

Monte Carlo Tree Search for Carcassonne

Bachelor's Thesis

Max Jappert <max.jappert@unibas.ch>

Department of Mathematics and Computer Science

University of Basel

27.06.2022

Outline

- 1. Introduction
- 2. Monte Carlo Tree Search
- 3. Implementation and Evaluation
- 4. Conclusion

Why Monte Carlo Tree Search?

- Monte Carlo Tree Search (MCTS) has been successfully applied to:
 - Hex
 - Lines of Action
 - > Settlers of Catan
 - > Go
- > Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces good results on Carcassonne.
- They don't consider different variants

Why Monte Carlo Tree Search?

- Monte Carlo Tree Search (MCTS) has been successfully applied to:
 - Hex
 - Lines of Action
 - > Settlers of Catan
 - Go
- Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces good results on Carcassonne.
- > They don't consider different variants

Why Monte Carlo Tree Search?

- Monte Carlo Tree Search (MCTS) has been successfully applied to:
 - Hex
 - Lines of Action
 - Settlers of Catan
 - > Go
- Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces good results on Carcassonne.
- > They don't consider different variants.

Research Objectives

- > Evaluating different variants of Monte Carlo Tree Search in regard to their performance on Carcassonne.
- > Evaluating if the most powerful variant is capable of beating a human player.

- Carcassonne is a tile-based board game for between two and five players.
- The board is iteratively built by placing tiles over the course of 72 rounds.
- Points are made by placing meeples strategically.
- Large state space with at least 5 · 10⁴⁰ reachable positions and a game tree with around 10¹⁹² terminal nodes (Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/(23.06.2022)

- Carcassonne is a tile-based board game for between two and five players.
- The board is iteratively built by placing tiles over the course of 72 rounds.
- Points are made by placing meeples strategically.
- Large state space with at least 5 · 10⁴⁰ reachable positions and a game tree with around 10¹⁹² terminal nodes (Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/(23.06.2022)

- Carcassonne is a tile-based board game for between two and five players.
- The board is iteratively built by placing tiles over the course of 72 rounds.
- Points are made by placing meeples strategically.
- Large state space with at least 5 · 10⁴⁰ reachable positions and a game tree with around 10¹⁹² terminal nodes (Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/(23.06.2022)

- Carcassonne is a tile-based board game for between two and five players.
- The board is iteratively built by placing tiles over the course of 72 rounds.
- Points are made by placing *meeples* strategically.
- Large state space with at least $5 \cdot 10^{40}$ reachable positions and a game tree with around 10¹⁹² terminal nodes (Heyden, 2009).

https://www.dadsgamingaddiction.com/carcassonne/ Source: (23.06.2022)

Monte Carlo Tree Search

- > MCTS is a method for finding optimal decisions in a given domain.
- > It "combines the precision of tree search with the generality of random sampling" (Browne et al., 2012, p. 1).
- > This is achieved by taking random samples in the state space and building a search tree according to the results.

Monte Carlo Tree Search

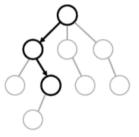
- > MCTS is a method for finding optimal decisions in a given domain.
- It "combines the precision of tree search with the generality of random sampling" (Browne et al., 2012, p. 1).
- This is achieved by taking random samples in the state space and building a search tree according to the results.

Monte Carlo Tree Search

- > MCTS is a method for finding optimal decisions in a given domain.
- It "combines the precision of tree search with the generality of random sampling" (Browne et al., 2012, p. 1).
- > This is achieved by taking random samples in the state space and building a search tree according to the results.

Training

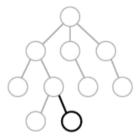
- During training, a game tree is iteratively built.


Training

- During training, a game tree is iteratively built.
- Each node has a visit count N and an expected score Q, which get updated during training.

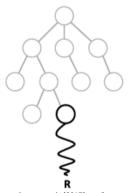
Training

- During training, a game tree is iteratively built.
- Each node has a visit count N and an expected score Q, which get updated during training.
- Each training iteration consists of four steps.

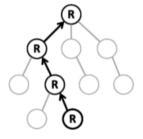

Step 1: Selection

- Traverse the game tree according to the tree policy, which maps each node to one of its children.
- > Do this until an expandable node is reached.

Image Source: James et al. (2017), p. 2


Step 2: Expansion

Add at least one child node and visit that child.


Image Source: James et al. (2017), p. 2

Step 3: Simulation

- Simulate the game until the end with moves decided by the *default policy*.
- > Thereby sample a score R.
- The simulation can be replaced by a function with domain-specific knowledge.

Step 4: Backpropagation

The sampled score R is propagated back up the chosen path. For each node:

$$N \leftarrow N + 1$$

$$Q \leftarrow Q + \frac{R-Q}{N}$$

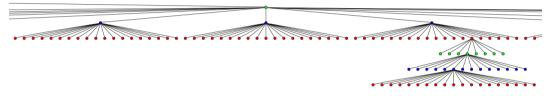
Image Source: James et al. (2017), p. 2

Implementation and Evaluation

Practical Steps

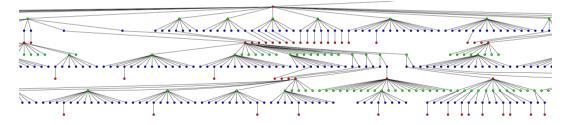
- Implementing Carcassonne.
- Implementing the MCTS framework.
- 3. Testing and evaluating different MCTS configurations.

Implementation of Carcassonne

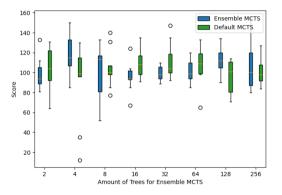

- > Implemented in Java.
- > Allows for MCTS variants and humans to play Carcassonne.
- > The repository is publicly accessible
 under https://github.com/
 maxjappert/mcts_carcassonne

Implementation and Evaluation

Implementation and Evaluation


Implementation: Game Tree

- > Chance nodes: Randomly drawing a tile
- > Placement nodes: Placing a tile
- > Meeple nodes: Placing a meeple


Implementation: Ensemble MCTS

- Alternative way of modelling randomness.
- k trees are built, whereby each assumes a fixed deck permutation.
- After training all trees "vote" on which move to pick.

Implementation and Evaluation

Evaluation: Single Game Tree vs. Ensemble MCTS

~ Certain Ensemble MCTS configurations lead to performance increase.

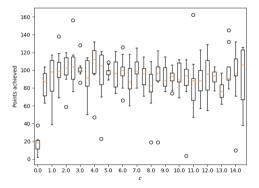
Implementation: Degree of Exploration

> All "useful" tree policies are a function of the children's Q-value, because the game tree should be expanded in profitable directions.

Implementation and Evaluation

Implementation: Degree of Exploration

> All "useful" tree policies are a function of the children's Q-value, because the game tree should be expanded in profitable directions.


Implementation and Evaluation

- All "useful" tree policies must balance this exploitation with a degree of exploration.

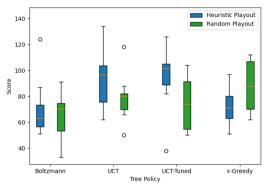
Implementation: Degree of Exploration

- > All "useful" tree policies are a function of the children's Q-value, because the game tree should be expanded in profitable directions.
- > All "useful" tree policies must balance this exploitation with a degree of exploration.
- > \leadsto Most tree policies have an exploration parameter, which determines the degree of exploration.

Evaluation: Degree of Exploration

→ Severe performance drop when exploration seizes.

Evaluation: Tree Policies


UCT	UCT-Tuned	Boltzmann	$\varepsilon ext{-}Greedy$	Dec. ε -G.	Heur. MCTS	Heuristic	Random
-	38.2%	63.9%	44.4%	72.2%	83.3%	81.1%	100.0%
61.8%	_	70.3%	51.4%	80.6%	86.1%	77.8%	100.0%
36.1%	29.7%	_	27.8%	81.1%	63.9%	62.9%	100.0%
55.6%	48.6%	72.2%	_	86.5%	83.8%	78.4%	100.0%
27.8%	19.4%	18.9%	13.5%	_	31.4%	51.4%	89.2%
16.7%	13.9%	36.1%	16.2%	68.6%	_	59.5%	100.0%
18.9%	22.2%	37.1%	21.6%	48.6%	40.5%	-	100.0%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	8.6%	_
	- 61.8% 36.1% 55.6% 27.8% 16.7% 18.9%	- 38.2% 61.8% - 36.1% 29.7% 55.6% 48.6% 27.8% 19.4% 16.7% 13.9% 18.9% 22.2%	- 38.2% 63.9% 61.8% - 70.3% 36.1% 29.7% - 55.6% 48.6% 72.2% 27.8% 19.4% 18.9% 16.7% 13.9% 36.1% 18.9% 22.2% 37.1%	- 38.2% 63.9% 44.4% 61.8% - 70.3% 51.4% 36.1% 29.7% - 27.8% 55.6% 48.6% 72.2% - 27.8% 19.4% 18.9% 13.5% 16.7% 13.9% 36.1% 16.2% 18.9% 22.2% 37.1% 21.6%	- 38.2% 63.9% 44.4% 72.2% 61.8% - 70.3% 51.4% 80.6% 36.1% 29.7% - 27.8% 81.1% 55.6% 48.6% 72.2% - 86.5% 27.8% 19.4% 18.9% 13.5% - 16.7% 13.9% 36.1% 16.2% 68.6% 18.9% 22.2% 37.1% 21.6% 48.6%	- 38.2% 63.9% 44.4% 72.2% 83.3% 61.8% - 70.3% 51.4% 80.6% 86.1% 36.1% 29.7% - 27.8% 81.1% 63.9% 55.6% 48.6% 72.2% - 86.5% 83.8% 27.8% 19.4% 18.9% 13.5% - 31.4% 16.7% 13.9% 36.1% 16.2% 68.6% - 18.9% 22.2% 37.1% 21.6% 48.6% 40.5%	- 38.2% 63.9% 44.4% 72.2% 83.3% 81.1% 61.8% - 70.3% 51.4% 80.6% 86.1% 77.8% 36.1% 29.7% - 27.8% 81.1% 63.9% 62.9% 55.6% 48.6% 72.2% - 86.5% 83.8% 78.4% 27.8% 19.4% 18.9% 13.5% - 31.4% 51.4% 16.7% 13.9% 36.1% 16.2% 68.6% - 59.5% 18.9% 22.2% 37.1% 21.6% 48.6% 40.5% -

→ UCT-Tuned performed best.

Implementation: Simulation Step

- > Usually consists of randomly selecting moves.
- > Adding domain-specific knowledge can potentially improve performance.
- > We tested two alternatives:
 - Heuristic default policy
 - > Direct heuristic evaluation

Evaluation: Heuristic Default Policy

Implementation and Evaluation

→ A heuristic-guided playout increases performance slightly, but also increases the runtime by a factor of 30.

Evaluation: Direct-Heuristic Evaluation

- Decreases runtime per training iteration by a factor of 30 compared to using random sampling.
- Performed slightly worse than a random playout when considering a similar runtime.

Implementation and Evaluation

Implementation and Evaluation

Evaluation: Playing against MCTS

- We played six games against the strongest implementation.
- It won five of those games with an average score of 95.3 to 88.3.

- > MCTS produces good results on the domain of Carcassonne.
- We found a variant which can outperform an average human player. This variant has the following properties:
 - > UCT-Tuned as a tree policy
 - \rightarrow Decaying exploration parameter of c = 512/t for t training iterations
 - > Simulation with a random default policy
 - > Ensemble MCTS with four trees, 750 training iterations each
- > Interesting for further research:
 - Considering probability distribution over the deck in the game tree.
 - > Optimising the heuristic functions
 - > Training a neural network to approximate the score given a state
 - > Bounding the simulation.

- > MCTS produces good results on the domain of Carcassonne.
- > We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - > Decaying exploration parameter of c=512/t for t training iterations.
 - > Simulation with a random default policy.
 - > Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:
 - Considering probability distribution over the deck in the game trees
 - > Optimising the heuristic functions
 - > Training a neural network to approximate the score given a state
 - > Bounding the simulation.

- MCTS produces good results on the domain of Carcassonne.
- We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - Decaying exploration parameter of c = 512/t for t training iterations.
 - Simulation with a random default policy.
 - Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:

- MCTS produces good results on the domain of Carcassonne.
- We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - Decaying exploration parameter of c = 512/t for t training iterations.
 - Simulation with a random default policy.
 - Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:
 - Considering probability distribution over the deck in the game tree.

- MCTS produces good results on the domain of Carcassonne.
- We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - Decaying exploration parameter of c = 512/t for t training iterations.
 - Simulation with a random default policy.
 - Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:
 - Considering probability distribution over the deck in the game tree.
 - Optimising the heuristic functions.

- > MCTS produces good results on the domain of Carcassonne.
- > We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - Decaying exploration parameter of c = 512/t for t training iterations.
 - Simulation with a random default policy.
 - Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:
 - > Considering probability distribution over the deck in the game tree.
 - > Optimising the heuristic functions.
 - > Training a neural network to approximate the score given a state.
 - > Bounding the simulation.

- MCTS produces good results on the domain of Carcassonne.
- We found a variant which can outperform an average human player. This variant has the following properties:
 - UCT-Tuned as a tree policy.
 - Decaying exploration parameter of c = 512/t for t training iterations.
 - Simulation with a random default policy.
 - Ensemble MCTS with four trees, 750 training iterations each.
- Interesting for further research:
 - Considering probability distribution over the deck in the game tree.
 - Optimising the heuristic functions.
 - Training a neural network to approximate the score given a state.
 - Bounding the simulation.

Thank you for your attention.