
Monte Carlo Tree Search for Carcassonne
Bachelor’s Thesis

Max Jappert <max.jappert@unibas.ch>

Department of Mathematics and Computer Science

University of Basel

27.06.2022



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Outline

1. Introduction

2. Monte Carlo Tree Search

3. Implementation and Evaluation

4. Conclusion

Monte Carlo Tree Search for Carcassonne 2 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Why Monte Carlo Tree Search?

Monte Carlo Tree Search (MCTS) has been successfully applied to:

Hex
Lines of Action
Settlers of Catan
Go

Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces
good results on Carcassonne.

They don’t consider different variants.

Monte Carlo Tree Search for Carcassonne 3 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Why Monte Carlo Tree Search?

Monte Carlo Tree Search (MCTS) has been successfully applied to:

Hex
Lines of Action
Settlers of Catan
Go

Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces
good results on Carcassonne.

They don’t consider different variants.

Monte Carlo Tree Search for Carcassonne 3 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Why Monte Carlo Tree Search?

Monte Carlo Tree Search (MCTS) has been successfully applied to:

Hex
Lines of Action
Settlers of Catan
Go

Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces
good results on Carcassonne.

They don’t consider different variants.

Monte Carlo Tree Search for Carcassonne 3 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Research Objectives

Evaluating different variants of Monte Carlo Tree Search in regard to their
performance on Carcassonne.

Evaluating if the most powerful variant is capable of beating a human player.

Monte Carlo Tree Search for Carcassonne 4 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Carcassonne

Carcassonne is a tile-based board
game for between two and five players.

The board is iteratively built by
placing tiles over the course of 72
rounds.

Points are made by placing meeples
strategically.

Large state space with at least 5 · 1040
reachable positions and a game tree
with around 10192 terminal nodes
(Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/

(23.06.2022)

Monte Carlo Tree Search for Carcassonne 5 / 25

https://www.dadsgamingaddiction.com/carcassonne/


Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Carcassonne

Carcassonne is a tile-based board
game for between two and five players.

The board is iteratively built by
placing tiles over the course of 72
rounds.

Points are made by placing meeples
strategically.

Large state space with at least 5 · 1040
reachable positions and a game tree
with around 10192 terminal nodes
(Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/

(23.06.2022)

Monte Carlo Tree Search for Carcassonne 5 / 25

https://www.dadsgamingaddiction.com/carcassonne/


Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Carcassonne

Carcassonne is a tile-based board
game for between two and five players.

The board is iteratively built by
placing tiles over the course of 72
rounds.

Points are made by placing meeples
strategically.

Large state space with at least 5 · 1040
reachable positions and a game tree
with around 10192 terminal nodes
(Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/

(23.06.2022)

Monte Carlo Tree Search for Carcassonne 5 / 25

https://www.dadsgamingaddiction.com/carcassonne/


Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Carcassonne

Carcassonne is a tile-based board
game for between two and five players.

The board is iteratively built by
placing tiles over the course of 72
rounds.

Points are made by placing meeples
strategically.

Large state space with at least 5 · 1040
reachable positions and a game tree
with around 10192 terminal nodes
(Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/

(23.06.2022)

Monte Carlo Tree Search for Carcassonne 5 / 25

https://www.dadsgamingaddiction.com/carcassonne/


Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Monte Carlo Tree Search

MCTS is a method for finding optimal decisions in a given domain.

It “combines the precision of tree search with the generality of random sampling”
(Browne et al., 2012, p. 1).

This is achieved by taking random samples in the state space and building a search
tree according to the results.

Monte Carlo Tree Search for Carcassonne 6 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Monte Carlo Tree Search

MCTS is a method for finding optimal decisions in a given domain.

It “combines the precision of tree search with the generality of random sampling”
(Browne et al., 2012, p. 1).

This is achieved by taking random samples in the state space and building a search
tree according to the results.

Monte Carlo Tree Search for Carcassonne 6 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Monte Carlo Tree Search

MCTS is a method for finding optimal decisions in a given domain.

It “combines the precision of tree search with the generality of random sampling”
(Browne et al., 2012, p. 1).

This is achieved by taking random samples in the state space and building a search
tree according to the results.

Monte Carlo Tree Search for Carcassonne 6 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Training

During training, a game tree is iteratively built.

Each node has a visit count N and an expected score Q, which get updated during
training.

Each training iteration consists of four steps.

Monte Carlo Tree Search for Carcassonne 7 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Training

During training, a game tree is iteratively built.

Each node has a visit count N and an expected score Q, which get updated during
training.

Each training iteration consists of four steps.

Monte Carlo Tree Search for Carcassonne 7 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Training

During training, a game tree is iteratively built.

Each node has a visit count N and an expected score Q, which get updated during
training.

Each training iteration consists of four steps.

Monte Carlo Tree Search for Carcassonne 7 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Step 1: Selection

Traverse the game tree according to the tree
policy, which maps each node to one of its
children.

Do this until an expandable node is reached.

Image Source: James et al. (2017), p. 2

Monte Carlo Tree Search for Carcassonne 8 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Step 2: Expansion

Add at least one child node and visit that child.

Image Source: James et al. (2017), p. 2

Monte Carlo Tree Search for Carcassonne 9 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Step 3: Simulation

Simulate the game until the end with moves
decided by the default policy.

Thereby sample a score R.

The simulation can be replaced by a function
with domain-specific knowledge.

Image Source: James et al. (2017), p. 2

Monte Carlo Tree Search for Carcassonne 10 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Step 4: Backpropagation

The sampled score R is propagated back up the cho-
sen path. For each node:

N ← N + 1

Q ← Q + R−Q
N

Image Source: James et al. (2017), p. 2

Monte Carlo Tree Search for Carcassonne 11 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Practical Steps

1. Implementing Carcassonne.

2. Implementing the MCTS framework.

3. Testing and evaluating different MCTS configurations.

Monte Carlo Tree Search for Carcassonne 12 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation of Carcassonne

Implemented in Java.

Allows for MCTS variants and
humans to play Carcassonne.

The repository is publicly accessible
under https://github.com/
maxjappert/mcts_carcassonne

Monte Carlo Tree Search for Carcassonne 13 / 25

https://github.com/maxjappert/mcts_carcassonne
https://github.com/maxjappert/mcts_carcassonne


Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Game Tree

Chance nodes: Randomly drawing a tile

Placement nodes: Placing a tile

Meeple nodes: Placing a meeple

Monte Carlo Tree Search for Carcassonne 14 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Ensemble MCTS

Alternative way of modelling randomness.

k trees are built, whereby each assumes a fixed deck permutation.

After training all trees “vote” on which move to pick.

Monte Carlo Tree Search for Carcassonne 15 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Single Game Tree vs. Ensemble MCTS

⇝ Certain Ensemble MCTS configurations lead to performance increase.

Monte Carlo Tree Search for Carcassonne 16 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Degree of Exploration

All “useful” tree policies are a function of the children’s Q-value, because the game
tree should be expanded in profitable directions.

All “useful” tree policies must balance this exploitation with a degree of exploration.

⇝ Most tree policies have an exploration parameter, which determines the degree
of exploration.

Monte Carlo Tree Search for Carcassonne 17 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Degree of Exploration

All “useful” tree policies are a function of the children’s Q-value, because the game
tree should be expanded in profitable directions.

All “useful” tree policies must balance this exploitation with a degree of exploration.

⇝ Most tree policies have an exploration parameter, which determines the degree
of exploration.

Monte Carlo Tree Search for Carcassonne 17 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Degree of Exploration

All “useful” tree policies are a function of the children’s Q-value, because the game
tree should be expanded in profitable directions.

All “useful” tree policies must balance this exploitation with a degree of exploration.

⇝ Most tree policies have an exploration parameter, which determines the degree
of exploration.

Monte Carlo Tree Search for Carcassonne 17 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Degree of Exploration

⇝ Severe performance drop when exploration seizes.

Monte Carlo Tree Search for Carcassonne 18 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Tree Policies

Measured
Opponent

UCT UCT-Tuned Boltzmann ε-Greedy Dec. ε-G. Heur. MCTS Heuristic Random

UCT – 38.2% 63.9% 44.4% 72.2% 83.3% 81.1% 100.0%
UCT-Tuned 61.8% – 70.3% 51.4% 80.6% 86.1% 77.8% 100.0%
Boltzmann 36.1% 29.7% – 27.8% 81.1% 63.9% 62.9% 100.0%
ε-Greedy 55.6% 48.6% 72.2% – 86.5% 83.8% 78.4% 100.0%
Decaying ε-Greedy 27.8% 19.4% 18.9% 13.5% – 31.4% 51.4% 89.2%
Heuristic MCTS 16.7% 13.9% 36.1% 16.2% 68.6% – 59.5% 100.0%
Heuristic 18.9% 22.2% 37.1% 21.6% 48.6% 40.5% – 100.0%
Random 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.6% –

⇝ UCT-Tuned performed best.

Monte Carlo Tree Search for Carcassonne 19 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Simulation Step

Usually consists of randomly selecting moves.

Adding domain-specific knowledge can potentially improve performance.

We tested two alternatives:

Heuristic default policy
Direct heuristic evaluation

Monte Carlo Tree Search for Carcassonne 20 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Heuristic Default Policy

⇝ A heuristic-guided playout increases performance slightly, but also increases the
runtime by a factor of 30.

Monte Carlo Tree Search for Carcassonne 21 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Direct-Heuristic Evaluation

Decreases runtime per training iteration by a factor of 30 compared to using
random sampling.

Performed slightly worse than a random playout when considering a similar runtime.

Monte Carlo Tree Search for Carcassonne 22 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Evaluation: Playing against MCTS

We played six games against the strongest implementation.

It won five of those games with an average score of 95.3 to 88.3.

Monte Carlo Tree Search for Carcassonne 23 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.

Monte Carlo Tree Search for Carcassonne 24 / 25



Thank you
for your attention.


	Introduction
	Monte Carlo Tree Search
	Implementation and Evaluation
	Conclusion

