Oxiflex - A Constraint Programming Solver for MiniZinc written in Rust

Gianluca Klimmer

University of Basel

15.07.2024

Rust

Constraint Programming Solver for MiniZinc written in Rust

Rust

Constraint Programming Solver for MiniZinc written in Rust

00000

Rust

Rust

Performance

- Performance
 - ullet ightarrow no abstractions, no garbage collector, no JIT

00000

Possible Languages

- Performance
 - ullet \rightarrow no abstractions, no garbage collector, no JIT
- Correctness
 - Prevent bugs

- Performance
 - ullet ightarrow no abstractions, no garbage collector, no JIT
- Correctness
 - Prevent bugs
- Ease of use
 - Library manager Cargo

- Performance
 - ullet ightarrow no abstractions, no garbage collector, no JIT
- Correctness
 - Prevent bugs
- Ease of use
 - Library manager Cargo
 - Functional Haskell similarities

- Performance
 - ullet ightarrow no abstractions, no garbage collector, no JIT
- Correctness
 - Prevent bugs
- Ease of use
 - Library manager Cargo
 - Functional Haskell similarities
 - Enums

- Performance
 - ullet ightarrow no abstractions, no garbage collector, no JIT
- Correctness
 - Prevent bugs
- Ease of use
 - Library manager Cargo
 - Functional Haskell similarities
 - Enums
- Learn Rust

Constraint Network

Constraint Network

- Variables
 - Values to choose from
- Constraints
 - Rules for choosing values

Simple Example

Variables:

$$w \in \{1, 2, 3, 4\}$$
$$y \in \{1, 2, 3, 4\}$$
$$x \in \{1, 2, 3\}$$
$$z \in \{1, 2, 3\}$$

Constraints:

$$w = 2 \cdot x$$
$$w < z$$
$$y > z$$

Constraint Programming

```
var 1..4: w;

var 1..4: y;

var 1..3: x;

var 1..3: z;

constraint w = 2 \cdot x;

constraint w < z;

constraint y > z;
```

Constraint Programming

```
var 1..4: w;

var 1..4: y;

var 1..3: x;

var 1..3: z;

constraint w = 2 \cdot x;

constraint w < z;

constraint y > z;

solve satisfy;
```

Constraint Programming

```
var 1..4: w;
var 1..4: y;
var 1..3: x;
var 1..3: z;
constraint w = 2 \cdot x;
constraint w < z;
constraint y > z;
solve satisfy;
→ Mini7inc!
```

MiniZinc

FlatZinc

```
array [1..2] of int: x_introduced_2_ = [1,-2];
array [1..2] of int: x_introduced_3_ = [1,-1];
array [1..2] of int: x_introduced_4_ = [-1,1];
var 2..4: w:: output_var;
var 1..4: y:: output_var;
var 1..3: x:: output_var;
var 1..3: z:: output_var;
constraint int_lin_eq(x_introduced_2_,[w,x],0);
constraint int_lin_le(x_introduced_3_,[w,z],-1);
constraint int_lin_le(x_introduced_4_,[y,z],-1);
solve satisfy:
```

FlatZinc

```
array [1..2] of int: x_introduced_2_ = [1,-2];
array [1..2] of int: x_{introduced_3} = [1,-1];
array [1..2] of int: x_introduced_4_ = [-1,1];
var 2..4: w:: output_var;
var 1..4: y:: output_var;
var 1..3: x:: output_var;
var 1..3: z:: output_var;
constraint int_lin_eq(\times_introduced_2_,[w,\times],0);
constraint int_lin_le(x_introduced_3_,[w,z],-1);
constraint int_lin_le(x_introduced_4_,[y,z],-1);
solve satisfy:
```

FlatZinc constraint example

```
predicate int_lin_eq(array [int] of int: as,
array [int] of var int: bs,
int: c)
```

FlatZinc constraint example

```
predicate <a href="int_lin_eq">int_lin_eq</a> (array [int] of int: as, array [int] of var int: bs, int: c)
```

$$c = \sum_{i} \mathsf{as}[i] \cdot \mathsf{bs}[i]$$

FlatZinc constraint example

$$c = \sum_{i} \operatorname{as}[i] \cdot \operatorname{bs}[i]$$

$$w = 2 \cdot x$$

```
array [1..2] of int: x_{introduced_2} = [1,-2];
. . .
constraint int_lin_eq(x_introduced_2_,[w,x],0);
```

$$c = \sum_i \mathsf{as}[i] \cdot \mathsf{bs}[i]$$

. . .

$$c = \sum_{i} \operatorname{as}[i] \cdot \operatorname{bs}[i]$$

$$0 = \sum_{i} \mathsf{x_introduced_2_[i]} \cdot [\mathsf{w_x}][i]$$

...

$$c = \sum_{i} \operatorname{as}[i] \cdot \operatorname{bs}[i]$$

$$0 = \sum_i \mathbf{x}_\mathsf{introduced}_2_[i] \cdot [\mathbf{w}, \mathbf{x}][i]$$

$$0 = \sum_{i} [1,-2][i] \cdot [w,x][i]$$

...

$$c = \sum_{i} \operatorname{as}[i] \cdot \operatorname{bs}[i]$$

$$0 = \sum_i \mathbf{x}_\mathsf{introduced}_2_[i] \cdot [\mathbf{w}, \mathbf{x}][i]$$

$$0 = \sum_{i} [1,-2][i] \cdot [\mathsf{w},\mathsf{x}][i]$$

$$0 = 1 \cdot w - 2 \cdot x$$

. . .

$$c = \sum_{i} \operatorname{as}[i] \cdot \operatorname{bs}[i]$$

$$0 = \sum_i \mathbf{x}_\mathsf{introduced}_2_[i] \cdot [\mathbf{w}, \mathbf{x}][i]$$

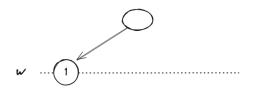
$$0 = \sum_{i} [1,-2][i] \cdot [\mathsf{w},\mathsf{x}][i]$$

$$0 = 1 \cdot w - 2 \cdot x$$

$$w = 2 \cdot x$$

Constraint Programming Solver for MiniZinc written in Rust

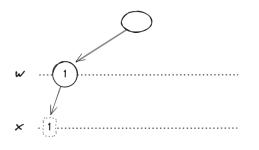
Backtracking



Constraints:

$$w = 2 * x$$
$$w < z$$

×

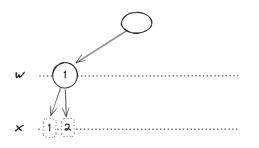


Constraints:

$$W = 2 * X$$

y

2

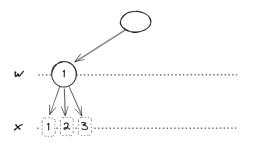


Constraints:

$$w = 2 * x$$
$$w < z$$

y

z

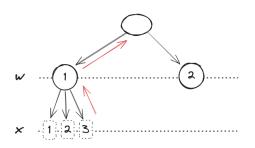


Constraints:

$$W = 2 * X$$

y

z

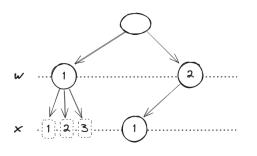


Constraints:

$$w = 2 * x$$

y

z

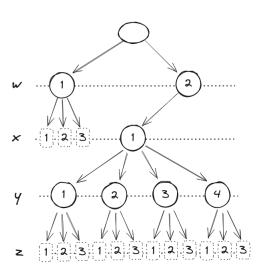


Constraints:

$$W = 2 * X$$

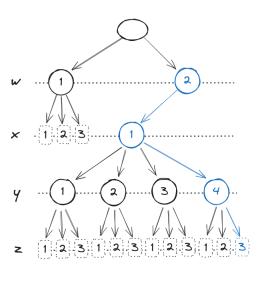
y

2



Constraints:

$$w = 2 * x$$



Constraints:

$$W = 2 * x$$

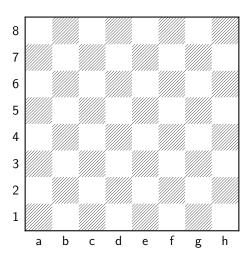
Solution:

$$w = 2$$

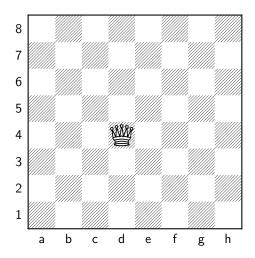
$$y = L$$

Can we do better?

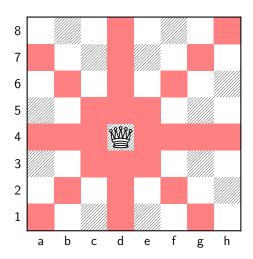
Chessboard



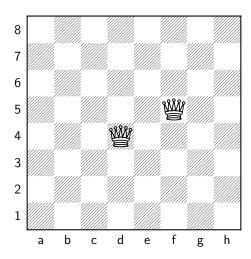
One Queen



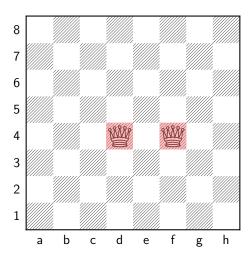
One Queen



Two Queens



Two Queens



Scalable

- Scalable
 - 8-Queens \rightarrow N-Queens

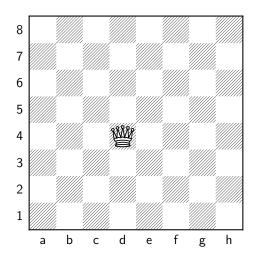
- Scalable
 - 8-Queens \rightarrow N-Queens
 - $n \times n$ chessboard

- Scalable
 - 8-Queens → N-Queens
 - n × n chessboard n Queens

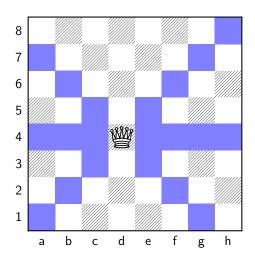
Inference

Forward Checking

Forward Checking Example

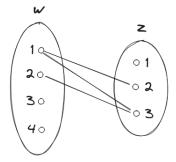


Forward Checking Example

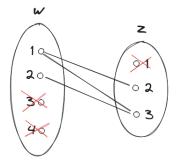


Arc Consistency

Arc Consistency Example



Arc Consistency Example



Inference

- Inference
 - Forward Checking

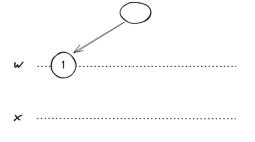
- Inference
 - Forward Checking
 - Arc consistency

- Inference
 - Forward Checking
 - Arc consistency
 - AC-1

- Inference
 - Forward Checking
 - Arc consistency
 - AC-1
 - AC-3

- Inference
 - Forward Checking
 - Arc consistency
 - AC-1
 - AC-3
- Dynamic Variable Ordering

Dynamic Variable Ordering

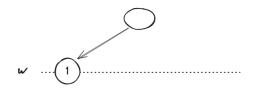


Constraints:

$$w = 2 * x$$

Z

Dynamic Variable Ordering

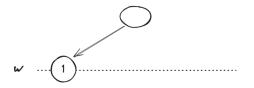


Constraints:

$$w = 2 * x$$

Z

Dynamic Variable Ordering

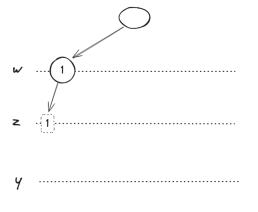


Constraints:

$$W = 2 * X$$

Z

Dynamic Variable Ordering



Constraints:

$$W = 2 * X$$

Oxiflex

Demo

FlatZinc builtins

- FlatZinc builtins
 - IntLinEq
 - IntLinLe
 - IntLinNe

- FlatZinc builtins
 - IntLinEq
 - IntLinLe
 - IntLinNe
- No floating points

- FlatZinc builtins
 - IntLinEq
 - IntLinLe
 - IntLinNe
- No floating points
- No minimize / maximize

- FlatZinc builtins
 - IntLinEq
 - IntLinLe
 - IntLinNe
- No floating points
- No minimize / maximize
- Only one solution

Benchmarks

Queens Time

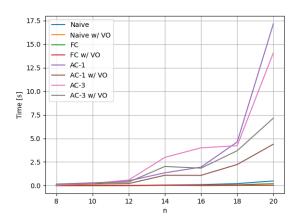


Figure: Averaged over > 10 runs

Queens Time

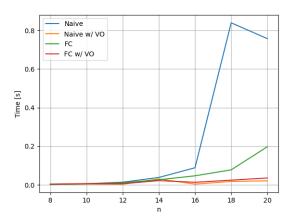


Figure: Averaged over > 10 runs

Queens Iterations

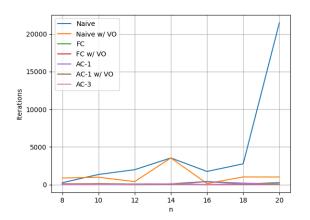


Figure: Averaged over 5 runs

Queens Iterations

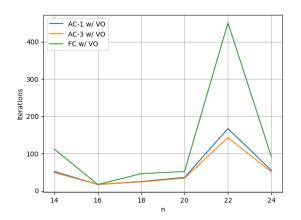


Figure: Averaged over 5 runs

Slow Convergence

Benchmarks 0000●00000

Slow Convergence for small n

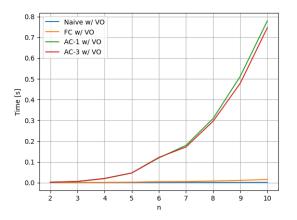


Figure: Averaged over > 10 runs

Slow Convergence for small n

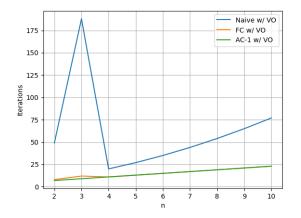
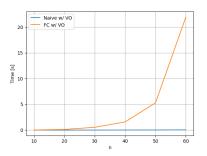


Figure: Averaged over 5 runs

Slow Convergence Comparison



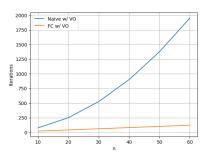


Figure: Averaged over > 10 runs

Figure: Averaged over 5 runs

Oxiflex vs Gecode

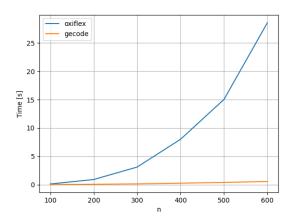


Figure: Averaged over > 10 runs

Conclusion

The end