
Non-Orthogonal Factored Transition Systems for Merge-and-Shrink

Luka Obser <luka.obser@unibas.ch>

Department of Mathematics and Computer Science, University of Basel

November 6, 2023



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Contents

Background

Planning Tasks
Transition Systems
Heuristics
Merge-and-Shrink Heuristics
Cost Partitioning

Clone Transformation

Adhoc Cloning

Precomputed Cloning

Conclusion

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 2



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Planning Tasks

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 3



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Planning Tasks

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 4



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Transition Systems

BBA: Car and cat are in location B,
dog is in location A.

Action are driving an empty car to A or
B, driving the cat or the dog to A or B,
and driving both to A or B.

Driving without an animal costs 1,
driving with one animal costs 2, and
driving with both costs 10.

AAA

BBABAA

BAB

BBB

ABA

AAB

ABB

1

2

2

10

1

1

2

2

1

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 5



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Solving Transition Systems

Red: Plan of cost 5. Bring the cat, go
back for the dog and bring it too.

Blue: Plan of cost 10. Take both cat
and dog on the first trip.

AAA

BBABAA

BAB

BBB

ABA

AAB

ABB

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 6



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Heuristics

Explicitly searching the full transition system is very expensive.

If we knew how close a state is to a goal state, we could find the best path easily.

Heuristics estimate the distance of a state to a goal state.

Admissible heuristics never overestimate the distance of a state to a goal state.

A∗ search using an admissible heuristic finds optimal solutions.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 7



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Abstraction Heuristics

Solving a simplified version
(abstraction) of a transition system
yields an admissible heuristic.

Abstractions combine states of the
original system into one in the abstract
system.

How can we generate good abstractions
automatically?

∗AA

∗AB

∗BB

∗BA

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 8



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Factored Transition Systems

Definition

A factored transition system is a tuple F = ⟨Θ1, . . . ,Θn⟩ of transition systems where
each transition system has the same set of labels and the same label cost function.

A B
∗ to B

∗ to A
A B

cat to B
both to B

dog to ∗
empty to ∗

cat to A
both to A

dog to ∗
empty to ∗

A B

dog to B
both to B

cat to ∗
empty to ∗

dog to A
both to A

cat to ∗
empty to ∗

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 9



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

A B
∗ to B

∗ to A

A B

cat to B
both to B

dog to ∗
empty to ∗

cat to A
both to A

dog to ∗
empty to ∗

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 10



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

AA

BB AB

BA

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 11



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

AA

BB AB

BA

cat to B
both to B

dog to B
empty to B

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 12



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

AA

BB AB

BA

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 13



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

We abstract (shrink) a factor according
to some shrink strategy.

AA

BB AB

BA

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 14



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Merge-and-Shrink Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

We abstract (shrink) a factor according
to some shrink strategy.

∗A ∗B

cat to B
both to B

dog to ∗
empty to ∗

cat to A
both to A

dog to ∗
empty to ∗

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 15



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Abstraction Heuristics

We begin with the atomic factors.

We combine (merge) two of them
according to some merge strategy.

We abstract (shrink) a factor according
to some shrink strategy.

We repeat these until we terminate
according to some general strategy.

∗AA

∗AB

∗BB

∗BA

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 16



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cost Partitioning

What if we are left with more than one factor?

By distributing the cost of the operators among multiple abstractions we can add
up the heuristic values obtained from each one admissibly!

This may be better than taking the maximum.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 17



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

We might want to merge a factor with two different ones but not all three of them.

What if we simply “clone” a factor? Could a combination of merging and shrinking
yield an inadmissible heuristic?

Merging clones with each other creates spurious states and transitions.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 18



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

s

t

u

ss

tt

tu

ut

uu

st

su

ts

us

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 19



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

How problematic are the spurious states and transitions?

Not very. Heuristic based on transition systems with spurious states and transitions
are still admissible.

Paths including spurious states and transitions have non-spurious counterparts that
use the same order of labels.

Spurious states are only reachable from the initial state by labels which also lead to
all non-spurious counterparts.

Transitions from spurious states only exist if their non-spurious counterparts have
transitions with the same label.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 20



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

s

t

u

ss

tt

tu

ut

uu

st

su

ts

us

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 21



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

s

t

u

ss

tt

tu

ut

uu

st

su

ts

us

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 22



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Cloning a Factor

s

t

u

ss

tt

tu

ut

uu

st

su

ts

us

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 23



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

When should we clone a factor? Only ever useful if we merge the clone shortly after.

Which factor do we clone? Use the merge strategy to determine candidates.

Score based merge selection assigns scores to potential merges and tiebreaks if we
have multiple equally good merges.

What if we perform all of the equally good merges?

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 24



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

When should we clone a factor? Only ever useful if we merge the clone shortly after.

Which factor do we clone? Use the merge strategy to determine candidates.

Score based merge selection assigns scores to potential merges and tiebreaks if we
have multiple equally good merges.

What if we perform all of the equally good merges?

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 24



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

When should we clone a factor? Only ever useful if we merge the clone shortly after.

Which factor do we clone? Use the merge strategy to determine candidates.

Score based merge selection assigns scores to potential merges and tiebreaks if we
have multiple equally good merges.

What if we perform all of the equally good merges?

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 24



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

When should we clone a factor? Only ever useful if we merge the clone shortly after.

Which factor do we clone? Use the merge strategy to determine candidates.

Score based merge selection assigns scores to potential merges and tiebreaks if we
have multiple equally good merges.

What if we perform all of the equally good merges?

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 24



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 25



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

The more we clone, the worse the performance. How come?

Merge selection too greedy. Clones are not being utilized in a planned manner.

If we do not prohibit the same merge it might use up our full budget.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 26



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

The more we clone, the worse the performance. How come?

Merge selection too greedy. Clones are not being utilized in a planned manner.

If we do not prohibit the same merge it might use up our full budget.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 26



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Adhoc Cloning

The more we clone, the worse the performance. How come?

Merge selection too greedy. Clones are not being utilized in a planned manner.

If we do not prohibit the same merge it might use up our full budget.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 26



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Precomputed Cloning

How can we use cloning in a less greedy way?

Create multiple small transition systems containing overlapping variables and
combine them using cost partitioning.

How do we determine which variables to combine?

Use neighborhoods in the causal graph of the task. Vary depth of subgraphs, which
edges to include, and combine clusters to adhere to cloning limits.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 27



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Precomputed Cloning

How can we use cloning in a less greedy way?

Create multiple small transition systems containing overlapping variables and
combine them using cost partitioning.

How do we determine which variables to combine?

Use neighborhoods in the causal graph of the task. Vary depth of subgraphs, which
edges to include, and combine clusters to adhere to cloning limits.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 27



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Precomputed Cloning

How can we use cloning in a less greedy way?

Create multiple small transition systems containing overlapping variables and
combine them using cost partitioning.

How do we determine which variables to combine?

Use neighborhoods in the causal graph of the task. Vary depth of subgraphs, which
edges to include, and combine clusters to adhere to cloning limits.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 27



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Precomputed Cloning

How can we use cloning in a less greedy way?

Create multiple small transition systems containing overlapping variables and
combine them using cost partitioning.

How do we determine which variables to combine?

Use neighborhoods in the causal graph of the task. Vary depth of subgraphs, which
edges to include, and combine clusters to adhere to cloning limits.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 27



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Precomputed Cloning vs. State-of-the-Art SCC

SCC Precomputed Cloning

Coverage 901 831
Construction out of Time 27 253
Construction out of Memory 17 16
Search out of Time 508 15
Search out of Memory 356 692
Score Expansions 505.08 408.09
Score Search Time 740.12 709.74
Score Total Time 637.19 586.74

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 28



Contents Background Clone Transformation Adhoc Cloning Precomputed Cloning Conclusion

Conclusion

Cloning allows for more flexibility in creating heuristics using the merge-and-shrink
framework.

Adhoc cloning can be improved with better scoring functions or new merge
strategies.

Precomputed cloning is a more promising approach. Choosing good subsets of state
variables is an interesting topic for future work.

Non-Orthogonal Factored Transition Systems for Merge-and-Shrink 29



Questions?

luka.obser@unibas.ch


	Contents
	Background
	Clone Transformation
	Adhoc Cloning
	Precomputed Cloning
	Conclusion

