulos
and Koehler[10] are more efficient but do not preserve the completeness of an
underlying search algorithm. Planners applying these incomplete techniques
simply restart a search if the first search did not find a solution. This second
search runs without applying a pruning technique.

However, it is possible to refine the search by adding new actions to the
search instead of doing a restart. This thesis provides an approach for refining
under-approximations of a planning task in order to find a plan. An under-
approximated planning task is defined by being a planning task that has a

1



1. Introduction 2

Task # actions in task # actions in plan

sokoban-sat11-strips-p09.pddl 464 429
sokoban-sat11-strips-p16.pddl 1496 47

schedule-probschedule-2-0.pddl 49 2
schedule-probschedule-12-0.pddl 289 13

logistics98-prob01.pddl 360 26
logistics98-prob35.pddl 676 30

scanalyzer-sat11-strips-p01.pddl 32736 10
scanalyzer-sat11-strips-p02.pddl 9504 12

mystery-prob01.pddl 151 5
mystery-prob10.pddl 36738 8

Table 1.1: Contrast between the number of all actions and the number of actions
used in an optimal plan.

reduced set of actions. The idea of our approach is similar to counterexample-
guided abstraction refinement (CEGAR) [3], which was adapted to classical
planning by Seipp and Helmert [13] for calculating heuristic estimates. They
approximate plans by iteratively refining an over-approximation of a planning
task. Each refinement intends to improve the approximated plan in order to
provide accurate heuristic estimates. Similarly, our approach refines under-
approximations of a planning task. We search in an under-approximated plan-
ning task and iteratively add actions to the under-approximation if there is no
progress of the search towards a goal. Table 1.1 shows that some tasks require
a fraction of available actions. Therefore, if we are able to add suitable actions,
we could save a lot of search effort.

We provide a general framework for under-approximation refinement (UAR)
which is built upon the greedy best-first search algorithm. This framework al-
lows employing static action pruning techniques, as well as strategies for re-
fining under-approximated planning tasks. For this framework, we provide a
refinement strategy that considers helpful actions and relaxed plans of the FF
heuristic [9]. The strategy is called best states under-approximation refinement
(BSUAR) strategy.

This thesis is organized as explained next. After showing the notation and
presenting the search algorithm, on which our approach is based, we will de-
fine under-approximated planning tasks and provide the general framework of
under-approximation refinement. Afterwards, BSUAR, a refinement strategy for
the framework, will be introduced including some variations. We will continue
by comparing main settings of BSUAR to state-of-the-art planning configura-
tions. Furthermore, we will evaluate variations of BSUAR to one another. In
the end of this thesis, we will discuss some pruning techniques in relation to
under-approximation refinement. Finally, we will summarize the results of this
thesis and suggest further possibilities in connection to our under-approximation
refinement framework.



Chapter 2

Preliminaries

This chapter defines the notation that is used throughout the paper. Further-
more, it presents planning as heuristic search by showing a specific heuristic
as well as a specific search algorithm. In the last section, we will introduce
a refinement approach used in another context but entailing the idea for our
approach.

2.1 Notation

This work considers planning tasks formalized in a SAS+-like [1] finite-domain
representation.

Definition 2.1 (planning task). A planning task is a 4-tuple Π = 〈V, s0, s?,A〉:

• V is a finite set of state variables v which have finite domains D(v). An
atom is a pair 〈v, d〉 with v ∈ V and d ∈ D(v). A state {〈v, d〉 | v ∈ V}
is a set that contains exactly one atom for each v ∈ V. A partial state
{〈v, d〉 | v ∈ Vs ⊂ V} is a set that contains exactly one atom for a subset
of V. S(Π) is the set of all states of Π.

• s0 is the initial state.

• S? is a partial state defining the goal atoms.

• A is a finite set of actions. An action is a triple a = 〈pre(a), eff (a), cost(a)〉:

– pre(a) is a partial state defining the preconditions.

– eff (a) is a partial state defining the effects.

– cost(a) ∈ R is the cost of applying a

Actions are also called operators.

An action a is applicable in state s if s contains the preconditions of a. If a
is applicable in s, the transition function result(a, s) replaces those atoms of s
with atoms of eff (a) which include the same variable. In this case, the function
produces a new state s′ which is called the successor state of s. If a is not
applicable in s, then result(a, s) is undefined.

A planning task induces a state space. This thesis considers a state space
similar to Bonet and Geffner’s definition of state spaces [2].

3



2. Preliminaries 4

Definition 2.2 (state space). A state space is a tuple S = 〈S, s0, S?, A, T, c〉:

• S is a finite set of states s.

• s0 ∈ S is the initial state.

• S? ⊆ S is a set of goal states.

• A(s) ⊆ A denotes actions applicable in a state s of S.

• T (a, s) denotes a transition function defined for all states s of S and ac-
tions a of A(s).

• c(a) is the cost function defined for each action a.

A planning task Π = 〈V, s0, s?,A〉 defines a state space SΠ with states S(Π),
initial state s0, goal states {s ∈ S(Π) | s? ⊆ s}, actions A, transition function
result(a, s) and cost function cost(a).

A problem is formalized in a planning task in order to be solved. To solve a
planning task means to find a plan in its state space.

Definition 2.3 (plan). Given a state space of a planning task, a plan is a
sequence π = a0 . . . an of actions in A. Moreover, to be a valid plan for the
planning task, π must generate a path of transitions in the state space that
starts in s0 and ends in a goal state s? of S?.

Searching for a plan in a state space describes what is called planning. A
plan is optimal, if the cost of plan π is minimal. The cost of a plan π is the sum
of each action cost in π. While optimal planning intends to find optimal plans,
satisficing planning prefers to find cheap plans but also allows to find any plan.

Usually, planners start exploring the state space from s0. The part of the
state space that can be reached by any transition path starting in s0 is called
reachable state space.

2.2 Planning as Heuristic Search

A search-based planner systematically explores the state space of a planning
task in order to find a path to a goal state. In addition, planning as heuristic
search considers heuristics to guide the search towards a goal. In this section,
we will first consider a heuristic based search algorithm. Afterwards, we will
present an established search heuristic.

2.2.1 Greedy Best-first Search

Greedy best-first search (GBFS) [12] is an informed search algorithm. It searches
for a goal state by repeatedly expanding states with the smallest heuristic value.
In contrast to A? [4], GBFS ignores the cost from the initial state to the current
state. Therefore, it mostly returns suboptimal plans instead of optimal plans.

A heuristic h(s) is a function that evaluates a state s and returns an esti-
mated distance to a goal state. Where it is clear from the context, we use the
term heuristic to denote the returning value. Moreover, the minimal heuristic
value among evaluated states is called best heuristic value. In the next section,
we will consider a specific heuristic.
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Algorithm 2.1 shows the pseudocode of GBFS as it is used in this thesis.
In contrast to literature, this pseudocode only shows states instead of nodes
because GBFS is presented as a graph search algorithm and state related data
does never change.

Algorithm 2.1: Greedy Best-first Search

Data: Open ← set of open states (open list), initially empty
Closed ← set of closed states (closed list), initially empty

1 Open ← sinit;
2 while true do
3 if Open = ∅ then
4 return no plan exists;

5 s← get s from Open with minimal h (s);
6 Open ← Open \ {s};
7 if isGoal (s) then
8 return plan;

9 Closed ← Closed ∪ {s};
10 S ← expand (s);
11 Snew ← S \ (Closed ∪Open);
12 Open ← Open ∪ Snew;

The algorithm starts by inserting the initial state into the empty open list
(line 1). The open list, also called frontier, contains unexpanded states. In each
iteration of the algorithm, a state having the best heuristic is removed from the
open list (line 5–6). This state is assumed to be nearest to a goal state. If this
state itself is a goal state, the algorithm stops and returns a plan (line 7–8).
Otherwise, the state is inserted into the closed list and is expanded (line 9–10).
An expansion generates the successors of the current state by applying actions
that are applicable in this state. Only new states are inserted into the open list
(line 11–12). The algorithm proceeds the search until the open list is empty,
being a signal of the explored search space. In this case, no solution can be
found and the algorithm stops (line 3–4).

We now know an informed search algorithm for satisficing planning. The
next section shows an heuristic that can be used for GBFS.

2.2.2 The Fast Forward Heuristic

The Fast Forward (FF) heuristic, denoted with hFF , was introduced by Hoff-
mann and Nebel [9]. It explores a relaxed planning task in order to effectively
find a relaxed plan. This plan does not map directly to a plan of the original
planning task. Nevertheless, the cost of this plan is a good estimation of the
distance to a goal state.

A relaxed planning task, derived from a planning task, ignores negative in-
teractions of actions, i.e. actions applicable in a current state remain applicable
in all succeeding states. In our notation, it means that the transition func-
tion result(s, a) leaves all atoms in a state while atoms of eff (a) are added.
Therefore, state variables can be assigned to multiple values. As a consequence,
succeeding states contain an increasing amount of atoms while more actions
become applicable. Thus, the task can be solved more efficiently.
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The FF heuristic applied to a state generates a relaxed planning task with
the current state being the initial state. After the FF heuristic has found a
relaxed plan, the cost of actions in the plan are cumulated resulting in a heuristic
estimate for this state.

In addition, the relaxed plan contains actions being considered as helpful.
Helpful actions are those actions of the relaxed plan that are applicable at the
current state. A search algorithm that preferably applies these actions can find
a plan without considering a lot of other actions.

2.3 Counterexample-guided Abstraction Refine-
ment

The approach presented in this thesis is based on the idea of counterexample-
guided abstraction refinement (CEGAR) [3] in the context of classical planning
introduced by Seipp and Helmert [13]

In the context of classical planning, CEGAR iteratively refines Cartesian
abstractions of transition systems. An abstraction ignores some values of state
variables. In contrast to other abstractions, the abstract transition system of
CEGAR allows different levels of granularity.

In more detail, CEGAR starts with a first abstraction of a planning task.
It searches for an optimal plan on the abstraction and tests the plan on the
concrete planning task. If the plan does not reach a goal state (this plan is a
counterexample), an algorithm determines why it failed and refines the abstrac-
tion in order to avoid the same failure in future iterations. For refinining the
abstraction, the algorithm splits the abstract state that corresponds to the con-
crete state at which the plan failed into two abstract states. Afterwards, a new
search is performed on the refined transition system. This procedure continues
until an abstract plan is a valid concrete solution. As Seipp and Helmert intend
to use CEGAR for producing heuristics, the algorithm can be interrupted after
a time or memory limit.



Chapter 3

Under-approximation
Refinement: The general
Framework

To reduce the complexity of planning tasks, one possibility is to remove actions
from planning tasks. Depending on a pruning method, “elementary” actions
for building a plan could also be removed from the task. However, as a conse-
quence, a corresponding under-approximation of the original task might not be
solvable any more. Therefore, the idea of this work is to refine an incomplete
task by actions from the original task in order to find a plan. We call this ap-
proach under-approximation refinement (UAR). This approach was inspired by
CEGAR [3, 13] but using under-approximations instead of over-approximations
is the central difference. As a consequence, UAR has the property that if a
plan is found, this plan corresponds to a real plan because any action sequence
applicable in the under-approximation is applicable in the original task as well.
Our algorithm essentially consists of following steps:

1. Select a first under-approximation of a planning task Πi; i := 0.

2. Search for a plan on Πi

3. If a plan is found on Πi, return the plan

4. If the refinement guard triggers:

(a) Apply the refinement method to determine Πi+1, i.e. add some miss-
ing actions back to the task.

(b) Go to point two.

In the above description, the refinement guard describes when to refine while
the refinement method describes which actions to introduce to the UA. Obvi-
ously, the guard should trigger the refinement method if the reachable state
space is completely explored. In this thesis, we will investigate more sophisti-
cated ways.

After introducing definitions related to under-approximated planning tasks,
a framework for under-approximation refinements will be embedded into the
greedy search algorithm.

7



3. Under-approximation Refinement: The general Framework 8

3.1 Under-approximated Planning Task

This thesis considers under-approximations (UA) of a planning task. An UA
planning task is defined as follows.

Definition 3.1 (under-approximated planning task). Given a planning task
Π = 〈V, s0, s?,A〉, an under-approximated planning task Π′ = 〈V, s0, s?,A′〉 is
derived from the planning task Π, where A′ ⊂ A.

In other words, an UA planning task excludes actions of the original planning
task. The exclusion of actions can reduce the state space drastically.

Note that in the context of UA planning task, optimal plans can be under-
stood differently. An optimal plan of an UA planning task can be a satisfying
plan of the original planning task. For the rest of this thesis, optimal plans refer
to those ones of original planning tasks.

The part of the pruned state space including the initial state is called reach-
able UA state space. States beyond the reachable UA state space cannot be
considered for a plan. If all goal states lie beyond this space, it is impossible to
find a plan from the initial state to a goal state. In this case, refinements of UA
planning tasks are required.

Definition 3.2 (refined task). Given an UA planning task Π′ = 〈V, s0, s?,A′〉
and its originating task Πorig = 〈V, s0, s?,Aorig〉, Π′′ = 〈V, s0, s?,A′′〉 is a
refined task of Π′ with A′ ⊂ A′′ and A′′ ⊆ Aorig.

A refinement of an UA planning task can yield to the original planning task,
when all actions of the original planning task have been inserted to the UA
planning task.

The definitions related to UA planning tasks allow to integrate UAR into
the GBFS.

3.2 GBFS with Under-approximation Refinement

We extend the GBFS algorithm, as it was presented in Algorithm 2.1, to under-
approximate an original planning task and to iteratively refine it in order to
find a plan.

GBFS explores the state space of a planning task in order to find a satisficing
plan. We use GBFS, as in the context of UAR, optimality cannot be achieved.
We show it by following example: We assume an UA planning task with actions
that correspond to a satisfying plan but not to an optimal plan. An optimal
search strategy needs the task to be refined while a satisfying search is able
to find the plan. Moreover, determining the missing actions of an optimal plan
would be hard. Even if an UA planning task lacks a plan, completing a satisfying
plan is much easier than completing an optimal one.

The framework of UAR interacts with the search algorithm at two different
locations. The creation of the initial UA planning task precedes the search,
whereas the search itself includes a refinement strategy. The initial task can
be created by a static action pruning method. Those methods usually prune
actions form a planning task previously to a search.

Definition 3.3 (refinement strategy). A refinement strategy consists of a re-
finement guard and a refinement method.
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The refinement guard returns true iff the UA is refined based on the refine-
ment strategy. Otherwise, the guard returns false.

Given an UA planning task Π′ = 〈V, s0, s?,A′〉, the refinement method RA
determines actions A′′ := RA(A′) of the (next) refined task Π′′ = 〈V, s0, s?,A′′〉.

Π′′ is a proper refinement if A′ ⊂ A′′.

Algorithm 3.1 shows the pseudocode of the UAR framework implemented
into the GBFS algorithm. The depicted algorithm can be implemented in a more
sophisticated and efficient way than shown in the pseudocode. For a better com-
prehension, the pseudocode is kept as simple as possible. The implementation
details will be presented in Section 5.1.

Algorithm 3.1: GBFS with Under-approximation Refinement

Data: Open ← set of open states (open list), initially empty
Closed ← set of closed states (open list), initially empty
Aall ← set of actions of the original planning task
UA← set of actions of the under-approximated planning task, initially
empty

1 UA← createInitialUA(Aall);
Open ← sinit;
while true do

4 if (RefinementStrategy .guard () = true ∨Open = ∅) then
5 Anew ← RefinementStrategy .refine (UA);
6 UA← UA ∪Anew;
7 foreach a ∈ Anew do
8 foreach s ∈ Closed do
9 if isApplicable(a, s) then

10 Open ← Open ∪ {s}; /* re-opening */

if Open = ∅ then
return no plan exists;

s← get s from Open with minimal h (s);
Open ← Open \ {s};
if isGoal (s) then

return plan;

Closed ← Closed ∪ {s};
18 S ← expand(s,UA); /* applies actions from UA */

Snew ← S \ (Closed ∪Open);
Open ← Open ∪ Snew;

Initially, a first UA planning task is created (line 1). This task builds the
basis for the search, which can be adapted by the refinement strategy. The
refinement strategy comes into action before each node expansion. Under cer-
tain refinement conditions, the refinement guard decides if the UA needs to be
changed (line 4).

Afterwards, the GBFS continues the search as usual, by expanding the next
state from the open list. This expansion only applies actions of UA (line 18).
When the search is not able to generate all successor states of an expanding
state due to the UA task, then we call this state a partly expanded state.
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Otherwise, if the guard admits a refinement, the strategy starts its refinement
method, possibly determining supplementary actions (line 5). If the refinement
is proper, i.e. the refinement method determined additional actions, the new
actions are added to the UA (line 6). Also, the state space needs to be updated
by reopening all closed states where the new actions are applicable (line 7–10).
Afterwards, GBFS continues searching on the refined task.

To complete the discussion of the algorithm, one fundamental refinement
condition has to be considered in more detail. It demands to refine an explored
UA state space. This condition is independent from the refinement strategy.
Therefore, it was directly implemented into the framework (line 4). If the re-
finement method does not determine a proper refinement, i.e. if no additional
actions are introduced to UA, no re-openings will happen.

However, a complete search algorithms must always return a solution if one
exists (otherwise the algorithm is not complete). Given the GBFS algorithm
with UAR, it can be shown that its completeness strongly depends on the re-
finement strategy. Therefore, we define a completeness-preserving property for
refinement strategies.

Definition 3.4 (completeness-preserving refinement strategy). Given a com-
pletely explored reachable UA state space, the refinement method of a complete-
ness-preserving refinement strategy must provide at least one new action which
is applicable in a partly expanded state.

In the situation of a completely explored reachable UA state space all partly
expanded states are in the closed list.

Theorem 3.1. GBFS with UAR is complete, given a completeness-preserving
refinement strategy.

Proof. To be complete, the GBFS with UAR must find a solution if one exists.
Otherwise it must stop under the guarantee that no solution is possible.

The completeness of GBFS, implemented as a graph search, is a given for
this proof [12].

To show the completeness of GBFS with UAR, it is sufficient to show that
GBFS is able to visit all reachable states. To generate these states, GBFS
needs to receive all actions from the refinement method of the strategy which
successively generate the reachable states.

Specifically, in the situation of an explored reachable UA state space, GBFS
requires a new action that is applicable in one of its closed states. A completeness-
preserving refinement strategy is guaranteed to provide this action in this situ-
ation.

Moreover, the reopening of states, where this new action is applicable, allows
the GBFS to proceed the search by using the recently added actions.

Now, we can use this framework to develop and to evaluate the refinement
strategy, which will be presented in the next section.



Chapter 4

Refinement Strategy

In the general context of the framework, the emphasis is now put on a specific
refinement strategy. A refinement strategy, being the main building block of
UAR, intends to occasionally refine UA planning tasks during a search. A
strategy consists of a refinement guard and a refinement method ; the guard
describes when to refine whereas the method describes which actions to add.
The strategy developed in this work, we call it best states under-approximation
refinement strategy (BSUAR), essentially includes following ideas:

• Refine an UA planning task whenever the search does not progress towards
a goal state. (refinement guard).

• Add actions, which are determined in states that are as close as possible
to a goal. We call those states best states. (refinement method).

Note that both ideas can be formalized by using search heuristics.
The refinement method itself consists of two components: a state selection

strategy and an action selection strategy. While the former strategy chooses a
subset of best states, the latter strategy is the most important component of
BSUAR, as it determines actions to be added to the current UA.

We will, first, define the refinement guard and the refinement method. Af-
terwards, we will introduce some state and action selection strategies. As some
of the action selection strategies are not completeness-preserving, we propose a
setting in the last section, which preserves the completeness of GBFS.

4.1 Refinement Guard

A refinement guard determines stages of a search where an adaption of a UA
planning task seems to be useful. The condition to refine an explored UA plan-
ning task is already implemented into the UAR framework. Yet, a refinement
guard can provide more sophisticated conditions.

We intend to formulate a guard that triggers the refinement method when-
ever the search does not proceed towards a goal. We can detect such a situation
by observing the search progress. The search progress can be derived from the
evolution of heuristic values given by states that are fetched from the open list.

The refinement guard of BSUAR compares two heuristic values: the value of
the last expanded state and the best heuristic value among states in the open list.

11
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The heuristic value of the state is denoted by hlast , the latter value is denoted by
hopen . Given these two heuristic values, the guard observes a decreasing search
progress if hlast < hopen , i.e. the heuristic value increases, which means that the
search is assumed get further away from a goal. Although hlast < hopen seems
to be a reasonable condition, it does not take heuristic plateaus of the open list
into account. Heuristic plateaus are layers of states having the same heuristic
value. In other words, these states are assumed to have all the same distance
to a goal state. Defining hlast = hopen as an additional refinement condition
enables the search to escape earlier from a plateau. Now, both conditions can
be merged into one expression: hlast ≤ hopen . The refinement guard of BSUAR
uses the conditions encoded in this expression to trigger the refinement method.

4.2 Refinement Method

After a search passes the refinement guard, a refinement method determines
new actions in order to refine a task. We intend to define a refinement method
for BSUAR, which determines new actions at states that are assumed to be
close to a goal state. Actions, determined at those states might be relevant for
the proceeding search.

In more detail, we determine new actions by using partly expanded states.
These states are stored on layers; each layer containing states having the same
heuristic value. A layer, therefore, has the value of their including states. Fur-
thermore, the layers are sorted by heuristic values. Starting with the layer of
the best heuristic value, the refinement method searches for the first layer that
provides new actions.

The method can follow a strategy for selecting new actions. The strategy
consists of two single strategies: a state selection strategy and an action selection
strategy.

Definition 4.1 (state selection strategy). A state selection strategy determines
a subset of states among given states, at which an action selection strategy has
selected actions for the refined task.

Definition 4.2 (action selection strategy). An action selection strategy deter-
mines new actions for the refined task by using a given state.

Specific state and action selection strategies will be introduced in Section 4.3.
With Definitions 4.1 and 4.2, it is now possible to understand the pseudocode

of the refinement algorithm of BSUAR depicted in Algorithm 4.1. For the ease
of understanding, possible optimizations are omitted in the pseudocode and
will be shown in Section 5.1. In the pseudocode, function selectActions consist
of a state selection strategy and an action selection strategy. This function is
responsible to only return actions that are not jet included into the current UA
planning task.
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Algorithm 4.1: Best States Refinement Method

Data: P ← set of Sh, initialized with partly expanded states
Sh ← set of states with the same heuristic value of h
UA← set of actions of the under-approximated planning task
explored ← true if Open = ∅, otherwise false

1 while P 6= ∅ do
2 Sh ← get Sh from P with minimal h;
3 P ← P \ {Sh};
4 Anew ← selectActions(Sh);
5 if Anew 6= ∅ then
6 if explored = false then
7 return Anew ;
8 else /* explored UA state space; consider applicable

actions in order to preserve completeness */

9 foreach a ∈ Anew do
10 foreach s ∈ Sh do
11 if isApplicable(a, s) then
12 return Anew ;

13 return ∅

The refinement method of BSUAR operates on all partly expanded states,
which are stored in P . Set P consists of layers Sh of states having the same
heuristic value h. The method iteratively removes Sh from P whereas h has
the smallest value in P (line 2–3). The function selectActions applied to the
removed layer Sh selects actions according to a state selection strategy and
action selection strategy (line 4). If it determines new actions, the method
stops by returning them (line 5–7). In this case, the refinement is proper.
Otherwise, the method proceeds by removing the next Sh. If it is not able to
eventually determine new actions at the given layers by following the strategies,
the method does not return any actions (line 13). This results in a non-proper
refinement. However, as long as the GBFS continues, the refinement method
has a supply of partly expanded states. These states give further possibilities
to find new actions in future iterations.

According to Definition 3.4, to be completeness-preserving, the refinement
method of BSUAR needs to return at least one new action that is applicable
among partly expanded states when GBFS has explored the reachable UA state
space entirely. Therefore, the refinement method handles this situation sepa-
rately (line 8–12). At this point, the method needs to catch actions that are
applicable in a state of the current layer. It can only find them by ignoring
other non-applicable actions.

To maintain the completeness-preserving property for BSUAR, we must
define completeness preserving state selection and action selection strategies.
These definitions are similar to the definition of a completeness-preserving re-
finement strategy shown in Definition 3.4.

Definition 4.3 (completeness-preserving state selection strategy). Given a
completely explored reachable UA state space, a completeness-preserving state
selection strategy applied to each heuristic layer of expanded states must even-
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tually select at least one state where an action selection method provides new
actions that are applicable among partly expanded states.

Definition 4.4 (completeness-preserving action selection strategy). Given a
completely explored reachable UA state space, a completeness-preserving action
selection strategy applied to all expanded states must eventually select at least
one new action which is applicable among partly expanded states.

Theorem 4.1. BSUAR is completeness-preserving, given a completeness-pre-
serving state selection strategy and action selection strategy.

Proof. Given an unsolvable UA planning task, this proof deals with the situation
of a completely explored reachable UA state space.

At this stage of the search, the refinement method of BSUAR has gathered
all expanded states of the reachable UA state space. A completeness-preserving
action selection strategy is is guaranteed to provide at least one new action which
is applicable among these states. Furthermore, a completeness-preserving state
selection strategy is guaranteed to select a state, at which the action selection
strategy provides new actions. Consequently, the function selectActions will,
finally, return at least one new and applicable action.

To be completeness preserving, BSUAR must return applicable actions to
the calling UAR framework in the situation of a completely explored reachable
UA state space. To be able to return these actions, the refinement method of
BSUAR checks each action returned by selectActions for its applicability among
states from the layer. Ignoring the actions that are not applicable allows to catch
the applicable ones, which will extend the UA state space.

Up to now, this proof guarantees the completeness of GBFS in combination
with the BSUAR refinement strategy. To complete BSUAR, we define specific
state and action selection strategies in the next section.

4.3 State and Action Selection Strategies

We can vary the refinement method of BSUAR in two dimensions. One di-
mension considers states having the same heuristic value, i.e. states that share
an heuristic layer. We intend to select a subset of those states according to a
strategy in order to only slightly refine UA planning tasks. The other dimension
considers actions. Adding actions to an UA planning task is the main subject
of UAR. The following steps show how both strategies are used together in the
refinement method of BSUAR:

1. Apply an action selection strategy to each state from a heuristic layer.

2. Filter out states where the action selection strategy did not determine new
actions. We call the remaining states candidates.

3. Select states from the candidates of step two by following a state selection
strategy.

4. Return the actions which where determined by the action selection strat-
egy at the selected states.

In the following sections, will define some state selection strategies as well
as action selection strategies.
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4.3.1 State Selection Strategies

A state selection strategy selects states among candidates, i.e. states at which an
action selection strategy provides new actions. With this approach, we intend
to only slightly refine UA planning tasks.

This thesis evaluates following strategies:

first Select the first state from a list of candidates.

all Select all candidates.

least Select states from candidates, where the applied action selection strategy
has determined the least number of new actions.

most Select states from candidates, where the applied action selection strategy
has determined the most number of new actions.

heur Select states from candidates which have the smallest heuristic value.
The heuristic used by this strategy must not be the heuristic used by the
search.

The first strategy intends to only slightly refine the UA planning task. The
result of this strategy depends on the state ordering. In contrast to the fist
strategy, the second strategy is independent of the state ordering, as all states
on a layer are considered in the same iteration. This strategy might add too
many actions to the UA planning task. Therefore, the last three methods sys-
tematically select a subset of states. The last method consults a heuristic to
determine states that are assumed to lie closer to a goal than the other states
from the same layer.

Being in the situation of having an explored UA state space, all these strate-
gies must ignore candidates where the new actions are not applicable in order
to be completeness-preserving.

Although state selection strategies are able to select a convenient subset of
new actions, they need an action selection strategy which provides these actions.

4.3.2 Action Selection Strategies

The action selection strategy is the most important building block of BSUAR.
This strategy is responsible for determining new actions at partly expanded
states and to provide them to the state selection strategy.

In this thesis, we evaluate the three strategies listed below:

appl Select all actions which are applicable in the given state.

ha Selects the helpful actions determined by evaluating hFFat the given state.

rp Selects actions of the relaxed plan, which is found by evaluating hFFat the
given state.

The first two methods select actions that can be applied at the given state.
While the first method simply takes all applicable ones, the second method is
more selective. In contrast to the second method, the third method additionally
determines actions that cannot be applied locally, but might be suitable for
future state expansions.
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While using applicable operators for refinements is an intuitive approach,
considering helpful actions or the relaxed plan are built upon more concrete
ideas.

Helpful actions are known to be used for reducing the state space [9]. In the
context of BSUAR, helpful actions are used to increase a state space instead
of reducing it. Nevertheless, for both purposes, helpful actions are assumed to
be more relevant for the search than other actions. Furthermore, actions of a
relaxed plan generated by the FF heuristic are assumed to also be relevant for
a plan of the concrete task.

The strategy of refining an UA planning task with all actions that are ap-
plicable in given states is without doubt solution-preserving. In contrast to this
strategy, the other two strategies based on FF do not preserve the completeness
of GBFS. Helpful actions are known to be incomplete when all other actions are
ignored in a search [9]. Although relaxed plans provide supplementary actions,
these actions are not applicable in the evaluated state. Therefore, using relaxed
plans is also not completeness-preserving.

In the next section we provide a technique to guarantee completeness of
GBFS if a non-completeness-preserving setting of BSUAR is used for UAR.

4.4 Completeness-preserving Setting

In the last section, we presented suitable but non-completeness-preserving action
selection strategies for BSUAR. This section introduces a technique allowing the
use of these strategies without affecting the completeness of GBFS.

The idea is to combine a non-completeness-preserving configuration of BSUAR
with a configuration of BSUAR that preserves completeness. The latter con-
figuration comes into action whenever the former one is not able to provide
applicable actions in the situation of having an entirely explored reachable UA
state space.

Now, all the action selection strategies of the previous section can be used
while maintaining the completeness of GBFS. More specificially, the strategies
which use helpful actions or relax plans can be combined with the strategy of
refining an UA planning task with all applicable actions.



Chapter 5

Experimental Results

Experiments were set up in order to show, how a state-of-the-art planner con-
figuration combined with different refinement strategies behaves. This chapter
starts by presenting details about the implementation of the UAR framework
and the refinement strategy BSUAR. Knowing the implementation, we take the
environment on which experiments were run as well as common configurations
into account. In the remaining sections of this chapter, results of experiments,
which have run different configurations will be compared to one another. We
start with a comparison of our approach to baseline configurations in order to
get an impression of the effect of UAR. Afterwards, single strategies will be
compared to one another.

5.1 Implementation Details

This section presents the evaluation system as well as optimizations of the UAR
framework and the refinement strategy developed in this thesis. The optimiza-
tions do not change the basis algorithms. They rather focus on minimizing
redundant work in order to save computation time.

5.1.1 Integration into Fast Downward

The UAR framework was implemented into Fast Downward [6]. Fast Downward
is a state-of-the-art planning system often used as an evaluation system. Its
modular framework allows implementing new search techniques. Furthermore,
it includes a GBFS implementation and the FF heuristic, which are required
for the UAR framework and BSRM.

The GBFS was extended with the UAR framework. The UAR framework
gives the possibility to easily implement and evaluate refinement strategies. It
also allows adding action pruning techniques which operate prior to a search.
We have followed the modular approach of Fast Downward when implementing
BSUAR. Therefore, further state and action selection strategies can be imple-
mented and evaluated as well.

Search options can be directly specified on the command line. Next to
specifying a search technique and a heuristic, it is now possible to apply pruning

17
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techniques (which operate prior to a search) as well as refinement strategies.
Furthermore, we can define state and action selection strategies for BSUAR.

5.1.2 Code Optimizations

As we presented simplified algorithms in previous sections, we now give more
details about code optimizations applied to the UAR framework and BSUAR
refinement strategy. We present three optimizations: one is applied to UAR
and two are applied BSUAR.

The UAR framework updates the search space by reopening those states
where new actions can be applied. For this updates, in line 7–10 of Algorithm
3.1, we iterate through the set of new actions and the closed list in order to
check if a new action can be applied to a closed state. If it is the case for an
action and a state, the state is reopened by pushing it back to the open list.
For the implementation, we intend to save time and to use memory instead. We
maintain a list of buckets that contain states. States in a bucket can be advanced
with the same action whereas the action is not yet in the UA planning task.
At the first expansion of a state, the algorithm throws the state in each bucket
related to actions which are applicable in this state, but which are not in the
current UA planning task. When updating the UA search space, the algorithm
directly takes the buckets related to the new actions and reopens the closed
states from the buckets.

Further optimization can be accomplished in the context of BSUAR. The
refinement method of BSUAR, as we saw it in Algorithm 4.1, requires a list of
all partly expanded states. In the implementation, this method collects these
expanded states during the search and throw them into buckets related to the
heuristics of the states. These buckets represent heuristic layers. According
to Section 4.3, the refinement method applies an action selection method to
heuristic layers determining candidates for the state selection strategy. It is
obvious that we do not need to evaluate all states again in a next iteration, as
some states will not be candidates anymore. Therefore, we can delete states,
which will not provide new actions saving a lot of processing time.

The second optimization in the context of BSUAR considers those action
selection strategies which evaluate states using hFF in order to get helpful actions
or the relaxed plans. As these strategies are used in combination with GBFS
using hFF , we consider the fact that evaluating states multiple times, in order
to get the heuristic estimate or in order to get the actions, is not necessary.
Depending on the strategy, a relaxed plan or just the helpful actions can be
cached together with the state in a node. Later, during a refinement an action
selection method can retrieve the cached actions instead of evaluating the state
with hFFagain. Hence, the evaluations are costly; the algorithm can save a lot
of processing time.

5.2 Experimental Setup

To evaluate the BSRM, experiments were run on Fast Downward extended with
UAR. Fast Downward was executed on machines equipped with 2 x Nehalem
Quad-core 2.6Ghz CPUs and 24 GB RAM. When talking about an experiment,
we mean to run several configurations of Fast Downward on a set of planning
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tasks in order to compare them. Planning tasks are formalized for different
domains. The experiments in this thesis considered planning tasks of all domains
from the benchmark suite which is provided with Fast Downward. This suite
consists of 58 benchmark domains including in total 2252 tasks from previous
IPC challenges, which were used for the evaluation of satisficing planners. For
the experiments, Fast Downward was restricted to spend at most 30 min CPU-
time and 2 GB RAM in order to find a solution for a planning task. The
configuration of all experiments includes GBFS as a search method and hFFas
the search heuristic. The basis configuration of BSUAR uses the state selection
strategy which selects all states. Configurations that differ from these settings
will be mentioned.

5.3 Results

In this section, we report and discuss the results of some experiments. We start
with the big picture by investigating UAR in general and comparing it to a
baseline configuration.

After that, we compare our approach to a search enhancement that is im-
plemented in Fast Downward and uses helpful actions in a different way than
our approach.

The refinement strategy developed in this thesis includes two components:
the state and the action selection strategy. First, we evaluate different action se-
lection strategies in Section 5.3.3. Afterwards, different state selection strategies
will be considered in Section 5.3.4.

UAR intends to refine incomplete planning tasks. As the configurations of
the first experiments start on under-approximated planning tasks containing no
actions, we investigate the effect of having another initial under-approximation
of planning tasks in Section 5.3.5.

Our refinement strategies store states in order to preserve completeness and
cache actions intending to save evaluations. Therefore, we assume that a lot of
instances cannot be solved due to the memory limit. Section 5.3.6 investigates
this assumption.

5.3.1 The Big Picture

This section presents the effect of GBFS with under-approximation refinement.
An experiment was conducted to compare two configurations. The first con-
figuration, the baseline, had run GBFS using hFF . The second configuration
additionally uses UAR.

The refinement strategy for UAR is BSUAR which uses relaxed plans for its
action selection strategy. The action selection strategy is is not completeness-
preserving. Therefore, it was combined with BSUAR using applicable operators
as introduced in Section 4.4. Table 5.1 shows which domains could not be solved
correctly by only adding relaxed plan actions. As state selection strategy, we
applied the strategy of selecting all states from a heuristic layer. The searches
have started on empty UA planning tasks, i.e. on tasks without actions.

In this section, this second configuration is called UAR. During the remaining
sections, we call this second configuration of the experiment bs-rp which stands
for BSUAR (bs) used with the relaxed plan action selection strategy (rp).
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Domains ( # affected tasks)

airport (5) parcprinter-sat11-strips (1) sokoban-sat08-strips (12)
depot (4) pegsol-08-strips (1) sokoban-sat11-strips (7)
driverlog (5) psr-large (13) storage (12)
miconic-fulladl (7) psr-middle (39) trucks (1)
mystery (4) psr-small (50) woodworking-sat08-strips (4)

Sum (165)

Table 5.1: Domains which cannot be solved with the action selection strategy
of using relaxed plan actions.

baseline bs-rp
coverage 1576 1753

search time 1.00 0.63
expansions 1.00 0.82
generations 1.00 0.29
evaluations 1.00 0.34
plan cost 1.00 1.02
applied actions 1.00 0.40

Table 5.2: Total results of UAR relative to the baseline.

Table 5.2 compares the total result of the baseline and UAR. The coverage
is the number of planning tasks solved by a configuration. In our experiment,
searches on planning tasks failed because they exceeded the time or the memory
limit. UAR covered 177 more planning tasks than the baseline. All other
values in this table are relative to the baseline configuration. Commonly covered
tasks are solved on average substantially faster with UAR. In context of UAR,
the number of expansions also includes re-expansions of states. The number
of generations shows how many states were generated. When a state is re-
expanded, only successor states generated by newly added actions are counted.
In a graph search, the number of evaluations is the amount of distinct states that
were generated during the search. As expected, UAR saves a lot of generations
and evaluations due to the restricted set of actions in UA planning tasks. The
decrease of expansions compared to the baseline indicates that UAR is able to
guide the search through the state space. The plan cost only increases slightly.
This increase of plan cost could be a consequence of having fewer actions in the
UA planning task. The number of applied actions confirms this assumption.
For that number, each distinct action that were applied during a search is only
counted once. We find it more interesting to compare this number relative to the
number of applied actions of standard GBFS than to the number of all actions
in a planning task because the GBFS algorithm never touches all actions during
a search.

We now investigate the number of solved tasks in more detail. Figure 5.1
shows that UAR solves about 150 domains more than the baseline during the
first 0.10 seconds. After 10 seconds UAR increases the coverage relative to the
baseline. A more detailed view on the coverage and the search times of single
domains will reveal further information about the effect of using UAR.

Table 5.3 shows the coverage of 34 domains resulting the experiment. Do-
mains identically covered by both configurations are filtered out. The two right-
most columns show the difference of UAR relative to the baseline in terms of
number of solved tasks. The difference is represented in two numbers: the
first one shows the number of tasks solved by the baseline but not by UAR,
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Coverage Difference

Domain (# Tasks) baseline UAR (bs-ha) − +

airport (50) 34 34 3 3
barman-sat11-strips (20) 2 20 0 18
depot (22) 15 14 2 1
driverlog (20) 18 19 1 2
elevators-sat08-strips (30) 11 12 0 1
freecell (80) 79 78 2 1
grid (5) 4 5 0 1
logistics98 (35) 30 34 0 4
mprime (35) 31 34 1 4
mystery (30) 17 18 0 1
nomystery-sat11-strips (20) 10 15 0 5
optical-telegraphs (48) 4 35 1 32
parcprinter-08-strips (30) 22 23 0 1
parcprinter-sat11-strips (20) 5 7 0 2
pathways (30) 10 13 0 3
pathways-noneg (30) 11 14 0 3
philosophers (48) 48 40 8 0
pipesworld-notankage (50) 33 41 2 10
pipesworld-tankage (50) 21 34 1 14
psr-middle (50) 38 39 1 2
rovers (40) 23 32 0 9
satellite (36) 27 34 0 7
scanalizer-08-strips (30) 28 30 0 2
scanalizer-sat11-strips (20) 18 20 0 2
schedule (150) 37 116 0 79
sokoban-sat08-strips (30) 28 27 1 0
tpp (30) 23 23 2 2
storage (30) 18 17 1 0
transport-sat08-strips (30) 11 23 0 12
transport-sat11-strips (20) 0 4 0 4
trucks (30) 17 18 0 1
trucks-strips (30) 17 16 3 2
woodworking-sat08-strips (30) 27 14 13 0
woodworking-sat11-strips (20) 12 3 10 1

total (2252) 1576 1753 52 229

Table 5.3: Coverage of planning domains and the differences between the base-
line and UAR. Column “−” shows the number of tasks solved by the baseline
but not by the UAR. Column “+” shows the number of tasks solved by the
UAR but not by the baseline.
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Figure 5.1: Cumulated number of covered tasks in function of the search time
for the baseline and UAR configurations.

whereas the second one shows the number of tasks solved by UAR but not by
the baseline. UAR is able to solve a lot of new tasks in many domains. For a
few domains, the coverage decreases significantly. For more than a half of the
domains listed in the table, UAR is able to cover new tasks without loosing the
coverage of other tasks. For some of the other domains, it seems ambiguous
which configuration is stronger. UAR seems to work well for barman, optical-
telegraphs, both of the pipesworld domains, rovers, satellite, schedule and both
of the transport domains. The philosophers and the two woodworkers domains
seem to suffer from UAR. We will investigate some of these domains in more
detail after a further general comparisons.

The search times of planning tasks are presented in scatter plots. These plots
show planning tasks depicted as points. Tasks which are solved within the same
time by both experiments are close to the diagonal line. Tasks lying in the lower
right area of the plots are solved faster by UAR than by the baseline. Tasks
lying at the upper and left border are not covered by one of the configurations.
Tasks that are solved faster or equal than 0.10 seconds lie on a line close to the
bottom or left border.

The domains were visually classified into groups depending on how their
tasks respond to UAR. Figure 5.2 includes domains where UAR solves clearly
more task than the baseline. Likewise, Figure 5.3 contains domains where the
baseline solves clearly more task. The remaining domains can be found in
Figure 5.4. Their task are either solved in nearly the same time by both config-
urations or the domain has more or less the same amount of tasks on both sides
of the diagonal line. We further classified domains into strictly, considerably or
slightly; depending on the orientation of the tasks in the plots. The adjectives
describe how much faster or slower the tasks of a domain are solved by UAR
than by the baseline. In addition, Table 5.4 lists search time related informa-
tion. The numbers in this table are relative to the baseline. By considering the
relative numbers of expanded, generated and evaluated states of domains, we
are able to give possible explanations for the behaviour of the domains.
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Figure 5.2: Domains whose tasks need clearly less time to be solved by UAR
than by the baseline.
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Figure 5.3: Domains whose tasks need more time to be solved by UAR than by
the baseline.
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Domain Search Time Expanded Generated Evaluated
airport 1.86 2.54 2.14 1.92
assembly 0.68 0.89 0.14 0.14
barman-sat11-strips 0.20 0.43 0.27 0.19
blocks 0.56 0.19 0.11 0.12
depot 0.83 1.46 0.60 0.47
driverlog 1.56 9.34 2.71 1.58
elevators-sat08-strips 0.05 0.09 0.04 0.04
floortile-sat11-strips 0.83 0.92 0.82 0.53
freecell 0.45 0.72 0.25 0.28
grid 0.27 0.31 0.14 0.13
gripper 0.99 0.98 0.77 0.88
logistics00 1.00 0.93 0.35 0.38
logistics98 0.08 0.32 0.03 0.03
miconic 0.95 1.19 0.40 0.51
miconic-fulladl 0.85 1.09 0.47 0.68
miconic-simpleadl 0.99 1.17 0.43 0.62
movie 1.00 1.11 0.08 1.00
mprime 0.27 0.75 0.02 0.02
mystery 0.73 1.15 0.13 0.18
nomystery-sat11-strips 0.50 0.73 0.20 0.24
openstacks 1.00 1.19 0.96 0.96
openstacks-sat08-adl 0.63 0.45 0.34 0.41
openstacks-sat08-strips 0.64 0.46 0.34 0.41
openstacks-strips 0.97 1.19 0.96 0.96
optical-telegraphs 0.08 0.05 0.05 0.06
parcprinter-08-strips 0.32 0.34 0.20 0.23
parcprinter-sat11-strips 0.04 0.06 0.02 0.04
parking-sat11-strips 0.53 1.41 0.69 0.66
pathways 0.57 0.55 0.25 0.20
pathways-noneg 0.31 0.34 0.15 0.15
pegsol-08-strips 1.06 1.28 1.00 1.01
pegsol-sat11-strips 1.12 1.33 1.16 1.15
philosophers 2.31 2.40 2.46 2.40
pipesworld-notankage 0.15 0.21 0.06 0.07
pipesworld-tankage 0.52 1.10 0.24 0.24
psr-large 1.36 2.20 1.60 1.60
psr-middle 1.09 1.54 1.23 1.25
psr-small 1.01 1.24 0.93 0.90
rovers 0.35 0.27 0.10 0.10
satellite 0.19 0.68 0.06 0.06
scanalyzer-08-strips 0.34 0.81 0.19 0.21
scanalyzer-sat11-strips 0.19 0.57 0.13 0.14
schedule 0.26 0.27 0.02 0.02
sokoban-sat08-strips 2.56 2.74 2.52 2.49
sokoban-sat11-strips 3.15 3.00 2.83 2.82
storage 2.54 8.15 3.10 2.47
tidybot-sat11-strips 0.86 1.17 0.79 0.82
tpp 0.59 0.97 0.49 0.41
transport-sat08-strips 0.27 0.26 0.08 0.11
trucks 0.88 1.35 0.16 0.52
trucks-strips 1.14 1.28 0.13 0.45
visitall-sat11-strips 1.65 1.33 1.35 1.43
woodworking-sat08-strips 1.12 5.01 0.82 0.69
woodworking-sat11-strips 0.36 1.14 0.14 0.17
zenotravel 0.49 0.82 0.08 0.10
Geometric mean 0.58 0.82 0.29 0.34

Table 5.4: Comparison of UAR (bs-rp) relative the baseline in context of time
related properties.
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Figure 5.4: Domains that either are solved within the same time by both con-
figurations or domains which do not fit into another class.

UAR often expands more states than the baseline for solving tasks which
lie close to the diagonal line. Nevertheless, UAR compensates additional ex-
pansions by generating fewer states. Domains of these tasks can be found in
Figure 5.2c. Although, tasks in Figure 5.4a are solved in a similar time by both
configurations, UAR also compensates additional expansions with fewer gener-
ations when solving these tasks. UAR performs best on task from Figure 5.2b.
In comparison to the baseline, it reaches considerable speedups due to fewer
state expansions.

Task that are solved considerably slower by UAR are shown in Figure 5.3b.
We assume that, UAR respective the relaxed plans distort the search in a wrong
direction in the beginning of the search. With the given refinement guard and
refinement method the search cannot add the required actions for a long time.

Figure 5.3c contains slightly slower solved tasks. Plans for those tasks often
require a large percentage of actions of the original tasks. Furthermore, UAR
needs a lot of refinements and re-expansions for solving these tasks. This means
that required actions are often provided later than when they are needed.

We conclude the presentation of search times by showing more detailed re-
sults of the barman and optical-telegraphs domains in Figure 5.5. We especially
present those two domains because they are not covered as well by another
technique, which will be evaluated in Section 5.3.2.

UAR has minor effect on plan related properties. Nevertheless, we can detect
some trends. A table listing the cost, the length and the number of actions of a
plan relative to the baseline configuration can be found in Figure 5.5.

The cost and the length of plans strongly correlate because most of the
actions have a cost of one. For domains with larger action costs, we can state
that the plan cost does not rise as much as the plan length. Moreover, single
actions often occur multiple times in plans generated by UAR, while plans
found by the baseline include a larger variety of actions. For tasks of domains
having action cost larger than one , we can now assume that UAR applies
cheaper actions more often than costly actions. UAR was able to lower the plan
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Domain Cost Length # Actions
airport 0.98 0.98 0.99
assembly 1.03 1.03 1.00
barman-sat11-strips 1.07 1.16 0.98
blocks 0.85 0.85 0.78
depot 0.96 0.96 0.97
driverlog 1.07 1.07 1.05
elevators-sat08-strips 0.80 0.97 0.95
floortile-sat11-strips 1.00 1.00 1.00
freecell 1.03 1.03 1.03
grid 0.98 0.98 0.97
gripper 1.02 1.02 1.00
logistics00 1.01 1.01 1.00
logistics98 1.08 1.08 1.02
miconic 1.00 1.00 1.00
miconic-fulladl 1.00 1.00 0.99
miconic-simpleadl 1.00 1.00 1.00
movie 1.00 1.00 1.00
mprime 1.15 1.15 1.15
mystery 1.07 1.07 1.07
nomystery-sat11-strips 0.99 0.99 0.99
openstacks 1.00 1.00 1.00
openstacks-sat08-adl 1.00 1.00 0.95
openstacks-sat08-strips 1.00 1.00 0.95
openstacks-strips 1.00 1.00 1.00
optical-telegraphs 1.00 1.00 1.00
parcprinter-08-strips 1.00 0.99 0.99
parcprinter-sat11-strips 1.00 1.00 1.00
parking-sat11-strips 1.05 1.05 1.05
pathways 1.03 1.03 1.00
pathways-noneg 1.04 1.04 1.00
pegsol-08-strips 1.02 1.01 1.01
pegsol-sat11-strips 1.01 1.01 1.01
philosophers 1.00 1.00 1.00
pipesworld-notankage 0.98 0.98 0.95
pipesworld-tankage 1.02 1.02 1.01
psr-large 1.13 1.13 1.13
psr-middle 1.04 1.04 1.04
psr-small 1.01 1.01 1.01
rovers 1.05 1.05 0.98
satellite 1.13 1.13 1.09
scanalyzer-08-strips 1.11 1.26 1.25
scanalyzer-sat11-strips 1.10 1.22 1.21
schedule 1.01 1.01 1.00
sokoban-sat08-strips 1.00 1.03 1.01
sokoban-sat11-strips 1.02 1.02 1.01
storage 1.06 1.06 1.05
tidybot-sat11-strips 1.00 1.00 1.00
tpp 1.00 1.00 1.06
transport-sat08-strips 1.03 0.96 0.95
trucks 1.03 1.03 1.03
trucks-strips 1.01 1.01 1.01
visitall-sat11-strips 1.17 1.17 1.08
woodworking-sat08-strips 1.10 1.02 1.00
woodworking-sat11-strips 1.03 1.05 1.02
zenotravel 1.01 1.01 1.01
Geometric mean 1.02 1.03 1.01

Table 5.5: Comparison of UAR (bs-rp) relative the baseline in context of plan
related properties.
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Figure 5.5: Search times of optical-telegraphs and barman tasks.

costs of elevators much more than decreasing the length of the plan. The most
interesting result shows the blocks domain, where the plan length as well as the
number of actions considerably decreases. The plan costs of these two domains
are depicted in Figure 5.6.

Coming to the end of this section, we take a view on refinements. Principal
questions are: How many times are UA planning tasks refined and how many
actions are added refined tasks? Figure 5.7 gives a representing collection of
examples of searches on planning tasks. It shows the development of heuristic
values and the changing number of actions of a planning task. Raising values
for refinements mean that new actions are added; the size of the step tells us
about the amount of actions. Despite of changing heuristic values, we see a lot
of large plateaus in the refinement graphs. Respecting the refinement condition,
we would expect refinements, whenever the heuristic increases or stays the same.
These refinements do happen a lot of times. However, they are not able to add
new actions, because all expanded states have already been checked for new
actions in previous iterations, which means that we have a lot of non-proper
refinements. New states have to be expanded in oder to find new actions in
relaxed plans. As we see from the size of the plateaus, it often takes a long time
until the refinement method discovers new actions.

0 5 10 15 20 25 30 35
Tasks (blocks)

0

50

100

150

200

250

P
la

n
 c

o
st

baseline
UAR

0 2 4 6 8 10 12
Tasks (elevators-sat08-strips)

50

100

150

200

250

300

350

P
la

n
 c

o
st

baseline
UAR

Figure 5.6: Plan costs of blocks and elevators tasks.
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Figure 5.7: Search progress and refinements of some tasks.

5.3.2 Helpful Actions

One of the action selection strategies of BSUAR refines UA planning tasks by
adding helpful actions. Fast Downward can also use helpful actions. These
actions are preferred to other actions in a search and are, therefore, called
preferred operators [7]. States generated by preferred operators are stored in
a separate list, also called preferred list, while the open list of GBFS takes all
states generated in a search as usual. During a search, Fast Downward alternates
between expanding states from the preferred list and expanding states from the
ordinary open list.

Considering the relationship between these two approaches, there was the
question of which approach results in a better planner performance. Further-
more, these approaches are orthogonal and can, therefore, easily be combined.
An additional question was: How does this combination perform?

To answer these questions, an experiment was conducted. A first configura-
tion run searches using helpful actions as preferred operators. This configuration
of the experiment is called the preferred operator approach or pref in tables and
figures. The second configuration used BSUAR with helpful actions, denoted by
bs-ha , starting from empty UA planning tasks. To preserve the completeness of
a search, the refinement strategy was combined with BSUAR using applicable
operators as presented in Section 4.4. In the following, bs-ha implies this com-
pleteness preserving combination. The third configuration applies the preferred
operators approach and bs-ha in a same search. We call it pref+bs-ha.
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baseline pref bs-ha pref+bs-ha
coverage 1576 1806 1707 1792

search time 1 0.91 0.60 0.80

Table 5.6: Total results of the preferred operator approach, bs-ha, and the
combination of both.

Table 5.6 lists the total results of the run experiment relative to the baseline
configuration. The preferred operator approach reaches the highest coverage
among these experiments. Although the configuration bs-ha solves about 100
fewer instances than the preferred operators approach, it needs less time to solve
the instances. Configuration pref+bs-ha gets close to the coverage of preferred
operators and still spends less time than the preferred operator approach with
solving the domains.

Figure 5.8 shows the cumulated number of solved problems depending on
the search time for the conducted experiments. The preferred operator ap-
proach solves about 200 fewer instances than bs-ha during the first 0.1 seconds,
but increases the coverage faster. At around 4 seconds the preferred operator
approach covers more instances than bs-ha. Configuration pref+bs-ha domi-
nates both other configurations in the time lapse between 0.4 and 12 seconds.
Afterwards, it is slightly dominated by the preferred operator approach.

Table 5.7 shows the results reached by the preferred operator approach and
the bs-ha configuration relative to the baseline. The first column shows the
absolute coverage of the baseline configuration while the numbers in the follow-
ing columns are the differences to the baseline. For each domain, the highest
coverage being reached by a configuration is highlighted.

The preferred operator approach slightly decreases the coverage of four do-
mains while it increases the coverage of 25 domains. Configuration bs-ha de-
creases the coverage of 14 domains. It covers new instances in 22 domains.

On the one hand, the domains barman, optical-telegraphs and satellite get
more instances solved by bs-ha than by the preferred operator approach. On
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Figure 5.8: Cumulated number of solved task in function of the search time for
the preferred operator approach, bs-ha and pref+bs-ha.
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domain baseline pref bs-ha
airport (50) 34 +2 −6
assembly (30) 30 0 −2
barman-sat11-strips (20) 2 +5 +17
depot (22) 15 +3 −1
driverlog (20) 18 +2 +1
elevators-sat08-strips (30) 11 0 +2
floortile-sat11-strips (20) 7 0 +1
freecell (80) 79 +1 0
grid (5) 4 0 +1
logistics98 (35) 30 +4 +2
miconic-fulladl (150) 136 +1 +1
mprime (35) 31 +4 +3
mystery (30) 17 0 +1
nomystery-sat11-strips (20) 10 +3 +6
openstacks (30) 30 0 −4
openstacks-strips (30) 30 0 −4
optical-telegraphs (48) 4 0 +19
parcprinter-08-strips (30) 22 −2 0
parcprinter-sat11-strips (20) 5 −2 0
parking-sat11-strips (20) 20 −1 −5
pathways (30) 10 +12 +3
pathways-noneg (30) 11 +11 +4
philosophers (48) 48 0 −11
pipesworld-notankage (50) 33 +10 +9
pipesworld-tankage (50) 21 +12 +14
rovers (40) 23 +16 +10
satellite (36) 27 +1 +7
scanalyzer-08-strips (30) 28 +2 +2
scanalyzer-sat11-strips (20) 18 +2 +2
schedule (150) 37 +113 +74
sokoban-sat08-strips (30) 28 0 −1
sokoban-sat11-strips (20) 18 0 −1
storage (30) 18 +1 −1
tidybot-sat11-strips (20) 15 −1 −1
tpp (30) 23 +7 −3
transport-sat08-strips (30) 11 +9 +11
transport-sat11-strips (20) 0 +3 +5
trucks (30) 17 +1 0
woodworking-sat08-strips (30) 27 +3 −14
woodworking-sat11-strips (20) 12 +8 −10

Table 5.7: Difference of coverage of bs-ha and the preferred operator approach
in comparison to the baseline.

the other hand, preferred operators cover many more instances on the pathways
domains, philosophers, rovers, schedule, tpp and woodworking domains.

The combination pref+bs-ha performs differently on the domains. Although
the preferred operators approach is used orthogonal to bs-ha, the combination is
only a success for a few domains. The results grouped by the effect of pref+bs-
ha can be found in Tables 5.8–5.13 . Both configurations improve one another
in about the same amount of domains. In general, the results show that bs-ha
is not able to support the preferred operator approach as much as the preferred
operator approach supports bs-ha.

We will investigate a few of these domains in more detail after a short discus-
sion of how preferred operators and bs-ha work together. Configuration bs-ha
allows fewer actions to be applied in a state. These actions are helpful and
applicable at some of the expanded states. They can also be applied in states
occurring later in a search. For these states, the actions are not necessarily
helpful. In contrast to bs-ha, the preferred operator approach considers all ac-
tions that are applicable in a state. Its strenght lies in frequently expanding
states which are generated by helpful actions. Interactions between these two
techniques are possible. The under-approximation refinement approach can in-
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domain baseline pref bs-ha pref+bs-ha
mystery (30) 17 0 +1 +2
optical-telegraphs (48) 4 0 +19 +21
pathways (30) 10 +12 +3 +13
pathways-noneg (30) 11 +11 +4 +12
pipesworld-notankage (50) 33 +10 +9 +11
pipesworld-tankage (50) 21 +12 +14 +18
psr-large (50) 13 0 0 +1
transport-sat08-strips (30) 11 +9 +11 +13
transport-sat11-strips (20) 0 +3 +5 +6
trucks (30) 17 +1 0 +2

Table 5.8: Domains in which the preferred operator approach and bs-ha im-
proved each other.

domain baseline pref bs-ha pref+bs-ha
freecell (80) 79 +1 0 −1
parking-sat11-strips (20) 20 −1 −5 −7
storage (30) 18 +1 −1 −2
tidybot-sat11-strips (20) 15 −1 −1 −2

Table 5.9: Domains in which the preferred operator approach and bs-ha afflicted
each other.

domain baseline pref bs-ha pref+bs-ha
barman-sat11-strips (20) 2 +5 +17 +13
elevators-sat08-strips (30) 11 0 +2 +1
floortile-sat11-strips (20) 7 0 +1 +1
grid (5) 4 0 +1 +1
nomystery-sat11-strips (20) 10 +3 +6 +4
parcprinter-08-strips (30) 22 −2 0 0
parcprinter-sat11-strips (20) 5 −2 0 0
satellite (36) 27 +1 +7 +7

Table 5.10: Domains in which the bs-ha improved the preferred operator ap-
proach.

domain baseline pref bs-ha pref+bs-ha
airport (50) 34 +2 −6 −5
assembly (30) 30 0 −2 −2
depot (22) 15 +3 −1 −1
driverlog (20) 18 +2 +1 +1
logistics98 (35) 30 +4 +2 +3
mprime (35) 31 +4 +3 +3
philosophers (48) 48 0 −11 −11
schedule (150) 37 +113 +74 +112
sokoban-sat08-strips (30) 28 0 −1 −1
sokoban-sat11-strips (20) 18 0 −1 −1
woodworking-sat08-strips (30) 27 +3 −14 −14
woodworking-sat11-strips (20) 12 +8 −10 −10

Table 5.11: Domains in which the bs-ha afflicted the preferred operator ap-
proach.

domain baseline pref bs-ha pref+bs-ha
airport (50) 34 +2 −6 −5
logistics98 (35) 30 +4 +2 +3
openstacks (30) 30 0 −4 0
openstacks-strips (30) 30 0 −4 0
rovers (40) 23 +16 +10 +16
schedule (150) 37 +113 +74 +112
tpp (30) 23 +7 −3 +7

Table 5.12: Domains in which the preferred operator approach improved bs-ha.
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domain baseline pref bs-ha pref+bs-ha
barman-sat11-strips (20) 2 +5 +17 +13
elevators-sat08-strips (30) 11 0 +2 +1
nomystery-sat11-strips (20) 10 +3 +6 +4

Table 5.13: Domains in which the preferred operator approach afflicted bs-ha.

fluence the combination pref+bs-ha by restricting the set of applicable actions.
The preferred operator approach can influence the combination by guiding the
search through the state space being created by this restricted set of actions.
As the refinement condition depends on the search progress, the search con-
trolled by helpful actions also influences the selection of new actions for the UA
planning task.

The short discussion of how the two techniques work, allows now to inves-
tigate the domains listed above. Table 5.14 presents the effect of pref+bs-ha
relative to the preferred operator approach and relative to bs-ha.

Preferred operators show no effect in the philosophers domain when used
together with bs-ha. The preferred operator approach works also worse in com-
parison to the baseline with respect to the search times. Therefore, we assume
that helpful actions, independently of how they are used, are not suitable for
philosophers.

The preferred operator approach is able to slightly guide searches on tasks
from the woodworking domains, which results in fewer refinements. As tasks
of these domains are well solved by the baseline and the preferred operator ap-
proach, we assume that the refinement strategy lacks in adding required actions
early in the search. Furthermore, it seems that required actions cannot be added
to an UA planning task for a long time.

In the barman domain, preferred operators trouble the search, while bs-ha
is able to slightly control the search.

When solving instances from optical-telegraphs and satellite, pref+bs-ha
takes most advantage from under-approximation refinement. Both techniques,
the preferred operator approach and bs-ha, positively influences the coverage of
pref+bs-ha on optical-telegraph.

The preferred operator approach has the largest effect in the pathways do-
mains, rovers, schedule and tpp. For these domains, preferred operators are able
to considerably decrease the number of expansions relative to bs-ha. We now

pref+bs-ha
rel. to pref rel. to bs-ha

domain cov. exp. cov. exp. refin. # actions
barman-sat11-strips +8 1.05 −4 2.79 1.63 1.58
optical-telegraphs +21 0.09 +2 0.82 0.98 0.99
pathways +1 1.57 +10 0.08 1.01 1.00
pathways-noneg +1 1.22 +8 0.09 1.01 1.00
philosophers −11 3.43 0 1.00 1.00 1.00
rovers 0 1.28 +6 0.18 0.98 1.00
satellite +6 1.41 0 0.74 0.95 0.98
schedule −1 0.73 +38 0.03 1.00 1.00
tpp 0 1.64 +10 0.09 0.80 0.88
woodworking-sat08-strips −17 10.67 0 1.03 0.98 1.01
woodworking-sat11-strips −18 1.20 0 1.00 0.89 0.99

Table 5.14: Effect of the combination pref+bs-ha relative to preferred operator
approach (left hand side) and relative to bs-ha (right hand side).
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give a possible explanation for this behavior. We assume that this behavior
occurs because actions added to an UA planning task can be applied every-
where during a search. As stated in the short discussion at the beginning of this
section, actions that are helpful in an expanded state will also be applicable
but not helpful for other states. Consequently, a search can apply more and
more action as bs-ha adds more and more actions during a search. The pruning
power is, therefore, stronger in the beginning of a search than later in a search.
Later in the search, preferred operators come into action and clearly support
the search.

Investigating the number of refinements and actions, we see that only for tpp
the combination needs fewer refinements. Note, despite of preferred operators
guiding searches on tasks, they do not lead to fewer refinements and fewer
actions in other domains. We assume that after some time, it is difficult to
find new helpful actions for the UA planning task. Our assumption can be
explained as follows: Using bs-ha, an UA planning task can be refined with
actions that are helpful for already expanded states. At some point of the
search, helpful actions of all expanded states are included in the UA planning
task. Furthermore, helpful actions of many upcoming states could already be
included in the UA planning task. Therefore, the UA planning task cannot be
refined by bs-ha for a long time.

In this section we learned about interactions of the preferred operator ap-
proach and the UAR approach, both using helpful actions. The preferred op-
erator approach works well on most of the domains and play an important role
in a combination with bs-ha. UAR with bs-ha performs much worse on a lot of
domains. Nevertheless, it needs less time to solve many tasks.

5.3.3 Action Selection Strategies

While in previous sections, we have compared configurations of BSUAR to exist-
ing methods, this section compares them among themselves. More specifically,
we investigated different action selection strategies being one of two components
of BSUAR. This component was introduced with BSUAR in Section 4.3.2. We
were interested in the difference between adding relaxed plans and adding helpful
actions to UA planning tasks. Furthermore, we identified the effect of keeping
back actions during a search. This is the case when we follow the strategy of
adding all applicable actions of a state to an UA planning task.

We conducted an experiment with three configurations, each one using an-
other of the three action selection strategies presented in Section 4.3.2. The
strategy of selecting relaxed plans and the strategy of selecting helpful actions
were already applied in experiments of sections 5.3.1 and 5.3.2. These configura-
tions are denoted by bs-rp respective bs-ha. In addition to these configurations,
the third configuration includes BSUAR with the action selection strategy of
adding applicable operators to UA planning tasks. We call it bs-appl.

In advance to the results, we shortly shed light on the difference of bs-appl
to the baseline. The difference of bs-ha to the baseline lies in the availability
of actions during a search. The configuration bs-appl does not add applicable
actions of each state which occurs during the search. Therefore the baseline can
apply more actions during a search than bs-appl. This difference in the number
of actions is expected to be larger in the beginning of a search than later in a
search.
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baseline bs-rp bs-ha bs-appl
coverage 1576 1753 1707 1560

search time 1 0.63 0.62 1.15

refinements - 1 1.57 2.17
#actions - 1 0.90 2.15

Table 5.15: Total results of using BSUAR with different action selection strate-
gies compared to the baseline.

The total results of the experiments relative to the baseline are shown in
Table 5.15. The configuration bs-appl performs slightly worse than the baseline.
The configurations bs-rp and bs-ha has a similar total search time. In contrast
to bs-rp, bs-ha needs more refinements which add fewer actions in total. On
the other hand, the configuration bs-rp covers considerably more instances than
bs-ha.

Figure 5.9 shows the number of covered tasks depending on the search time
of bs-rp, bs-ha and bs-appl. Every moment, the coverage of the baseline is
slightly larger than the coverage of bs-appl. Configurations bs-rp and bs-ha
behaves similarly. We note that bs-rp gains more coverage than bs-ha after 50
seconds.

Table 5.16 gives more information about the coverage of single domains.
The configuration bs-appl decreases the coverage in 18 domains relative to the
baseline. The differences lie mostly between one and four instances, except for
philosophers, where bs-appl solved nine instances less than the baseline. The
bs-appl configuration increases the coverage by one in three domains. It is also
able to increase airport by four and optical-telegraphs by 19 instances.

By comparing these results to the already known results of bs-rp and bs-
ha, we can assume some reasons for the resulting coverage. We will investigate
airport, optical-telegraphs, philosophers and the woodworking domains.

The airport domain is best solved by bs-appl. The tasks are solved differently
by each configuration. Therefore, no trend can be determined. Nevertheless,
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Figure 5.9: Cumulated number of solved task in function of the search time for
the different action selection method.
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domain baseline bs-rp bs-ha bs-appl
airport (50) 34 0 −6 +4
assembly (30) 30 0 −2 0
barman-sat11-strips (20) 2 +18 +17 +1
depot (22) 15 −1 −1 −1
driverlog (20) 18 +1 +1 −1
elevators-sat08-strips (30) 11 +1 +2 0
floortile-sat11-strips (20) 7 0 +1 0
freecell (80) 79 −1 0 0
grid (5) 4 +1 +1 0
logistics98 (35) 30 +4 +2 0
miconic-fulladl (150) 136 0 +1 0
mprime (35) 31 +3 +3 −1
mystery (30) 17 +1 +1 0
nomystery-sat11-strips (20) 10 +5 +6 −1
openstacks (30) 30 0 −4 −4
openstacks-strips (30) 30 0 −4 −4
optical-telegraphs (48) 4 +31 +19 +19
parcprinter-08-strips (30) 22 +1 0 −2
parcprinter-sat11-strips (20) 5 +2 0 −3
parking-sat11-strips (20) 20 0 −5 0
pathways (30) 10 +3 +3 −1
pathways-noneg (30) 11 +3 +4 −1
philosophers (48) 48 −8 −11 −9
pipesworld-notankage (50) 33 +8 +9 −2
pipesworld-tankage (50) 21 +13 +14 +1
psr-middle (50) 38 +1 0 0
rovers (40) 23 +9 +10 0
satellite (36) 27 +7 +7 −1
scanalyzer-08-strips (30) 28 +2 +2 0
scanalyzer-sat11-strips (20) 18 +2 +2 0
schedule (150) 37 +79 +74 0
sokoban-sat08-strips (30) 28 −1 −1 0
sokoban-sat11-strips (20) 18 0 −1 0
storage (30) 18 −1 −1 0
tidybot-sat11-strips (20) 15 0 −1 −1
tpp (30) 23 0 −3 +1
transport-sat08-strips (30) 11 +12 +11 0
transport-sat11-strips (20) 0 +4 +5 0
trucks (30) 17 +1 0 −3
trucks-strips (30) 17 −1 0 −4
woodworking-sat08-strips (30) 27 −13 −14 −1
woodworking-sat11-strips (20) 12 −9 −10 −2

Table 5.16: Difference of coverage between configurations of bs using different
action selection strategies relative to the baseline.

bs-ha seems to need more actions in addition helpful actions or relaxed plans.
The optical-telegraphs domain is best solved by bs-rp. The configurations

bs-ha and bs-appl solve the same amount of instances. They solve this domain
exactly in the same manner. Just the number of actions in the last UA plan-
ning task and the number of generated states are different. The number of
evaluations is identical. In this context, it implies that using helpful actions
saves only the generation of a few states. Furthermore, each third instance,
starting at instance 4, remains unsolved. Configuration bs-rp is able to solve
these remaining instances. Additionally, bs-rp expands fewer states. While the
BSUAR refinement method using helpful actions or applicable actions reveal no
difference to each other when solving instances of optical-telegraphs, the actions
of a relaxed plan clearly support searches on these instances.

The results show that bs-appl performs worse on philosophers. Investigating
the number of evaluations, we can see that all configurations of BSUAR eval-
uate many more states than the baseline, meaning that many actions are not
available when they are required. The number of evaluations corresponds with
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the number of states stored in the open or closed list. Configurations bs-appl
and bs-ha stores a similar amount of states. The latter has a lower coverage due
to requiring more memory for maintaining a separate list of expanded states in
order to preserve completeness. Thus, it solves fewer instances. The configura-
tion bs-rp has the highest coverage due to fewer evaluated nodes than the other
two configurations.

All configurations of BSUAR perform worse on the woodworking domains
than the baseline. The best coverage among these configurations has bs-appl.
This configuration solves the instances much faster than the baseline due to
fewer state generations and evaluations. We assume that the relaxed plans
respectively the helpful actions mislead the search. Furthermore, we assume
that other actions than helpful actions or relaxed plan actions are added to the
UA planning task for a long time.

In this section, we compared the different action selection strategies. The ex-
periment running bs-appl helped us to understand the effects of under-approximation
refinement using BSUAR in more detail.

5.3.4 State Selection Strategies

This section evaluates strategies for selecting a subset of states among states
having the same heuristic value. A state selection strategy forms one of two
components of the BSUAR refinement strategy, which was introduced in Sec-
tion 4.3.1. The configurations that have been discussed in the previous sections
use the strategy of taking all states from a heuristic layer. In this section, we
test other strategies next to the already investigated strategy:

first It takes the first state among provided states where an action selection
method provides new actions.

least First, it applies an action selection strategy to all of the given states. Af-
terwards, it takes the state that provides the least amount of new actions.

most It differs from the previous strategy in choosing the states where an action
selection strategy provides the most amount of new actions.

heur First, it applies an action selection strategy to all of the given states.
Afterwards, it applies the context enhanced additive heuristic [8], among
the states where the action selection strategy provides new actions. Now,
one of the states having the smallest heuristic value is selected.

We created an experiment including a configuration for each of these strate-
gies. Configuration bs-rp, which is the configuration UAR from Section 5.3.1,
was taken as a basis. We only considered the action selection strategy which
uses relaxed plans, as we expect similar results for the other configurations.

The results are listed in Table 5.17. As we see from this table, the different
strategies perform nearly identically. This is not surprising, as a refinement
strategy has often only one state to consider, as all other expanded states were
already checked for new actions.

This fact raises the question of how the state selection strategies behave when
another refinement condition is used. Thus, a supplementary experiment was
run which refined only if the heuristic values increased, i.e. expanding states get
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baseline bs-rp (all) first least most heuristic
coverage 1576 1752 1749 1750 1751 1751

search time 1.00 0.59 0.61 0.60 0.60 0.62

refinements - 1.00 1.01 1.00 1.00 1.01
# actions - 1.00 0.99 0.99 1.00 0.99

Table 5.17: Total results of the different state selection strategies relative to the
baseline configuration.

away from the goal. In other words, BSUAR ignores heuristic plateaus. Using
this condition, a search builds large heuristic plateaus. Then, a refinement
strategy can choose among a lot of states.

baseline bs-rp (all,<=) all first least most heuristic
coverage 1576 1752 1699 1695 1687 1701 1689

search time 1.00 0.60 0.62 0.63 0.63 0.63 0.69

refinements - 1.00 0.60 0.75 0.68 0.63 0.75
# actions - 1.00 0.94 0.89 0.91 0.92 0.89

Table 5.18: Total results of the different state selection strategies used in com-
bination with the refinement condition that ignores plateaus.

Table 5.18 shows the result of using the modified refinement condition rel-
ative to the baseline. Refinements and number of actions are relative to the
usual refinement condition. The modified condition performs in average worse
than the usual condition. Nevertheless, we see a decrease in the amount of re-
finements and number of actions in the last task. Having a lower coverage when
using the modified condition confirms that that the refinement guard as it was
defined in Section 4.1 was a good choice.

5.3.5 Initial UA Planning Tasks

The under-approximation framework allows to start a search from an incomplete
planning task. Experiments of previous sections started the searches on empty
UA planning tasks. In this section, we investigate consequences of beginning a
search with an initial set of actions. For the initial set, we chose all actions of
the relaxed plan generated by hFF evaluated at the initial state. We assumed
that an UA planning task having these actions at the beginning of the search
needs fewer refinements.

To check our assumption, we conducted an experiment with two configura-
tions; both starting searches with a first relaxed plan. One configuration is based
on bs-ha from Section 5.3.2, the other extends configuration bs-appl, which was
defined in Section 5.3.3. To differ the configurations, we call the configurations
from previous sections empty or ∅ while rp denotes configurations defined in
this section.
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Figure 5.10: Cumulated number of solved tasks in function of the search time
for configurations bs-ha and bs-appl that either starts searching on an empty
UA planning task (∅) or starts searches being supplied with actions of a first
relaxed plan (rp).

baseline bs-rp bs-ha (∅) bs-ha (rp) bs-appl (∅) bs-appl (rp)
coverage 1576 1753 1707 1741 1560 1605

search time 1.00 0.63 0.63 0.62 1.16 1.06

refinements - 1.00 1.56 1.04 2.16 1.72
# actions - 1.00 0.90 0.89 2.15 1.96

Table 5.19: Total results of taking different initial UA planning tasks relative
to the baseline.

Table 5.19 shows the effect relative to the baseline configuration of Sec-
tion 5.3.1. Configurations rp are able to increase the coverage of bs-ha and
bs-appl. As expected, rp needs fewer refinements. Furthermore, bs-appl (rp)
decreases the search time, the refinements and the number of actions in the last
UA task.

Figure 5.10 shows the result of both versions of the configurations. Providing
a starting search with a single relaxed plan clearly supports the search in solving
tasks of different complexities.

Looking at the coverage reached by bs-ha, Table 5.20 shows that bs-ha (rp)
covered slightly more instances in some domains, except for optical-telegraphs,
where it solved considerably more tasks. Table 5.21 showing the results for
bs-appl contains even more domains, where bs-appl (rp) increases the coverage.
Likewise to configuration bs-ha (rp), configuration bs-appl (rp) also increases
the coverage of optical-telegraphs by many tasks. Remembering the results
of Section 5.3.3, where we found each third task of optical-telegraphs being
unsolved by bs-ha and bs-appl, it seems now that actions of a first relaxed plan
give important impulses to searches on tasks from this domain.
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domain baseline bs-ha (∅) bs-ha (rp)
airport (50) 34 −6 −1
assembly (30) 30 −2 0
barman-sat11-strips (20) 2 +17 +13
freecell (80) 79 0 −1
logistics98 (35) 30 +2 +4
miconic-fulladl (150) 136 +1 +2
openstacks (30) 30 −4 0
openstacks-strips (30) 30 −4 0
optical-telegraphs (48) 4 +19 +31
parcprinter-08-strips (30) 22 0 +1
parcprinter-sat11-strips (20) 5 0 +2
parking-sat11-strips (20) 20 −5 −4
pathways (30) 10 +3 +5
pathways-noneg (30) 11 +4 +5
rovers (40) 23 +10 +11
tidybot-sat11-strips (20) 15 −1 −2
transport-sat11-strips (20) 0 +5 +4
trucks (30) 17 0 +1
woodworking-sat08-strips (30) 27 −14 −13
woodworking-sat11-strips (20) 12 −10 −9

Table 5.20: Domains where the non-empty initial UA has an effect on the
coverage when using bs-ha. The two columns on the right hand side show
the differences to the baseline for both kinds of initial planning tasks.

domain baseline bs-appl (∅) bs-appl (rp)
airport (50) 34 +4 +2
barman-sat11-strips (20) 2 +1 +2
depot (22) 15 −1 +1
floortile-sat11-strips (20) 7 0 −2
freecell (80) 79 0 +1
logistics98 (35) 30 0 −2
miconic-fulladl (150) 136 0 +2
mprime (35) 31 −1 +2
mystery (30) 17 0 +1
nomystery-sat11-strips (20) 10 −1 0
openstacks (30) 30 −4 0
openstacks-strips (30) 30 −4 0
optical-telegraphs (48) 4 +19 +33
parcprinter-08-strips (30) 22 −2 −1
parcprinter-sat11-strips (20) 5 −3 0
pathways (30) 10 −1 0
pipesworld-notankage (50) 33 −2 0
satellite (36) 27 −1 +2
schedule (150) 37 0 −2
storage (30) 18 0 +1
tpp (30) 23 +1 0
transport-sat08-strips (30) 11 0 +1
trucks (30) 17 −3 −1
trucks-strips (30) 17 −4 −3
woodworking-sat08-strips (30) 27 −1 +1
woodworking-sat11-strips (20) 12 −2 +2

Table 5.21: Domains where the non-empty initial UA has an effect on the
coverage when using bs-appl. The two columns on the right hand side show
the differences to the baseline for both kinds of initial planning tasks.
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5.3.6 Providing more Memory

Configuration bs-rp of the experiments additionally uses bs-appl that stores its
own list of expanded states in order to preserve completeness. This additional
list growing large for some domains requires a lot of memory. Moreover, fur-
ther memory is used by bs-rp due to caching relaxed plans in order to save
computation time.

We conducted an experiment to investigate the consequence of the memory
limit. The configurations of these experiments were the same as for the base-
line and UAR/bs-rp of Section 5.3.1. In addition to these configurations, the
experiments were allowed to use up to 6 GB RAM for each task instead of 2
GB.

Table 5.22 shows domains, which respond to the larger supply of memory.

Coverage

Domain without UAR with UAR

airport (50) 34 + 1 34 + 1
barman-sat11-strips (20) 2 + 4 20
floortile-sat11-strips (20) 7 7 + 1
miconic-fulladl (150) 136 136 + 1
optical-telegraphs (48) 4 35 + 8
parcprinter-08-strips (30) 22 23 + 1
parcprinter-sat11-strips (20) 5 7 + 1
pathways (30) 10 13 + 1
pathways-noneg (30) 11 14 + 1
philosophers (48) 48 40 + 6
psr-large (50) 13 + 2 13 + 3
psr-middle (50) 38 + 2 39 + 4
rovers (40) 23 32 + 1
schedule (150) 37 116 + 6
sokoban-sat08-strips (30) 28 27 + 1
trucks-strips (30) 17 16 + 2
visitall-sat11-strips (20) 3 3 + 1

total (2252) 1576 + 9 1753 + 39

Table 5.22: Effect on coverage when providing 6 GB RAM instead of 2 GB.

It did not surprise, that the experiment using UAR was capable to further
improve the coverage. The domains optical-telegraphs, philosophers and schedule
benefit most from supplementary memory. It seems likely that the remaining
tasks of these domains can also be solved within 30 minutes, when memory is
unlimited.



Chapter 6

Related Work

This section discusses related work restricted to action pruning techniques in
the area of satisficing planning. In general, action pruning means ignoring some
actions during a search. For this discussion of related work, we differentiate
between two kinds of action pruning techniques: static action pruning and dy-
namic action pruning. Next to action pruning techniques, we discuss search
enhancements that are not classified as dynamic action pruning techniques, but
guide searches dynamically by preferring actions to other actions.

Static action pruning techniques exclude actions from a planning task, pre-
viously to a search. As a consequence, transitions are pruned globally from
the state space at once. Dynamic action pruning techniques determine actions
during a search. Rather than pruning whole actions, the dynamic techniques
cut transitions locally from expanding states.

Haslum and Jonsson [5] as well as Nebel, Dimopoulos and Koehler [10] in-
troduced specific static pruning techniques.

Haslum and Jonsson described a method to identify redundant operators.
The method finds and eliminates single operators, which are equivalent to op-
erator sequences. During the preprocess of a search, a greedy algorithm com-
pares each operator in combination with operator sequences by following deter-
mined conditions. The conditions guarantee that this approach is completeness-
preserving. Although their approach is suitable to prune actions while preserv-
ing the completeness of a search, it is costly to check all actions of a complex
planning task. Our UAR approach can ignore all actions of the planning task
in the beginning of the search.

The work of Nebel, Dimopoulos and Koehler presents a method to determine
relevant facts and operators previously to a search. The method generates an
AND-OR tree of a relaxed planning task in order to find a minimal set of rele-
vant facts while relevant operators can be extracted from this tree. Restricting
the search to the sole use of operators determined by the AND-OR tree does
not preserve solution existence in a search. Therefore, Nebel et al. restart a
search on the original problem after no solution was found using the determined
operators. Instead of restarting the search, their approach could use the UAR
framework applying an appropriate refinement strategy to proceed on the given
search.

Hoffmann and Nebel introduced one of the first dynamic action pruning tech-
niques together with the Fast Forward planner [9]. The FF planner implements

42



6. Related Work 43

the FF heuristic hFFwhich determines helpful actions in a state evaluation. It
applies these actions in a state while other actions applicable in this state are
ignored. Using helpful actions in this way is not solution preserving. If a search
fails, FF starts a new search, this time allowing all actions to be applied. In
contrast to the FF planner, UAR avoids those restarts by allowing other ac-
tions than just the helpful actions to be applied. The main difference is that
the FF planner considers only state transitions which are induced by helpful
actions, while UAR considers all transitions induced by actions that were help-
ful in at least one of the preceding state expansions. Consequently, a search
using BSUAR with the helpful actions action selection strategy can follow more
transitions than the FF planner. They have in common, that states are only
advanced with helpful actions, respective with actions that were helpful at one
of the past states. In addition to helpful actions, a configuration of BSUAR ex-
tracts the relaxed plan of hFF for refining under-approximation planning tasks.
This allows the search to follow even more transitions.

Following works describe techniques that guide the search by preferring suc-
cessor states to states generated by non-preferred actions. These techniques still
apply all actions which are applicable in expanding states. Therefore, they do
not really prune actions respective transitions like the FF planner.

YAHSP [14], yet another heuristic search planner, introduced by Vidal uses
relaxed plans of hFF in a lookahead strategy. The strategy takes the longest
sequence consisting of relaxed plan actions that is applicable in the concrete
search. Such a sequence, called lookahead plan, is directly applied in a expand-
ing state generating so called lookahead states. These states are preferred to
other successor states having the same heuristic value. Completeness of a GBFS
is preserved by advancing states with all their applicable actions as usual. In
contrast to YAHSP, BSUAR is able to add all the actions of a relaxed plan
independently of their applicability. YAHSP maintains completeness by gener-
ating all successor states. UAR saves this generations of states by reexpanding
states in order to apply the remaining actions and to preserve completeness. In
YAHSP, a search is guided by transitions that are induced by helpful actions or
the lookahead plans. Searches using UAR are rather restricted by a small set
of available actions than guided by transitions.

Helmert introduced the causal graph heuristic which extracts helpful transi-
tions [7] similarly to helpful actions of FF. He calls this kind of actions/transitions
preferred operators. In contrast to the FF planner and likewise to YAHSP, Fast
Downward, the planner developed by Helmert, prefers these actions to other
actions instead of eliminating them from the search space. Fast Downward has
implemented two open queues into the GBFS: a first queue for successor states
generated by preferred operators, a second queue maintains all successors as
usual. GBFS alternates between fetching states of the first queue and fetching
states of the second queue. The availability of all actions and all generated states
preserves solution existence. This approach and slight variants of this approach
have been investigated in detail by Helmert and Richter [11]. We compared
Helmert’s preferred operator approach to UAR in Section 5.3.2. The preferred
operator approach performs much better than UAR using helpful actions. Al-
though UAR often needs less time to solve planning tasks, it is not able to solve
more tasks because of actions that are missed in the under-approximations of
the planning tasks. Search time reductions are caused by less generations of
successor states.
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Wehrle, Kupferschmid and Podelsky defined useless actions [15]. An action
is said to be useless if it is not missing in an optimal plan to the goal. Using an
arbitrary heuristic as a distance estimator, this method classifies an action as
relatively useless if h(Πa, s) ≤ h(Π, s′) i.e. the heuristic value of state s is smaller
or equal in the planning task without action a (Πa) than the heuristic value of
the successor state s′ generated by action a in the original task Π. Cutting
useless actions from a state does not preserve solution existence. To overcome
this problem and to combine useless actions with preferred operators, a search
maintains three open queues, each for a different kind of successor states: use-
less, preferred and unknown. In difference to the dual queue approach, these
queues contain distinct sets of states. The search alternates between expanding
preferred states and expanding unknown states. In the range of a small prob-
ability, it also expands useless states. Likewise to preferred operators, useless
actions are determined in a current state. In difference to preferred operators, a
search needs to evaluate successor states in order to determine a relatively use-
less action. Despite of requiring successor states, the useless actions approach
could also be used in an action selection strategy for BSUAR for filtering useless
actions out of helpful actions. Furthermore the approach of determining use-
less actions is orthogonal to UAR. Therefore, BSUAR and the useless actions
approach could be used together in a search.



Chapter 7

Conclusion

We conclude with a classical conclusion in the next section. The last section
suggests future work that also considers some of the related works.

7.1 Overall Results

We introduced a pruning technique that follows a similar approach like GEGAR
as it was used by Seipp and Helmert [13]. The subjects of their approach as
well as of our approach are approximations of planning tasks, because approxi-
mations can be solved more efficiently than the original tasks. However, either
the plans that are found in approximated tasks are not valid for concrete tasks
or no plan can be found at all. The sharing idea was to refine approximations
of planning tasks until a valid plan for the concrete task is found in the approx-
imation. UA planning tasks are refined by inserting actions from the original
planning task to the UA.

We have asked in the introduction for a method that adds a small but suf-
ficient amount of actions to under-approximations of planning tasks. In order
to provide a solution for this demand, we have created a general framework
for refining under-approximations of planning tasks. For this framework, we
developed and implemented a specific refinement strategy. This strategy, called
BSUAR, is able to select a sufficient set of actions in order to find plans. More-
over, BSUAR is able to apply in average less than a half of the actions touched
during standard GBFS. This reduced set of actions often results in less gener-
ations and evaluations of states, which saves a lot of search effort. Moreover,
the average plan cost increases only slightly. The algorithm of BSUAR con-
sists of two further components allowing to specify different state and action
selection strategies. While different state selection strategies compared to each
other show minor differences in planner performance, the action selection strate-
gies behaves differently. Especially, the action selection strategy which refines
under-approximations by adding actions of relaxed plans produced by hFFwas
able to solve many more task than other action selection strategies and standard
GBFS. The best results come form experiments using BSUAR in combination
with preferred operators [7] because preferred operators are also able to guide
the search through UA state spaces. Some planning tasks do not benefit from
BSUAR. However, developing action selection strategies that are more dynamic
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seems to be the key to also cover these tasks in future.

7.2 Future Work

The UAR framework allows to implement additional refinement strategies. BSUAR
uses a search heuristic in its refinement process. Nevertheless, other refinement
strategies could be developed that consider the preconditions and effects of ac-
tions in UA planning task.

Moreover, BSUAR allows implementing an action selection strategy. Next
to the strategies developed in this thesis, we could also apply strategies using
preferred operators or relaxed plans of other heuristics [11].

We considered some search enhancements for guiding searches in Section 6.
We already evaluated the preferred operators approach in Section 5.3.2. More-
over, we could also evaluate YAHSP [14] and useless actions [15] for searching
on under-approximations of planning tasks.

With a critical review on the plateaus, it can reasonably be expected that
the developed refinement condition of BSUAR can burden the search; namely,
when states on a relatively small plateau can be advanced to suitable successor
states. In this case, additional actions might not be useful and would blow up
the state space. Therefore, we suggest to trigger refinements depending on the
size of plateaus.
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