Landmark-based Meta Best-First Search

Bachelor Thesis Presentation By Samuel Hugger

STRIPS Planning Model

- States
 - Set of atoms
 - True or False
- Actions
 - Preconditions
 - Add-effects
 - Delete-effects

STRIPS Planning Model

- Planning Task
 - States
 - Actions
 - Initial state
 - Goal condition
- Solution plan
 - Sequence of actions from initial state to goal

Landmarks

 Landmarks are facts that have to be true at some point of every solution plan > necessary conditions for reaching any goal

 We consider causal landmarks which correspond to atoms (Zhu & Givan, 2003)

Landmark-based Search

- Successful: landmarks in heuristic functions
 - LM-count heuristic
 - LM-cut heuristic
- Not as successful: landmarks in metasearch – lack of completeness

 → Landmark-based Meta Best-First Search Algorithm (LMBFS), Vernhes et al., 2013

Landmark-based Meta-Search

 The idea: Divide the planning task into subtasks

 Each subtask's goal is the achievement of a landmark

Subtask ordering?

Landmark ordering

A bunch of landmarks

 Order them in a way that is benefitial to reaching the goal of the planning task

Precedence Relation

Definition 2. (Precedence relation $<_{\mathcal{L}}$). [1]

 $<_{\mathcal{L}}$ can be defined on a set of landmarks \mathcal{L} . For two landmarks $(l, l') \in \mathcal{L}^2$, $l <_{\mathcal{L}} l'$ if l becomes true before l' becomes true during the execution of every solution plan.

 We order our landmarks based on the precedence relation.

Landmark graph

 The resulting landmark graph is oriented towards solution plans

Good starting points for the search:

Definition 5. (Root landmark set). [1]

Let $\Gamma = (\mathcal{V}, \mathcal{E})$ be a landmark graph. We define $roots(\Gamma) = \{l \in \mathcal{V} \mid Pa_{\Gamma}(l) = \emptyset\}.$

Landmark graph

Root landmarks in this graph:

 Node A is a root landmark – it is likely to be achieved early in every solution plan

Metanodes

Definition 7. (Metanode). [1]

A metanode is a tuple $m = \langle s, h, \mathcal{A}, l, \rho \rangle$ where:

- s is a state of the planning task Π
- h is a heuristic evaluation of the node
- \mathcal{A} is a set of landmarks $(\mathcal{A} \subseteq \mathcal{L})$
- l is a landmark $(l \in \mathcal{L})$
- ρ is a plan yielding the state s from the initial state I.
- The subtask associated to a metanode m has the landmark I as goal

Subtask action restriction

- Actions must either or:
 - achieve I
 - not achieve any root landmarks
- This focuses the subsearch on I
- → Run subsearch if successful, expand the associated metanode

Expansion of Metanodes

 Achieved landmarks are removed from the landmark graph

 New metanodes are generated and added to the open list

Metanode Generation - nextLM

Definition 9. (nextLM metanode generation). [1]

Let $m = \langle s, h, \mathcal{A}, l, \rho \rangle$ be a metanode. If Π_m has a solution ρ' , then $nextLM(m) = \{\langle s', h', \mathcal{A} \cup \{l\}, l', (\rho \circ \rho') \rangle \mid l' \in roots(\Gamma \setminus (\mathcal{A} \cup \{l\}))\}$. If Π_m has no solution, then $nextLM(m) = \emptyset$.

- A expanded metanode
- E, D generated metanodes

Metanode Generation - deleteLM

Definition 10. (deleteLM metanode generation). [1] Let $m = \langle s, h, \mathcal{A}, l, \rho \rangle$ be a metanode. $nextLM(m) = \{\langle s, h', \mathcal{A} \cup \{l\}, l', \rho \rangle \mid l' \in roots(\Gamma \setminus (\mathcal{A} \cup \{l\}))\}.$

- No subsearch is run on A A is removed from the landmark graph
- E,D generated metanodes

Completeness

- $succDel(m) = nextLM(m) \cup deleteLM(m)$
- $succCut(m) = nextLM(m) \cup cutParents(m) \cup restartCutParents(m)$

Theorem 1. [1]

The LMBFS algorithm using succCut or succDel as successor function is sound and complete if the subplanner is sound and complete.

Best-first Search - Heuristics

 LMBFS uses heuristics to select the most promising metanode in each iteration

Definition 13. $(h^{\mathcal{L}_{left}})$ [1] For a metanode $m = \langle s, h, \mathcal{A}, l, \rho \rangle$ and an associated landmark graph $\Gamma = (\mathcal{V}, \mathcal{E})$, the heuristic $h^{\mathcal{L}_{left}}(m) = |\mathcal{V} \setminus \mathcal{A}|$.

 This heuristic works well with LMBFS, as the set of achieved landmarks is already saved in each metanode

The LMBFS Algorithm

15 return \perp

```
Algorithm 1: LMBFS [1]
    Input: STRIPS planning task \Pi = \langle A, O, I, G \rangle, landmark graph \Gamma, metanode successor
                   function succ
    Output: solution plan or \bot
 1 open \leftarrow \emptyset;
 2 closed \leftarrow \emptyset;
 3 \forall l \in roots(\Gamma): add metanode \langle I, h, \emptyset, l, \emptyset \rangle to open;
 4 while open \neq \emptyset do
          m \leftarrow \arg\min_{\langle s,h,\mathcal{A},l,\rho\rangle \in open} h;
          open \leftarrow open \setminus \{m\};
         if m \notin closed then
               closed \leftarrow closed \cup \{m\};
               \rho' \leftarrow subplanner(\Pi_m);
               if \rho' \neq \bot then
10
                    s' \leftarrow \text{result of executing } \rho' \text{ in } s;
11
                    if G \subset s' then
12
                          return \rho \circ \rho';
13
                    open \leftarrow open \cup succ(m);
14
```

- LMBFS has been implemented in Fast Downward
- Eager-Greedy search as subplanner
- Eager-Greedy search for comparison
- Experiments have been run on the Maia Cluster, using downward-lab

 $greedy_ff \quad lm_meta(succCut)$

32469 35848

Summary	${\tt greedy_ff}$	$lm_meta(succCut)$		$lm_meta(succDel)$
Cost - Sum	5784772.00	1	5794109.00	5794379.00
Coverage - Sum	1438	0.6	878	801
Evaluated - Sum	30785444	10	318829794	927036208
Expansions - Geometric mean	147.76	10	1527.58	3729.37
Generated - Geometric mean	1567.10	6.6	10317.14	24509.36
Plan length - Sum	32469	1.1	35848	36605
Search time - Geometric mean	0.65	6.1	3.97	8.92

This table shows a summary of the experiments, aggregated across all domains.

- This implementation of LMBFS is at least a few optimizations away from being competitive with EagerGreedy search
- LMBFS implemented by Vernhes et al. in 2003 has been shown to be competitive with the LAMA-11 planner on 14 IPCdomains

Conclusion

- Landmark-based Meta Best-First Search represents a successful realization of landmarks as an effective tool in a metasearch environment
- Meta-search is a highly flexible framework with a number of unexplored areas – new successor functions, dynamic successor function choice, the interplay of metasearch and subsearch, and many more

Bibliography

- Vernhes, S., Infantes, G., and Vidal, V. Landmark-based Meta Best-First Search Algorithm: First Parallelization Attempt and Evaluation. In In Proceedings of the ICAPS-2013 Workshop on Heuristics and Search for Domain-independent Planning (HSDIP 2013) (2013).
- [2] Helmert, M. The Fast Downward Planning System. In Journal of Artificial Intelligence Research 26 (2006), 191-246 (2006).
- [3] Richter, S., Helmert, M., and Westphal, M. Landmarks revisited. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intellicence (AAAI 2008), pp. 975–982. AAAI Press (2008).
- [4] Helmert, M. and Domshlak, C. Landmarks, Critical Paths and Abstractions: What's the Difference Anyways? In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), pp. 162-169, 2009 (2009).
- [5] Bonet, B. and Geffner, H. Planning as heuristic search. In Artificial Intelligence 129 (2001), 5-33 (2001).
- [6] Hoffmann, J. and Nebel, B. The FF Planning System: Fast Plan generation through heuristic search. In *Journal of Artificial Intelligence Research*, 14 (2001), 253-302 (2001).
- [7] Zhu, L. and Givan, R. Landmark extraction via planning graph propagation. In Proceedings of the ICAPS'03 Doctoral Consortium, 156-160. (2003).
- [8] Richter, S. and Helmert, M. Preferred operators and deferred evaluation in satisficing planning. In Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009), pp. 273-280. AAAI Press (2009).
- [9] Seipp, J., Pommerening, F., Sievers, S., and Helmert, M. downward-lab 2.0 (2017). URL https://doi.org/10.5281/zenodo.399255.