
Finding Small Counterexamples of

Expected Planner Behavior with

Hill-Climbing
Bachelor thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Research Group
https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert
Supervisors: Dr. Gabriele Röger, Augusto B. Corrêa
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Abstract

In the Automated Planning field, algorithms and systems are developed for exploring state spaces
and ultimately finding an action sequence leading from a task’s initial state to its goal. Such planning
systems may sometimes show unexpected behavior, caused by a planning task or a bug in the planner
itself. Generally speaking, finding the source of a bug tends to be easier when the cause can be
isolated or simplified. In this thesis, we tackle this problem by making PDDL and SAS+ tasks
smaller while ensuring they still invoke a certain characteristic when executed with a planner. We
implement a system that successively removes elements, such as objects, from a task and checks
whether the transformed task still fails on the planner. Elements are removed in a syntactically
consistent way, however, no semantic integrity is enforced. Our system’s design is centered around
the Fast Downward Planning System, as we re-use some of its translator modules and all test runs
are performed with Fast Downward. At the core of our system, first-choice hill-climbing is used for
optimization. Our “minimizer” takes (1) a failing planner execution command, (2) a description of
the failing characteristic and (3) the type of element to be deleted as arguments. We evaluate our
system’s functionality on the basis of three use-cases. In our most successful test runs, (1) a SAS+

task with initially 1536 operators and 184 variables is reduced to 2 operators and 2 variables and (2)
a PDDL task with initially 46 actions, 62 objects and 29 predicate symbols is reduced to 2 actions,
6 objects and 4 predicates.
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1
Introduction

For researchers and developers in the Automated Planning field, finding the source of unexpected
behavior in a planning system can be a tedious task. In this thesis, we develop an approach for
reducing the size of a planning task causing some specific behavior on a planner while making
sure the smaller instance still triggers the same behavior. Unlike the domain transformation method
action schema splitting (Areces et al. 2014), we do not preserve task semantics in our approach. Our
system (later referred to as minimizer) makes the task producing the bug smaller by removing one
randomly selected task element, e.g., an action. The planner then is executed with the transformed
task. The output generated by the execution is searched for a characteristic indicating the persistence
of the bug, such as an assertion error or a segmentation fault. If the characteristic is found, the
current version of the task is transformed again the same way. If the characteristic is not found,
another task element is randomly chosen and removed from the task and tested for the characteristic.
Our approach has similarities to QuickCheck, a tool for testing properties in Haskell programs [6].
QuickCheck generates random inputs for a program and checks whether a certain property holds for
each input. If an input violates the property, it is shrunk with the objective to find a minimal failing
input.
Our minimizer takes three arguments: (1) a command string for the planner execution causing the
bug, (2) the characteristic, which is either a string to be looked for in the output, or a file containing
the implementation of an output parser, and (3) the type of task element to be removed. For SAS+

tasks, the current version accepts operator and variable as removable task element options. For
PDDL tasks, it accepts action, object and predicate. Default deletion of a predicate symbol occurs by
replacing literals containing the predicate with the truth value. This transformation is the equivalent
to a projection [7] on all predicate symbols but the deleted one, since the parsed PDDL task is in
negation normal form [10]. There is also the option of replacing each atom containing the predicate
with truth or falsity. For the case in which we want to compare the output of one planner execution
with the output of a second planner execution, a second command string and a second characteristic
can be passed to the minimizer. When we use this option, each characteristic needs to be found in
its respective planner execution for the search to continue.
Our minimizer is implemented in Python, the source code and a manual can be found at https://
gitlab.com/galluc00/bachelor-thesis. Its design is strongly influenced by the Fast Downward Plan-
ning System [9], as some of its translator modules are re-used for PDDL parsing and task element
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transformation. We perform all test runs during development and use-case analysis with Fast Down-
ward. We demonstrate the functionality of the minimizer by testing it with three use-cases and
different running configurations. In the most significant minimization result, we are able to reduce
a SAS+ task with 1536 operators and 184 variables to a task with 2 operators and 2 variables. After
analyzing the resulting shrunk task with GDB [1], we believe it is still causing the same unexpected
behavior as the original task.
In Chapter 2, we introduce definitions for the task types accepted by the minimizer and give a brief
description of the optimization strategy. Chapter 3 describes how task transformations are done in
detail and Chapter 4 reveals how our system is implemented. In Chapter 5, we describe the selected
use-cases and show experimental results of the minimizer’s performance. Finally, we reflect on the
results and talk about potential extensions of our work in Chapter 6.



2
Background

In this chapter, we introduce relevant concepts for this thesis project. We provide a brief description
of Automated Planning and a definition of the PDDL and FDR (SAS+) tasks that are accepted by
the Fast Downward Planning System [9], which the project is based upon. Furthermore, we describe
the hill-climbing algorithm [11], which is used at the core of the minimizer.

2.1 Automated Planning
Automated Planning focuses on developing algorithms and heuristics for automatic solving of plan-
ning tasks. Planning tasks are state space search problems and can be modelled by means of an
input language. The input language defines properties of the problem, such as an initial state, a goal
and actions that lead from one state to another. The objective of planning is to find a valid action
sequence, i.e., a plan, leading from the initial state to the goal.

2.2 PDDL and FDR (SAS+) Tasks
The task minimizer implemented for this thesis uses Python modules that were developed for the
translator of the Fast Downward Planning System. This means, the PDDL variant of our minimizer
accepts the same kind of PDDL tasks Fast Downward does, which is “the non-numerical, non-

temporal fragment of PDDL 2.2” [10]. In this section, we provide formal definitions for such a
planning task. The following four definitions are from Helmert [2009] with a small modification:
wherever the term operator was used in the context of PDDL in the original paper, we use the term
action.

Definition 1 (PDDL actions). A PDDL action is a pair 〈χ, e〉, which consists of a (possibly open)

first-order formula χ called its precondition and a PDDL effect e. PDDL effects are recursively

defined by finite application of the following rules:

• A first-order literal l is a PDDL effect called a simple effect.

• If e1, . . . , en are PDDL effects, then e1 ∧ · · · ∧ en is a PDDL effect called a conjunctive effect.
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• If χ is a first-order formula and e is a PDDL effect, then χ B e is a PDDL effect called a

conditional effect.

• If v1, . . . , vk are variable symbols and e is a PDDL effect, then ∀v1 . . . vk : e is a PDDL effect

called a universally quantified effect or universal effect.

Free variables of simple effects are defined as for literals in first-order logic. Free variables of other

effects are defined by structural induction:

• free(e1 ∧ · · · ∧ en) = free(e1) ∪ · · · ∪ free(en)

• free(χ B e) = free(χ) ∪ free(e)

• free(∀v1 . . . vk : e) = free(e)\{v1, . . . , vk}

The set of free variables of a PDDL action is defined as free(〈χ, e〉) = free(χ)∪free(e). Free variables

are also called parameters of the action.

Definition 2 (PDDL axioms). A PDDL axiom is a pair 〈ϕ, ψ〉 such that ϕ is a first-order atom and

ψ is a first-order formula with free(ψ) ⊆ free(ϕ). We write the axiom 〈ϕ, ψ〉 as ϕ← ψ and call ϕ the

head and ψ the body of the axiom.

A set A of PDDL axioms is called stratifiable iff there exists a total preorder � on the predicate

symbols ofA such that for each axiom where predicate Q occurs in the head, we have P � Q for all

predicates P occurring in the body, and P ≺ Q for all predicates P occurring in a negative literal in

the translation of the body to negation normal form.

Definition 3 (PDDL tasks). A PDDL task is given by a 4-tuple Π = 〈χ0, χ?,A,O〉 with the following

components:

• χ0 is a finite set of ground atoms called the initial state.

• χ? is a closed formula called the goal formula.

• A is a finite stratified set of PDDL axioms.

• O is a finite set of PDDL actions.

Predicates occurring in the head of an axiom inA are called derived predicates. Predicates occur-

ring in the initial state or in simple effects of actions in O are called fluent predicates. The sets of

derived and fluent predicates are required to be disjoint.

Next, we provide the definition of FDR tasks. FDR tasks are an extension of the SAS+ planning
formalism [10]. They represent the type of task that is accepted by the search component of Fast
Downward, and therefore one of the types the minimizer accepts for transformations. Later, we refer
to FDR tasks simply by SAS+ tasks.

Definition 4 (Planning tasks in finite-domain representation (FDR tasks)). A planning task in finite-
domain representation (FDR task) is given by a 5-tuple Π = 〈V, s0, s?,A,O〉 with the following

components:
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• V is a finite set of state variables, where each variable v ∈ V has an associated finite domain

Dv. State variables are partitioned into fluents (affected by operators) and derived variables
(computed by evaluating axioms). The domains of derived variables must contain the default
value ⊥.

A partial variable assignment overV is a function s on some subset ofV such that s(v) ∈ Dv

wherever s(v) is defined. A partial variable assignment is called a state if it is defined for all

fluents and none of the derived variables in V. It is called an extended state if it is defined

for all variables in V. In the context of partial variable assignments, we write v = d for the

variable-value pairing 〈v, d〉 or v 7→ d.

• s0 is a state overV called the initial state.

• s? is a partial variable assignment overV called the goal.

• A is a finite set of (FDR) axioms over V. Axioms are triples 〈cond, v, d〉, where cond is a

partial variable assignment called the condition or body of the axiom, v is a derived variable

called the affected variable, and d ∈ Dv is called the derived value for v. The pair 〈v, d〉 is

called the head of the axiom.

The axiom set A is partitioned into a totally ordered set of axiom layers A1 ≺ · · · ≺ Ak

such that within the same layer, each affected variable must appear with a unique value in

all axiom heads and bodies. In other words, within the same layer, axioms with the same

affected variable but different derived values are forbidden, and if a variable appears in an

axiom head, then it may not appear with a different value in a body. This is called the layering
property.

• O is a finite set of (FDR) operators overV. An operator 〈pre, eff〉 consists of a partial variable

assignment pre overV called its precondition, and a finite set of effects eff. Effects are triples

〈cond, v, d〉, where cond is a (possibly empty) partial variable assignment called the effect
condition, v is a fluent called the affected variable, and d ∈ Dv is called the new value for v.

For axioms and effects, we commonly write cond→ v := d in place of 〈cond, v, d〉.

2.3 Hill-Climbing
The goal of our implemented minimizer is to find a smaller task than the initial one that still fulfills
some given property. We as users of the minimizer are mainly interested in the resulting task and
not in the steps taken to reach it. When the path to a solution is irrelevant, local search algorithms
can be a valid choice. In local search, only the current search node is stored and its neighborhood is
considered in the search for better candidates. The simplicity and memory-efficiency of local search
come at a price: (1) The algorithm might not find a solution, even though one exists, i.e., it is not
complete and (2) a solution is found and the algorithm terminates, despite a better solution being
available, i.e., it is not optimal.
Hill-climbing is considered the simplest variant of local search. In hill-climbing, the search process
is initiated with an initial state. Its neighborhood is then evaluated by assigning each neighboring
state a value, e.g., the estimated goal distance via a heuristic function. The most promising neighbor
becomes the new search candidate and, again, its neighbors are considered. The algorithm terminates
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when no neighbor’s evaluation is better than the current candidate’s. This may of course lead to local
optima. Algorithm 1 describes hill-climbing in pseudo-code:

Algorithm 1 Hill-Climbing
1: current ← initial candidate
2: loop
3: next ← a neighbor of current with maximal value
4: if value of next ≤ value of current then
5: return current
6: end if
7: current ← next
8: end loop

The hill-climbing algorithm we just described relies on a way to rank neighboring states by their
values and chooses the most promising one. When the number of neighbors becomes very large,
it might become infeasible to generate and store all of them, let alone rank them according to a
heuristic or objective function. For those reasons, first-choice hill-climbing was used in the task
minimizer implemented for this project. This variant of hill-climbing generates neighbors of the
current task and picks the first higher-valued neighbor encountered as the new current. In Section 4.4
of Chapter 4, we describe how we use this algorithm.



3
Task Transformations

The implemented task minimizer offers three main options to shrink a given PDDL task: deleting
actions, deleting predicate symbols and deleting objects. For SAS+ tasks, the two implemented
options are the deletion of operators and the deletion of variables. The deletion of actions in PDDL
tasks is not very complex, as the action chosen to be deleted simply can be removed from the set
of actions of the task. The same holds for operators in SAS+ tasks. On the other hand, to correctly
delete a predicate symbol, object or variable from a task, we need a more sophisticated approach.
For example, if an object with the name “box” should be removed from a PDDL task, it is not
sufficient to remove it from the set of objects of the task. If “box” still occurs in the initial state or
the goal, this can lead to incorrect behavior of a planner. In the following sections, we define how
the minimizer deletes different task elements from PDDL and SAS+ tasks. It is important to note
that task transformations performed by the minimizer do not preserve task semantics. The goal of
task transformations in the scope of this thesis project is to obtain a smaller task through deletion of
one of the described task elements.

3.1 Deletion of Actions
Since actions are not part of other task elements, their deletion is a simple process.

Definition 5 (Deletion of Actions). The deletion of action α from a given PDDL task entails the

removal of α from the set of actions of the task.

3.2 Deletion of Predicates
Wherever a predicate symbol P is a part of a greater formula, it does not make sense to simply delete
it. In that case, the atom or literal containing P needs to be replaced with > (truth) or ⊥ (falsity). By
default, the minimizer replaces a literal containing P with >. This corresponds to a projection [7]
on all predicate symbols but P, since the parsed task is in negation normal form [10]. When running
the minimizer, there are also the options of setting all atoms containing P to either > or ⊥. After
such a replacement, a method from the Fast Downward translator called simplified is called on
the entire formula the replaced literal or atom was a part of, which gets rid of redundancies such as
ϕ ∨ > ≡ > or ϕ ∧ > ≡ ϕ for formulas ϕ. The following definition is for the default case, where
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literals containing the predicate symbol to be deleted are replaced with >. The definitions for the
two other options are very similar, except that, instead of literals being replaced with >, atoms are
replaced with > or ⊥, respectively.

Definition 6 (Deletion of Predicate Symbols). The deletion of predicate symbol P from a given

PDDL task entails the following operations:

• P is removed from the set of predicates of the task.

• Each atom in the initial state of the task containing P is removed from the initial state.

• Each literal containing P in the goal formula is replaced with >.

• For each action, the following operations are performed:

– Each literal containing P in the action precondition formula is replaced with >.

– If an action’s precondition becomes ⊥, the entire action is deleted.

– Each literal containing P in the PDDL effect is replaced with >.

– If the PDDL effect is conditional, each literal containing P in the effect condition is

replaced with >.

– If the PDDL effect is conditional and its condition becomes ⊥, the entire conditional

effect becomes ⊥.

– If the entire PDDL effect becomes > or ⊥, the entire action is deleted.

• For each axiom, the following operations are performed:

– If P occurs in the head of the axiom, the entire axiom is deleted.

– Each literal containing P in the body of the axiom is replaced with >.

– If the body of the axiom becomes ⊥, the entire axiom is deleted.

– If the body of the axiom becomes >, an artificial dummy predicate with arity 0 is created

to become the new axiom body and act as a trigger for the axiom. An atom with this new

predicate is also added to the initial state of the task.

3.3 Deletion of Objects
The deletion of objects is simpler than the deletion of predicates in terms of complexity. Atoms in
the goal formula containing the object to be deleted are replaced with >.

Definition 7 (Deletion of Objects). The deletion of object ω from a given PDDL task entails the

following operations:

• ω is removed from the set of objects of the task.

• Each atom in the initial state of the task containing ω is removed from the initial state.

• Each action containing ω is deleted.

• Each atom in the goal of the task that contains ω is replaced with >.
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3.4 Deletion of Operators
The deletion of operators from SAS+ tasks can be considered identical to the deletion of PDDL
actions.

Definition 8 (Deletion of Operators). The deletion of operator o from a given SAS+ task entails the

removal of o from the set of operators of the task.

3.5 Deletion of Variables
In the implementation, variables are identified via an index. Thus, in each transformation, when a
variable with index i is deleted, we decrease the indices of all variables with index > i in the entire
task by 1.

Definition 9 (Deletion of Variables). The deletion of variable v from a given SAS+ task entails the

following operations:

• v is removed from the set of state variables of the task.

• For each mutex group, each fact containing v is removed.

• v is removed from the initial state.

• If a fact in the goal contains v, this fact is removed from the goal.

• For each operator, the following operations are performed:

– If a fact in the prevail condition contains v, it is removed from the prevail condition.

– If v is the affected variable in an effect, this effect is removed from the operator.

– If a fact in an effect precondition contains v, it is removed from the effect precondition.

– If no effect remains in the operator, the entire operator is deleted.

• For each axiom, the following operations are performed:

– If v is the affected variable of the axiom, the axiom is deleted.

– If a fact in the body of the axiom contains v, it is removed from the axiom body.



4
Implementation

The implemented task minimizer is a command-line tool written in the Python programming lan-
guage. Python is the language of choice because the translator component of the Fast Downward
Planning System is also written in Python. Thus, we are able to re-use the code for PDDL parsing
and the classes for PDDL and SAS+ tasks. We also consider Python a powerful and flexible lan-
guage; thus, personal preference undoubtedly influences the choice. The goal of this chapter is to
explain the core functionality of the program and the algorithms used.

4.1 Overview
The prerequisite to using the minimizer (in a meaningful way) is a reproducible bug on the Fast Down-
ward planner. The bug may be induced by the translate- as well as the search-component of the
planner and PDDL and SAS+ tasks are both allowed. A PDDL task must be present in two files, one
for the domain description and one for the instance description.
The string replicating the planner execution causing the bug is passed on to the minimizer as argu-
ment. The minimizer performs transformations on the provided planning task in form of successive
deletions of task elements of a specified kind, as described in Chapter 3. The type of task element to
be successively removed is another argument that is required by the program. The current version of
the minimizer supports the deletion of actions, objects and predicates for PDDL tasks and operators

and variables for SAS+ tasks. At each iteration of the task minimization, one randomly selected
task element of the specified type is removed from everywhere it is used in the task and the planning
problem is executed with the modified task, to check whether the bug is still produced. This check
is done by testing for the presence of a characteristic string in the command-line output generated
by the execution of the planner. Thus, this string is the third necessary argument needed for an ex-
ecution of the minimizer. Instead of the characteristic string, there is also the possibility to provide
the path to the implementation of a simple parser interface, parserbase.py. The ParserBase in-
terface has one method to be implemented, namely parse output string, which takes the output
string as parameter and returns a boolean. The user of the program has more flexibility in how to
process the output of the planner execution when using the parser. Another option for the user is to
provide a second execution command and a second characteristic string or parser implementation.
The condition for continuation of the search is then that each planner execution must reproduce the
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respective characteristic. The program terminates the deletion of task elements of a specific type,
when none of the remaining possible deletions leads to the characteristic(s) being reproduced.

4.2 User Interface
A correct execution call of the minimizer has the following structure:

$ python3 minimizer.py --problem PROBLEM [PROBLEM]

--characteristic CHARACTERISTIC [CHARACTERISTIC]

--delete OPTION [OPTION ...]

[--truth]

[--falsity]

[--write-summary]

• PROBLEM: The command string that replicates the bug on the planning system. A second
PROBLEM argument is interpreted as a reference planner execution command and requires a
second CHARACTERISTIC argument.

• CHARACTERISTIC: A characteristic string that should appear in the output after the execu-
tion of PROBLEM or, alternatively, the path to a Python file implementing the provided parser
interface parserbase.py. A second CHARACTERISTIC argument is interpreted as the char-
acteristic for the execution of the reference planner.

• OPTION: The specification of the task element type to be deleted in the planning task. OPTION ∈
{action, object, predicate} for PDDL tasks and OPTION ∈ {operator, variable} for SAS+ tasks.

4.3 Internal Problem Representation
At the beginning of the program execution, the program arguments are either passed to class
PDDLMinimizationProblem or SASMinimizationProblem to create an instance of the minimiza-
tion problem. These classes handle the execution and minimization of the problem and the testing
for the presence of the characteristic string. After the instantiation of the problem, the main script
minimizer.py calls the method minimize() on the minimization problem, which invokes the
minimization process on the planning task and returns the processed task. The duration of the
minimization process depends on the size and complexity of the planning task. The program ter-
minates by writing the processed planning task into a single file minimized.sas for SAS+ tasks
or into minimized-domain.pddl and minimized-problem.pddl for PDDL tasks. A simplified
overview of the classes handling the minimization problems is provided in Figure 4.1.
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<<interface>>
RunnableProblem

extract parser(path: str): Parser
has characteristic(): bool
run(): CompletedProcess

MinimizationProblem ReferencePlanner

PDDLMinimizationProblem

minimize(): Task

SASMinimizationProblem

minimize(): SASTask

Figure 4.1: Simplified overview of the minimization problem classes.

4.4 Task Transformations
The minimize() method will sequentially repeat the minimization process for each OPTION of
delete provided with the parameters. As mentioned in Section 2.3, first-choice hill-climbing [11]
was used as optimization algorithm. The following pseudo-code describes the algorithm:

Algorithm 2 First-Choice Hill-Climbing
1: current ← initial candidate
2: loop
3: for succ ∈ successors of current do
4: if succ has characteristic then
5: current ← succ
6: break
7: end if
8: end for
9: if none of the successors had the characteristic then

10: return current
11: end if
12: end loop

First-choice hill-climbing (Algorithm 2) generates one successor at a time in random order by delet-
ing one task element of the specified type (line 3). As soon as a successor replicates the bug, it
becomes the new current and its successors are considered, deepening the search level (lines 5 and
6, followed by a restart at line 3). If the for-loop makes it through all successors without any of them
replicating the bug (line 9), then the last one to do so is returned and the search terminates (line 10).
The reason for the choice of this variant of hill-climbing was the lack of a practical heuristic to (effi-
ciently) distinguish the quality of successor tasks. The design and implementation of such a heuristic
could be a meaningful extension to the minimizer, as it may speed up the minimization process or
improve the quality of the results.
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4.4.1 Transformation of PDDL Tasks
The transformation of PDDL tasks was implemented using the visitor pattern [8]. This program-
ming pattern allows adding functionality to a class externally, without adding much code to the class
itself. Instead, the class to be extended implements simply one additional method called accept,
which takes a visitor object as argument. One separate visitor class is implemented for each type of
task transformation. Visitor classes have methods with each the responsibility of transforming one
specific task element (actions, conditions, ...) or task element parts (action effects, condition sub-
types, ...). The accept method of a task element is only responsible for calling the correct visit
method of the received visitor with the task element itself as argument. Nested expressions, e.g., in
action or effect conditions, make use of recursive calls of visit methods in order to perform the
correct transformations at the lowest level (literals). With this pattern, the modification of task ele-
ments is fully implemented in the visitor classes, which keeps the code clean. Figure 4.2 illustrates
the implemented visitor classes and shows their dependencies. It is worth mentioning that these
dependencies are neither strictly of the nature inherits-from nor implements, because in Python these
constructs are not automatically enforced. Rather, each visitor class implements the functions that
are needed for its transformations and implementing the visitors in this hierarchy allowed for a more
rigorous engineering process.

<<interface>>
TaskElementVisitor

visit task(task: Task): Task
visit object(obj: TypedObject): TypedObject
visit predicate(predicate: Predicate): Predicate
visit function(function: Function): Function
visit condition(condition: Condition): Condition
visit condition falsity(falsity: Falsity): Falsity
visit condition truth(truth: Truth): Truth
visit condition conjunction(conjunction: Conjunction): Conjunction
visit condition disjunction(disjunction: Disjunction): Disjunction
visit condition universal(universal condition: UniversalCondition): UniversalCondition
visit condition existential(existential condition: ExistentialCondition): ExistentialCondition
visit condition atom(atom: Atom): Atom
visit condition negated atom(negated atom: NegatedAtom): NegatedAtom
visit action(action: Action): Action
visit action effect(effect: Effect): Effect
visit axiom(axiom: Axiom): Axiom

TaskElementEraseActionVisitor
action name: str

TaskElementErasePredicateVisitor
predicate name: str

TaskElementEraseObjectVisitor
object name: str

TaskElementErasePredicateTrueLiteralVisitor
predicate name: str

TaskElementErasePredicateTrueAtomVisitor
predicate name: str

TaskElementErasePredicateFalseAtomVisitor
predicate name: str

Figure 4.2: Simplified visualization of the dependencies between visitor classes.

Task transformations by visitors are invoked by the get successors method of one of the sub-
classes of the Transformer interface. The only thing get successors does, is randomly choosing
the next candidate to be deleted and calling the task’s accept method with a visitor initialized with
the name of the candidate. Figure 4.3 illustrates the transformer classes and their dependencies.
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<<interface>>
Transformer

get successors(task: Task): Generator

ActionEraser

get successors(task: Task): Generator

LiteralTruthReplacer

get successors(task: Task): Generator

AtomTruthReplacer

get successors(task: Task): Generator

AtomFalsityReplacer

get successors(task: Task): Generator

ObjectEraser

get successors(task: Task): Generator

Figure 4.3: Overview of PDDL transformer classes.

4.4.2 Transformation of SAS+ Tasks
Since SAS+ tasks have a much simpler structure than PDDL tasks, there is no need for a sophisti-
cated transformation method such as the visitor pattern mentioned in Section 4.4.1. Instead, trans-
formations are directly performed from outside the SASTask objects by a single transformmethod
implemented for each subtype of the SASTransformer interface. Deleting an operator is as trivial
as removing operator o from the list of operators and otherwise leave the task unchanged. Deleting
a variable from a SAS+ task takes more effort, as the variable must be removed from all occurrences
in mutexes, the initial state, the goal, operators and axioms. Additionally, if variable with index
i is removed from the task, in all occurrences of variables with indices > i, a decrement of their
indices by 1 must occur for the transformation to be correct. Figure 4.4 illustrates the transformers
implemented for SAS+ task transformation.

<<interface>>
SASTransformer

get successors(sas task: SASTask): Generator

SASOperatorEraser

get successors(sas task: SASTask): Generator
transform(sas task: SASTask, op name: str): SASTask

SASVariableEraser

get successors(sas task: SASTask): Generator
transform(sas task: SASTask, var: int): SASTask

Figure 4.4: Overview of SAS+ transformer classes.

4.5 Other Modules
There are two additional modules of the implementation worth mentioning, namely:

• The pddl writermodule, which contains procedures for writing a PDDL task into a domain
and a problem file.

• The sas reader module, which contains functions for parsing a SAS+ file in order to obtain
an instance of SASTask.



5
Use-Cases

The functionality of the implemented task minimizer is illustrated in this chapter, based on three
use-cases. These use-cases are a selection from bug-reports of Fast Downward users and from the
planner’s official list of issues1. The fact that these bugs are considered resolved at the time of
writing of this report is irrelevant, since the only goal is to reproduce them on the respective version
of the planner. We executed the test runs of the minimizer on a laptop computer with the following
specifications:

• Operating system: Ubuntu 20.04

• Processor: Intel i5-5300U, 2 cores, 2.3 GHz base frequency

• Memory: 11.4 GiB

We believe memory bottlenecks occurred in some runs, which would explain longer running times,
e.g., with delete option predicate (truth) in Table 5.1. We chose to ignore predicate deletion options
truth and falsity in test runs where all three PDDL transformation options were used, to keep the
number of test runs reasonable. The averages and standard deviations are computed from 5 runs of
each configuration. Since we observed a high volatility in running times even with a fixed random-
ization seed, we used the fixed seed 42 for all test runs. For a cleaner appearance, throughout this
entire chapter, full file paths (or parts of them) are aliased with /path/to/.

5.1 Use-Case 1: Issue 335
This issue was used to develop and test the PDDL version of the task minimizer, despite it be-
ing the most outdated one. It has been reported in May 2012 and was marked as resolved in Au-
gust 2014 [3]. The planning task triggering the bug is described in the files cntr-domain.pddl
and cntr-problem.pddl. The task requires the ADL fragment of PDDL and the initially parsed
task instance features 46 actions, 62 objects and 29 predicate symbols. On the revision of Fast
Downward with commit hash 09ccef5fd[...] (from 04/08/2014), which is the parent com-

1 http://issues.fast-downward.org/
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mit of the one where the bug was fixed, the following error can be reproduced when executing
src/translate/translate.py with the two above mentioned files:

Traceback (most recent call last):

File "translate/translate.py", line 677, in <module>

main()

File "translate/translate.py", line 667, in main

sas_task = pddl_to_sas(task)

File "translate/translate.py", line 540, in pddl_to_sas

implied_facts)

File "translate/translate.py", line 422, in translate_task

actions, axioms, goals)

File "/path/to/downward/src/translate/axiom_rules.py", line 11, in handle_axioms

axioms = compute_negative_axioms(axioms_by_atom, axiom_literals)

File "/path/to/downward/src/translate/axiom_rules.py", line 158, in compute_negative_axioms

new_axioms += negate(axioms_by_atom[literal.positive()])

File "/path/to/downward/src/translate/axiom_rules.py", line 168, in negate

assert len(condition) > 0, "Negated axiom impossible; cannot deal with that"

AssertionError: Negated axiom impossible; cannot deal with that

The last line of the error message (AssertionError: Negated axiom impossible; cannot deal with

that) can be used as the characteristic string for the minimizer. In Table 5.1, we illustrate the average
running times and the resulting minimized task elements for a set of configurations. The minimizer
command we use for the tests (with the respective delete option) is the following:

python3 /path/to/minimizer.py --problem "python3.7 /path/to/downward/src/translate/translate.py /path/to/

cntr-domain.pddl /path/to/cntr-problem.pddl" --characteristic "AssertionError: Negated axiom

impossible; cannot deal with that" --delete predicate object action

time per option before→ after
delete option(s) total time action object predicate actions objects predicates

action 251.087 ± 6.869s 251.087 ± 6.870s 46→ 4 62→ 62 29→ 29
object 83.424 ± 1.422s 83.424 ± 1.422s 46→ 10 62→ 8 29→ 29

predicate 427.928 ± 123.118s 427.928 ± 123.118s 46→ 41 62→ 62 29→ 9
predicate (truth) 1594.830 ± 233.849s 1594.830 ± 233.849s 46→ 5 62→ 62 29→ 6

predicate (falsity) 124.378 ± 12.732s 124.377 ± 12.731s 46→ 11 62→ 62 29→ 9
action, object, predicate 333.605 ± 18.559s 246.430 ± 14.675s 84.850 ± 3.892s 2.325 ± 0.127s 46→ 4 62→ 13 29→ 4
action, predicate, object 313.533 ± 7.165s 263.337 ± 10.606s 7.118 ± 0.798s 43.077 ± 4.134s 46→ 2 62→ 6 29→ 4
object, action, predicate 89.107 ± 3.503s 0.819 ± 0.074s 85.816 ± 3.349s 2.472 ± 0.389s 46→ 2 62→ 8 29→ 4
object, predicate, action 94.215 ± 11.503s 0.531 ± 0.210s 90.811 ± 10.593s 2.872 ± 0.754s 46→ 2 62→ 8 29→ 5
predicate, action, object 552.037 ± 46.078s 324.719 ± 28.436s 8.549 ± 0.600s 218.769 ± 18.650s 46→ 2 62→ 7 29→ 9
predicate, object, action 255.320 ± 25.537s 0.372 ± 0.028s 34.736 ± 0.914s 220.212 ± 24.814s 46→ 2 62→ 7 29→ 9

Table 5.1: Average results from 5 runs of each selected configuration of the minimizer with the task
from issue 335.

Between runs with the same delete option configuration, we did not observe different minimization
outcomes. The results do not make it obvious, which order of delete options is ideal. If we define the
sum of the remaining number of task elements as a metric for the minimization success, e.g., 21 for
action, object, predicate, we can discuss the tradeoff between the total minimization duration and
how minimized the task becomes. For this use-case, delete option configuration action, predicate,

object yields the best overall minimization result (12, according to the just defined metric) at an
average running time of ∼314s. However, configuration object, action, predicate yields a slightly
worse minimization result (14), but at less than a third of the time, ∼89s on average. At this point,
it is up to the user of the minimizer to decide which of these properties is more important. Overall,
it is pleasing to see how much the size of the task could be reduced by the minimizer, while still
triggering the same bug.
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5.2 Use-Case 2: Segmentation Fault

with operator-counting heuristic and state equation contraints
In August 2020, a bug report with the above title was issued in the Fast Downward public mailing
list [2]. The author implemented a Petri Net translation from PDDL and obtained a segmentation
fault from Fast Downward’s search component when using the following two heuristics options with
the A? algorithm:

• operatorcounting(constraint generators=[state equation constraints()])

• operatorcounting(constraint generators=[state equation constraints(),lmcut constraints()])

In this use-case analysis, we only consider the first of the two heuristics options to reproduce the
bug and test the minimizer. With the provided SAS+ file output petri sokobanp01.sas, we are
able to reproduce the bug. The initially parsed SAS+ task instance contains 1536 operators and
184 variables. Since this bug was issued on 01/08/2020, the most recent Fast Downward release
(20.06) can be used to reproduce it. Specifically, we are using the Git tag release-20.06.0 with
commit hash 3a27ea77f[...] from 26/07/2020 for the experiments. In order to run this use-case’s
configuration, an LP solver is required. We use IBM’s CPLEX for all test runs and experiments.
Executing the Fast Downward search component with the problem from above yields the following
output:

[t=0.000440241s, 45108 KB] reading input...

[t=0.0233119s, 46304 KB] done reading input!

[t=0.0252104s, 47280 KB] Initializing constraints from state equation.

[t=0.0392132s, 51380 KB] Building successor generator...done!

[t=0.0426499s, 51380 KB] peak memory difference for successor generator creation: 0 KB

[t=0.0426796s, 51380 KB] time for successor generation creation: 0.00317523s

[t=0.0427079s, 51380 KB] Variables: 184

[t=0.0427337s, 51380 KB] FactPairs: 368

[t=0.0427552s, 51380 KB] Bytes per state: 24

[t=0.0428768s, 51380 KB] Conducting best first search with reopening closed nodes, (real) bound = 2147483647

[t=0.0543639s, 53500 KB] New best heuristic value for operatorcounting(constraint_generators = list(

state_equation_constraints)): 1

[t=0.0544395s, 53500 KB] g=0, 1 evaluated, 0 expanded

[t=0.0544747s, 53500 KB] f = 1, 1 evaluated, 0 expanded

[t=0.0545164s, 53500 KB] Initial heuristic value for operatorcounting(constraint_generators = list(

state_equation_constraints)): 1

[t=0.0545561s, 53500 KB] pruning method: none

Peak memory: 53500 KB

caught signal 11 -- exiting

Segmentation fault (core dumped)

Again, we can use the last line of the error output (Segmentation fault (core dumped)) as character-
istic string for the minimizer.
The following command is used for our experiment runs:

python3 /path/to/minimizer.py --problem "/path/to/downward/builds/release/bin/downward --search ’astar(

operatorcounting(constraint_generators=[state_equation_constraints()]))’ --internal-plan-file sas_plan

< /path/to/output_petri_sokobanp01.sas" --characteristic "Segmentation fault (core dumped)" --delete

variable operator

It turns out that after a few runs of this configuration and operator as delete option, we are able to
observe what appear to be non-deterministic results for the minimized task: after some runs, there
are 18 operators remaining and after some, there are 35. After narrowing down where these two
types of runs start to differ, we are able to observe the following error output:
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[t=0.000508709s, 45112 KB] reading input...

[t=0.0125704s, 45788 KB] done reading input!

[t=0.0144455s, 46848 KB] Initializing constraints from state equation.

[t=0.0222302s, 49184 KB] Building successor generator...done!

[t=0.0237845s, 49184 KB] peak memory difference for successor generator creation: 0 KB

[t=0.0238248s, 49184 KB] time for successor generation creation: 0.00135768s

[t=0.0238734s, 49184 KB] Variables: 184

[t=0.0238988s, 49184 KB] FactPairs: 368

[t=0.0239504s, 49184 KB] Bytes per state: 24

[t=0.0240734s, 49184 KB] Conducting best first search with reopening closed nodes, (real) bound = 2147483647

realloc(): invalid pointer

Peak memory: 50364 KB

caught signal 6 -- exiting

Aborted (core dumped)

We believe this behavior is caused by a race condition, in which one of the signals comes from
the LP solver and the other one from the system and the one reaching the planner first causes the
error. This would explain the non-deterministic nature of the result. However, we do not investigate
this issue any further for this project. Instead, we treat these varying minimization results like the
recorded running times and take their averages and standard deviations, as can be seen in Table 5.2.
While all four running configurations in Table 5.2 show pleasing results in the minimization of the
task elements, configuration variable, operator stands out, reducing the initial SAS+ task to only 2
variables and 2 operators. To investigate whether the minimized task with 2 variables and 2 operators
still triggers the same bug as the original task, we can run the particular Fast Downward version with
GDB, The GNU Project Debugger [1], separately, and compare the outputs. The fact that these
outputs are nearly identical gives us reason to believe that the same bug is still triggered with the
minimized task.
Another possibility would be to treat both error outputs as qualifying characteristic strings, which
can be achieved implementing the parser interface the following way, for example:

from parserbase import ParserBase

class Parser(ParserBase):

def parse_output_string(self, output_string) -> bool:

cond1 = "caught signal 11 -- exiting" in output_string

cond2 = "caught signal 6 -- exiting" in output_string

return cond1 or cond2

That way, one would likely always obtain the same number of remaining operators after minimiza-
tion.

time per option before→ after
delete option(s) total time operator variable operators variables

operator 478.437 ± 13.088s 478.437 ± 13.088s 1536→ 24.8 ± 9.3 184→ 184
variable 58.908 ± 2.208s 58.908 ± 2.209s 1536→ 432 184→ 2

operator, variable 487.156 ± 25.638s 451.564 ± 22.753s 35.591 ± 3.306s 1536→ 25.6 ± 10.4 184→ 12.2 ± 6.9
variable, operator 138.751 ± 4.799s 78.822 ± 1.286s 59.928 ± 5.866s 1536→ 2 184→ 2

Table 5.2: Average results from 5 runs of each configuration of the minimizer with the task from
the Segmentation Fault bug report.
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5.3 Use-Case 3: Issue 736
This use-case from September 2017 is another issue borrowed from the official Fast Downward is-
sue list [4]. Due to a bug in the translator, the attached planning task with files domain.pddl and
problem.pddl is claimed to be unsolvable, despite there being an existing solution. For this use-
case, we make use of the available option of passing a second planner to the minimizer with its sepa-
rate characteristic. The idea is to pass a recent version of Fast Downward (commit e9c2370e6[...]
from 27/07/2020) as reference planner, since it finds a plan for the task. Each transformed task in-
stance then has to remain unsolvable with the first planner while at the same time remain solvable
with the second one. The characteristic strings we want to look for in transformed task instances can
be set to “Search stopped without finding a solution.” for the bug inducing version of the planner
and “Solution found.” for the recent one.
We use the following command for our experiment runs:

python3 /path/to/minimizer.py --problem "/path/to/downward/./fast-downward.py /path/to/domain736.pddl /path/

to/problem736.pddl --search ’astar(blind())’" "/path/to/downward_20.06/./fast-downward.py /path/to/

domain736.pddl /path/to/problem736.pddl --search ’astar(blind())’" --characteristic "Search stopped

without finding a solution." "Solution found." --delete predicate object action

For the more common case, where no working version of the same planner is available, any other
planner, for which is known that it solves the task, could be used as the reference planner. We only
tested the minimizer with Fast Downward. Table 5.3 illustrates the running times and minimization
results for a set of running configurations and the two-planner setup described above.

time per option before→ after
delete option(s) total time action object predicate actions objects predicates

action 0.836 ± 0.012s 0.836 ± 0.012s 3→ 3 5→ 5 6→ 6
object 1.492 ± 0.064s 1.492 ± 0.064s 3→ 3 5→ 5 6→ 6

predicate 2.753 ± 0.066s 2.753 ± 0.066s 3→ 3 5→ 5 6→ 3
predicate (truth) 2.734 ± 0.025s 2.734 ± 0.025s 3→ 3 5→ 5 6→ 3

predicate (falsity) 1.807 ± 0.027s 1.807 ± 0.028s 3→ 3 5→ 5 6→ 6
action, object, predicate 5.031 ± 0.088s 0.868 ± 0.012s 1.425 ± 0.029s 2.737 ± 0.065s 3→ 3 5→ 5 6→ 3
action, predicate, object 5.461 ± 0.119s 0.854 ± 0.042s 1.933 ± 0.036s 2.673 ± 0.060s 3→ 3 5→ 3 6→ 3
object, action, predicate 5.123 ± 0.235s 0.929 ± 0.165s 1.462 ± 0.066s 2.731 ± 0.062s 3→ 3 5→ 5 6→ 3
object, predicate, action 5.181 ± 0.170s 1.030 ± 0.088s 1.445 ± 0.025s 2.705 ± 0.085s 3→ 1 5→ 5 6→ 3
predicate, action, object 5.648 ± 0.119s 1.016 ± 0.020s 1.900 ± 0.039s 2.732 ± 0.071s 3→ 1 5→ 3 6→ 3
predicate, object, action 5.434 ± 0.106s 0.933 ± 0.034s 1.874 ± 0.020s 2.627 ± 0.078s 3→ 1 5→ 3 6→ 3

Table 5.3: Average results from 5 runs of each selected configuration of the minimizer with the task
from issue 736.

Between runs with the same delete option configuration, we did not observe different minimization
outcomes. When comparing the configurations with all three delete options, it becomes evident that
the order of the options determines the level of minimization. If we again evaluate the minimization
outcomes by the sum of remaining actions, objects and predicates, the two runs with predicate as
first argument become the winning ones. The predicate, object, action run becomes the overall
winner, due to a slightly shorter average runtime between the two.
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Conclusions

The goal of this thesis project was to implement a planning task minimizer for finding small in-
stances of PDDL or SAS+ tasks causing some unexpected behavior on a planning system. The
search for smaller task instances in the implemented minimizer is realized by successive random
selection and removal of a task element of one of a few specific types, which are actions, objects and
predicates for PDDL tasks and operators and variables for SAS+ tasks. Task elements are removed
in a syntactically consistent way from every occurrence in the task. However, no semantic integrity
of tasks is guaranteed after this minimization process.

6.1 Evaluation of Use-Cases
We illustrate the functionality of the minimizer in Chapter 5 on the basis of three use-cases featuring
planning tasks causing incorrect or unexpected results on the Fast Downward Planning System. In
Section 5.1, we introduce the first tested use-case, which initially is made up of, among others, 46
actions, 62 objects and 29 predicate symbols. According to the measurements in Table 5.1, the
overall best result in terms of the number of remaining task elements is achieved with delete option
order action, predicate, object, shrinking the task to 2 actions, 6 objects and 4 predicates. In use-
case 2, we run the minimizer on a SAS+ planning problem initially containing, among others, 1536
operators and 184 variables. From the results presented in Table 5.2, we can see that, in terms of the
greatest reduction of task elements, delete option order variable, operator does the best job. Runs
with this configuration reduce the amount of operators as well as the amount of variables to 2 in
the remaining task. In use-case 3, the best runs (by the same metric as above) are the two whose
delete options start with predicate, followed by object and action in arbitrary order (Table 5.3). In
these runs, the PDDL task initially containing, among others, 3 actions, 5 objects and 6 predicates is
reduced to 1 action, 3 objects and 3 predicates. There are two additional remarks we want to make
regarding the results of the use-cases:

1. The current version of the minimizer is not able to determine an optimal order of delete options
by itself. The best order of options, as we called it above, solely represents the apparent best
order for a specific use-case, compared to test runs with different configurations. Not all
possible configurations were tested.
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2. We choose not to compare the average runtimes of different runs in this thesis, because we
want to keep the focus on the minimization results. We do believe there are improvements that
could be made to the minimizer that may decrease search time or improve task minimization
or both. We discuss ideas for future work in Section 6.2.

6.2 Future Work
There are multiple ways the task minimizer could be extended to improve its functionality. Currently,
the search is rather uninformed, as it uses first-choice hill-climbing. Some kind of meta-heuristic
could be used to estimate the size of successor tasks, so the smallest one could be picked each
iteration. An idea for this meta-heuristic would be to count, for example, which object appears
most times in the current task. This object would be the next one to be removed from the task by
the transformer. Such a meta-heuristic could also eliminate the need for the user to specify which
task element should be deleted – the minimizer could choose the best option each iteration by itself.
Implementing additional delete options like axioms or mutexes or finding other ways to parameterize
the search space could also be useful extensions. Currently, planner runs have to terminate before
the output can be parsed. This is a waste of time if the user is interested in some planner output
that is available early on. In the scope of this thesis, we have not investigated whether there are
ways to parse generated output on the fly. If this can be achieved, the execution could be terminated
prematurely, as soon as the characteristic is found. Finally, re-implementing the minimizer in a
compiled language such as C++ could improve performance significantly as well.
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