University
of Basel

NA

>/|\/
X

4

\/
zaN
N\

Time Unrolling Heuristics

Master Thesis

Faculty of Science
Department of Mathematics and Computer Science
Artificial Intelligence
http://ai.cs.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Florian Pommerening

Philipp Oldenburg
philipp.oldenburg@stud.unibas.ch
13-061-064

03.03.2018

Contents

1 Introduction

2 Background

3 Time Unrolling

4 Implementation

4.1 Implementation with fixed amount of time steps
4.2 Implementation with dynamic amount of time steps

4.3 Optimizations . .

4.3.1 Removing dead states
4.3.2 Introducing shared variables

5 Experiments

5.1 Static number of time steps
5.1.1 Initial heuristic value

5.1.2 Coverage

5.2 Dynamic number of time steps L.
5.2.1 Initial heuristic value

5.2.2 Coverage
6 Future Work
7 Conclusion

A Appendix

12

25
25
25
25
25
25

27
27
28
32
33
35
36

38

39

40

Acknowledgments

First I would like to thank Florian Pommerening for his constructive feedback.
Without his feedback this thesis would not be at the current level of quality. Sec-
ondly I like to thank my friends Simon Wallny and Marc Schéfer for a multitude
of insightful discussions and my family, especially my mom, for supporting me
during the last six months. Further credit is due to Professor Malte Helmert for
offering me to do my Master Thesis in the Al research group of the University of
Basel. Last but not least special thanks goes to sciCORE — the center for scien-
tific computing at the University of Basel — for letting me conduct experiments
on their grid.

Abstract

Estimating cheapest plan costs with the help of network flows is an established
technique. Plans and network flows are already very similar, however network
flows can differ from plans in the presence of cycles. If a transition system
contains cycles, flows might be composed of multiple disconnected parts. This
discrepancy can make the cheapest plan estimation worse.

One idea to get rid of the cycles works by introducing time steps. For every time
step the states of a transition system are copied. Transitions will be changed,
so that they connect states only with states of the next time step, which ensures
that there are no cycles.

It turned out, that by applying this idea to multiple transitions systems, network
flows of the individual transition systems can be synchronized via the time steps
to get a new kind of heuristic, that will also be discussed in this thesis.

1 Introduction

Classical planning problems can be solved via the A* algorithm with a heuristic
as guidance. A certain type of heuristic is the flow heuristic (e.g. van den Briel
et al. (2007)), which tries to estimate cheapest goal distances via the cheapest
flow. Flows can be thought of as ways to transport one unit from the initial state
to goal states. Usually flow heuristics can not work directly on the transition
system of the planning task, as they are usually too big. For this reason they
are often combined with an abstraction which is able to reduce the transition
system size, while still preserving all plans. The estimation from cheapest flow
to cheapest plan works because a flow can be seen as a relaxed version of plan,
which in turn also means that the flow heuristic is admissible. The reason why
a flow can be seen as a relaxed plan is that for every plan there exists a flow,
however the other direction is not given in general. If we would want to have
the perfect estimation, we would enforce that for every flow there is also a plan,
or if we just want to make the correspondence stricter, we could eliminate the
cases where flows do not correspond to plan. This can either be achieved by
altering the definition of flows to make them more like plans or we restrict the
cases where they behave differently than plans. The approach that we will take
is the later one.

Consider the abstract transition system 77 in Figure 1 (note that the characters
are operators and the numbers are flow values along the transitions). It is
obvious that there is no plan that corresponds to this flow, because the flow that
goes along the self loop is isolated. Now this might not seem like a problem,
because we are searching for the cheapest flows which do not have flow values
along cycles.

This however becomes meaningful when we want to combine the information
of multiple abstract transition systems, which can be done by finding flows for
the individual transition systems which share the same summed flow for each
operator. Consider a second abstract transition system 75 in Figure 1. We can
see that there is a cheap synchronized flow that exploits the fact that there is
a cycle in 7y, which then in turn leads to a synchronized flow that does not
correspond to any plan because of the isolated flow along the self loop in 7;.

‘ () @ b(0)
)| 7 | a(0)
start @ start H

Figure 1: Depicts two abstract transition systems and a synchronized flow which
does not correspond to a plan due to the isolated flow along the self loop in 7;.

The idea that is presented in this thesis is based on introducing time steps to
the transition systems to remove cycles, to avoid that they are exploited by
synchronized flows. For a time unrolling of a transition systems the states are
copied, so that every original state is present in every time point. The transitions
now move along in time connecting the states they previously connected. Figure

2 shows the resulting transition systems when introducing 2 time steps. There is
no cycle anymore that can be exploited, which leads to a cheapest synchronized
flow with higher cost (also depicted in Figure 2), furthermore for the cheapest
synchronized flow there might now be a corresponding plan of same cost (which
means that it could lead to a perfect cheapest plan cost estimation).

Time=0 Time=1 Time =2

Time unrolled 73

Time unrolled 75 @

o
start —>

Figure 2: Depicts time unrolled transition systems. All cycles are gone which
results in more expensive cheapest synchronized flow.

Normally a synchronized flow synchronizes the summed flow for each operator.
But if we look at the figure above it appears to be natural to synchronize the
summed flow for each operator for every time step. This is in fact possible
without losing the connection that there is a synchronized flow for every plan
of same cost and also might lead to better heuristic estimates as synchronizing
for each time step is stricter than synchronizing over all time steps.

There is however a disadvantage of the time unrolling. In our example we have
unrolled with 2 time steps. The resulting transition system only contain plans
that are at most of length 2, because transitions move in time. This holds the
danger that the cheapest plan of the original transition is no longer contained
which in turn might make the heuristical guidance not admissible anymore.
This problem can be tackled by introducing a new type of time unrolling, that
copies transitions of the original transitions (cycles included) into the last time
layer. This technique is depicted in Figure 3. Note how we are again introducing
cycles, however the cheapest synchronized flow stays the same, but only if we
synchronize the summed flows for every time step.

In this thesis we will introduce heuristics that use the time unrolling with and
without repetition and combine it with searching for cheapest flows that are
synchronized for each time step. We will conduct experiments of the postulated
heuristics for the case where the abstractions are the atomic projections.

Time =10 Time=1 Time = 2

Time unrolled 77

Figure 3: Depicts time unrolled transition systems with repetitions in the last
time layer. Cycles got introduced however without getting exploited if the
summed flows are synchronized for each time step.

2 Background

We work with SAS' tasks, that are in transition normal form (TNF) (Pom-
merening and Helmert, 2015). Tt is possible to efficiently transform every SAS™
task into one which is equivalent and in TNF. A planning task II is a tuple
(V,0, sy, sg, cost), where V is a set of variables and each variable v € V has
its domain D,. A fact is a pair, where the first element is a variable and the
second element is one of the variable’s domain values. States are set of facts
with the condition that every variable occurs exactly once. Partial states are
subsets of states. wvars is a function that maps a partial state s to a set of all
first elements of the tuples in s. Whereas s(var) yields the second element of the
tuple in s, that has var as its first element. Let s’ be another partial state, then
s C &' if s(var) = s'(var) for every var € vars(s). O is a set of operators and
each operator o € O has a set of preconditions pre(o) and a set of effects eff{0),
both being partial states. An operator o is applicable in a state s if pre(o) C s.
Applying operator o in state s leads to a state s, written o(s) = s’, where
efflo) C s’ and s’ agrees with s on all variables that are not in vars(eff(0)).
As already mentioned we will consider only SAS™ tasks, that are in TNF, i.e.
vars(eff(o)) = vars(pre(o)) for every operator o and the goal state s¢ is, as well
as the initial state sy, an actual state (not a partial state). The function cost
maps every o € O to a non-negative real number. II; denotes (V, O, s, sg, cost)
for every state s of II.

The transition system T induced by planning task IT = (V, O, sy, sq, cost) is
a tuple (S, O, cost, T, sr,Sqg). S is the set of possible states, i.e. one state for
every valuation of the variables in V (according to the domain of each variable).
The set T contains a transition (s,o,s’) for all s,s’ € S if o is applicable in
s and o(s) = s’. The set S¢ contains the goal states, i.e. only sg. A path
is a tuple of operators (op,...,0;) that can be applied in order to the initial
state so that in every step the respective operator is applicable. 7, denotes
the transition system induced by II;. A path induces the following state path
(sr,00(81),...y01(...00((sy)...)). Plans are paths that have to end in the goal
state after applying the last operator. The cost of a path is the sum of the in-
dividual operator costs. For all states s € S we define the length of the shortest
paths to s as d*(s), if there is no path to s then d*(s) = co. A state s is called
dead if it cannot be reached from the initial state or the goal state cannot be
reached from s.

To see the concepts used on an specific problem instance we use a running ex-
ample, namely a problem instance of a TNF version of the miconic domain (the
original miconic domain can be found in optimal tracks of the IPC 2000), it is

defined as g = (V, O, sy, sg, cost) where

V = {lift-at, boarded, served},
O = {up, down, board, depart},
pre(up) = {(lift-at, 0)}, eff(up) = {(lift-at, 1)},
pre(down) = {(lift-at, 1)}, eff(down) = {(lift-at,0)},
pre(board) = {(lift-at, 1), (boarded, 0)}, eff(board) = {(lift-at, 1), (boarded, 1)},
pre(depart) = {(lift-at, 0), (boarded, 1), (served,0)},
eff(depart) = {(lift-at,0), (boarded, 0), (served, 1)},
sy = {(lift-at, 0), (boarded, 0), (served, 0)},
s = {(lift-at,0), (boarded, 0), (served, 1)},
cost(o) =1Vo € O.

With Trg we depict the corresponding induced transition system (see Figure
4).

The idea is that there is one passenger in the first floor, that wants to get to
ground level. An elevator is ready at ground level. The operators are moving the
elevator up and down, boarding and departing. There are a few technicalities,
apart from obvious conditions. The passenger can only depart once the elevator
picked him up and is at ground level again. Boarding is only possible from the
first (initial) floor and departing is only possible on ground level.

TrRE

Figure 4: Transition system Trp of the running example task. Note how the
passenger can board again after departure, this technicality however won’t be
of any interest for us. The cheapest plan is (up, board, down, depart) with cost
of 4.

Definition 1. Given two transition systems T, T' and a set of paths (plans) P
of T, we say that T’ preserves paths (plans) P of T if p is a path (plan) in T’
and has same cost, for all p € P. T' preserves paths (plans) of T if all paths
(plans) of T are preserved.

A heuristic maps every state of a given transition system to a non-negative real
number or co. The perfect heuristic h* maps a state s to the cost of a cheapest
path from s to the goal state, if there is no path the heuristic is co. We say that
a heuristic is admissible if the value for every state s is equal to or smaller than
h*.

We define an abstraction mapping « as a mapping of a set of states to a subset
of states. Given a transition system 7 = (S, O, cost, T, sr,Sq), the induced

abstract transition system is defined as T = (S, O, cost, T, s¢,S&), where
S* ={a(s)|s € S}, T = {{a(s),0,a(s"))| for all (s,0,s") € T}, s¢ = a(s;) and
s& ={a(s)|s € Sg}.

Theorem 1 (e.g. Helmert et al. (2008)). Given a planning task I, its transition
system T and an abstraction mapping «. Then any plan of T is also a plan in

Te.

An atomic projection «, is an abstraction mapping that maps multiple states to
the same state if they agree on the value of variable v. See Figure 5 for atomic
projections of the transition system of our running example.

ﬁgﬂfﬂf, T}g&aar{irzd T}%agrvcd
board up board
depart down up
down
up down board depart depart
board
tart board - 4ot tart
star depart star down StAT up
down

Figure 5: Depicts all three atomic projections.

The next concept is called network flow. A network flow describes how to get one
unit from the initial state to a set of goal states and we will use it to formulate
an LP. The idea is that by finding the most cost efficient way of getting the
unit across we also get an estimate on how costly a cheapest plan is. We will
however call network flows just flows for convenience.

Given a transition system 7 = (S, 0, cost, T, s1,Sg) with Sg = {s&,..., sk}
and goal variables g = {g1,...,gr}- A flow F is a mapping from TUg to the non-
negative real numbers that has to fulfill the flow conditions, which is described
in the following. Let in(s) = {(s’,0,s) € T|lo € O and s’ € S} for all s € S be
the incoming transitions of s and out(s) = {(s,0,s') € T|o € O and s’ € S} for
all s € § the outgoing transitions of s. The flow conditions are defined as:

VseS: Z F(t) — Z F(t)=[s=si]—[s€ Sc]gs and

teout(s) t€in(s)

x

where [] denotes the Iverson bracket and g, is 0 if s ¢ Sg and g, if s = sg.
The cost of F is defined as cost(F) =3>_,_ ; , syer F(t) - cost(o).

The following theorem will make a link between plans and flows, which is nec-
essary to relate the problem of finding cheap plans to finding cheap flows.

Theorem 2. Given a transition system T = (S, O, cost, T, sy, Sqg) with Sg =
{s&,...,sL} and goal variables g = {g1,...,gx}. Then there exists a flow for
every plan of T with the same cost.

10

Proof. Givenaplanm : (01,...,0;) of T with corresponding state path (s, ..., s;)
and the corresponding transitions T = {(sg, 01, 81), ..., (Si—1,01, 81)). Consider
the mapping M : T'Ug — RT that is defined as M(t) = Y, o[t = '] for all
t €T and M(g,) =1if s; = s% and 0 otherwise for all x € {1,...,k}. We will
now check the flow conditions of M:

VseS: Z Z[t:t’]— Z Z[tzt']:[s:sl]—[seSg]-gs and

teout(s) t'€T tein(s) V€T

x

First of all the goal variable condition is true because there is exactly one goal
variable that is 1 and all the others are 0. Note that 3, .. 2perlt =
'] is equal to the number of occurrences of outgoing transitions of s in T.
Ytein(s) 2verlt = 1] analogously is equal to the number of occurrences of in-
coming transitions of s in T'.

Given any state s € S we know that there is a transition of out(s) at the start
of T iff s = sg, there is a pair of a transition in in(s) and a transition in out(s)
inTifs=s; forallie{l,...,1 —1} and a transition of in(s) at the end of
T iff s € Sg. Furthermore there are no other transitions of s in T' apart from
those. Therefore the condition holds for s.

For every o € 7 there is a transition in T which means that } -, , oys ves M ()
just adds up to the occurrences of o in . Therefore we also know that cost(M) =
Zt:(s,o,s’)6T|s,s’€S M(t) ' COSt(O) = ZOEO(Zt:<s,o,S’>|s,S’ES M(t)) ! COSt(O) =
cost(m). O

As already mentioned we want to use flows for estimating the cost of plans. To
do this we define the following flow heuristic.

Definition 2. Given a planning task I1: (V, O, sy, sg, cost), its transition sys-
tem T = (S, 0, cost, T, s, Sq) and a transition system T'. The flow heuristic
h;;ow(s) is then defined as the cost of a minimum flow of T'. If there is no
minimum flow of T', due to the fact that no flow exists, the heuristic is oo,
which also means that it is not possible to reach the goal.

Theorem 3. Given a planning task 11 : (V, O, sy, sq, cost), its transition system
T and a transition system T' which preserves at least one cheapest plan of T .
hﬁow(s) is admissible.

Proof. With Theorem 2 we know that there exists a flow in 7’ for one of the
cheapest paths from s to sg with the same cost. As the heuristic value is the
cost of the cheapest flow it either is equal to the cheapest path cost flow or to the
cost of a flow which is even cheaper, which makes it an admissible heuristic. [

11

3 Time Unrolling

Next we are going to introduce the time unrolling which will be the core of this
thesis, as it allows us to get rid of cycles in transition systems.

Definition 3. A time unrolling (TU) 7, is a mapping that removes cycles in
transition systems, by introducing n time steps. Given a transition system T =
(8,0, cost, T, s1,Sq), the induced time unrolled transition system is defined as
T =(8™,0, cost, T™, s, S, where

S§™ ={st|ls €S and t € {0...n}} with time(s;) =t,

T7™ = {(s1,0,8't1)| for all (s,0,5") € T and t € {0...n — 1}},
sp" = sro and

Si={s¢| for allt € {0...n} and s € Sg}.

Figure 6 depicts the transition system of an atomic projection induced by time
unrolling with 2 time steps. We can see that all cycles are gone, however we
can see that only paths of length 2 are preserved, because transitions move in
time and there are only 2 time steps. We group states and transitions into time
layers as labeled.

(Tre™)™
board

/\ depart @
up
oy, Dy,
OO
U board

depart

start

1. time layer 2. time layer 3. time layer
Figure 6: Shows time unrolling of atomic projection of variable lift-at.

In order to prove the admissibility of following heuristics the path preserving
property of the time unrolling will be proven next.

Theorem 4. Given a planning task 11, its transition system T and a time
unrolling mapping 7,. Then any plan of T, which has a length smaller than or
equal to n is also a plan in T™ = (S™, O, cost, T™, s, SG").

Proof. Let m = (o1,...,0;) be an arbitrary plan in 7 of length | < n, with
corresponding state path (sg,...,s;). We will now show that = is a path
in 7™ with state path ((sg)o, ..., (s;);) via induction over all subpaths. Let
e = (01,...,0,) be a subpath of 7 of length x.

Basis: 7 is a path in T™ with state path {(so)o)-
As 7y is a plan of T we know that s; € S¢. This also means that s;» € S7r.

12

Therefore the plan with length 0 is a plan in 77". Additionally ((so)o) is the
state path of mg in 7™ as (sg)o is the initial state.

Inductive step: If 7, is a path in T™ with state path {(So)o,- .., (Sz)z), then
Tpt1 18 a path in T™ with state path ((50)o, - - -, (Sz41)z+1)-

After applying all operators until o, of 7,1 we already reached s, in T and
($2)z iIn T™. As we know that 0,41 is applicable in s, (as 7,41 is a path) we
know that there is a transition (s, 0541, 8+1) in 7. Therefore we also have
the transition ¢ = (($z)x, 0x+1, (Sz4+1)z+1) In T (note that this is only true,
because x +1 <1 < n). As 7, is a path in 7™ we also know that 7,41 is path
of T™ because of the existence of ¢ whose start state is (s,),. Additionally the
state path of my 1 in T is ((s0)os - - -, (Set1)at1)-

By mathematical induction we now know that after applying all operators of m
in 7™ the state (s;); is reached and this is also by definition a goal state as s;
is a goal state of 7. This means that 7 is not only a path but also a plan in
T O

The first newly presented heuristic is based on time unrolling.

Definition 4. Given a planning task I1 : (V, 0, sy, sq, cost) and its transition
system T, an abstraction mapping o and a time unrolling mapping T, we define

the time unrolling heuristic hXY to be hEZﬂ (s).

The time unrolling heuristic is admissible if the n of the time unrolling is bigger
than the shortest length of the cheapest plans, as then both the abstraction and
the time unrolling mapping preserve at least one cheapest plan (see Theorem 1
and 4).

The length of a cheapest plan is smaller than or equal to the product over the
domain sizes of all variables. This means that it is always possible to set n
high enough to make the heuristic admissible, but this makes the computation
exponential in general.

The idea of the time unrolling with repetition (TUR) is to introduce all transi-
tions of the original transition system after the last time layer (this might lead
to cycles in the last time layer), so that it becomes possible to find flows that
correspond to plans of arbitrary length.

Definition 5. Given a transition system T = (S, O, cost, T, s, S¢c) and the time
unrolled transition system T™ = (S™,0, cost, T™, s, 5). A TUR 1] is a
mapping that removes cycles in transition systems in the first n+1 time layers,
by introducing n time steps and furthermore copies the transitions of the orig-
inal transition system into the last time layer. The induced time unrolled and
repeated transition system is defined as T™n = (S™, O, cost, T™ UT", s7,SE),
where
T" = {{(sp,0,8n)|for all (s,0,s') € T}

We will first show the path preserving property, to guarantee admissibility of
the heuristic that is based on TUR.

Theorem 5. Given a TUR 7, with n time steps and any transition system T .
Every plan of T is also a plan in Tn.

13

Proof. Let m; = (01,...,0;) be an arbitrary plan in T of length I, with corre-
sponding state path (so,...,s;). We will now show that ; is a path in 77 with
state path ((s0)o,---» (Sn)ns (Snt1)ns - -+, (S1)n), via induction over the length .

Basis: 7y, is a path in T ™ with state path ((50)o, ..., (sk)x) for allk € {1,...,n}.
Consider a time unrolling 7,, (with the same amount of time steps as 7). We
know that 7™ and 77 are the same transition system, apart from the addi-
tional transitions in 77, which means that every path in 77 is also a path in
T (with identical state paths). If we additionally take Theorem 4 into con-
sideration we know that the basis holds.

Inductive step: If 7, is a path in T where ((50)0, - - - (Sn)ns (Sna1)ns - - - » (S2)n)
is the corresponding state path, then w41 is a path in T with state path
<(SO)O> e (Sn)'m (Sn+1)n7 RS (Sw+1)n> fOT' all z > n.

After applying all operators until o, of 7 we already reached s, in T and (s;)n
in 77». As we know that o, is applicable in s, (as 7, is a path) we know that
there is a transition (s, 04, Sz+1) in 7. Therefore we also got the transition
t = {(Sz)n, 0 (Sz4+1)n) in T™. As 7, is a path in 7™ we also know that m, 4,
is path of 7™, because of the existence of ¢ whose start state is (sz)n. Addi-
tionally the state path of m, 1 in 77 18 ((80)0, -« (Sn)ns (Snt1)ny -+ s (Sz4+1)n)
(see end state of t).

By mathematical induction we now know that after applying all operators of m;
in 77n we are in (s;), and this is also by definition a goal state as s is a goal
state of 7. This means that 7; is not only a path but also a plan in 77». [

We define the TUR heuristic as a flow heuristic.

Definition 6. Given a planning task I1 : (V, 0, sy, sq, cost) and its transition
system T, an abstraction mapping o and a TUR 1) the TUR heuristic hg;%R 18
defined as h‘(ﬂEZ})Tn (s).

Because TURs preserve all paths no matter how many time steps are used h! ZR
is admissible in all cases.

We want to be able to combine the information of multiple time unrolled abstract
transition systems. This leads us to the more general idea of t-synchronizable
transition systems.

Definition 7. Given a transition system T with state set S. T is n times time
synchronizable, if for every state s € S with d*(s) < n all paths to s have length
d*(s).

Note that if a transition system is n times time synchronizable, we know that
for every state s € S with d*(s) < n the outgoing transitions end in a state s’
with d*(s") = d*(s) + 1, because if that wouldn’t be the case, then there would
be shorter or longer paths to s’ than the shortest paths, which contradicts with
T being n times time synchronizable.

Given an n times time synchronizable transition system, we say that a state s
is in the k-th time layer if d*(s) = k. Analogously a transition is in the k-th
time layer if its start state is in the k-th time layer.

We will now show that time unrolled transition systems are time synchronizable.

14

Theorem 6. If a transition system T is induced by a TU or TUR with n time
steps, it is n times time synchronizable.

Proof. If a transition system 7 is induced by a TU or TUR with n time steps,
we know that for any state s with d*(s) < n it holds that all paths to s have
length time(s), as for states with time(s) < n it holds that they can only be
reached by states of the previous time layer and the initial state is in the first
time layer. O

The idea behind time synchronizability is that if a transition system is n times
time synchronizable we know that every transition that can be reached within
n steps from the initial state can only be the n-th transition of a path or plan.
We can use this information to synchronize the flow of several transition systems.

Given a set T of several abstract transition systems, that are n times time syn-
chronizable and a plan 7 of the original transition system with corresponding
flows (see Theorem 2 for details). From the equations of the state equation
heuristic (Pommerening et al. (2014)) we already know that the sum of flows of
transitions with same operator have to be equal (note that all flows originate
from the same plan and thus the operator counts are equal). As the transition
systems of T are n times time synchronizable we can additionally guarantee
the operator counts within each of the first n time layers are equal (instead of
summing them up over all time layers). This follows from the fact that these
sums are either one or zero depending on whether an operator was used in the
according time step. Therefore the time synchronization conditions not only
guarantee that the same amount of operators are used, but also that they are
used in the same time steps up until n.

With the notion of a time synchronized flow we will be able to combine in-
formation of multiple synchronizable transition systems and use the described
synchronization technique.

Given a set of transition systems 7" = {7*,...,7*}, that are at least n times
time synchronizable, and the corresponding goal variable sets g' with i €
{1,...,k} and T% = (S, O, cost, T, 5%, S4). Let T, be the union of the transi-
tion sets and g,, the union of the goal variable sets. A n times time synchronized
flow F;Lr is a function T, U g, — RT that maps transitions and goal variables
to the non-negative real numbers and has three types of conditions.

First of all FI7 has to fulfill the flow conditions of 7 = {T,..., T*}. Next we
want to synchronize the flow of an operator in a single time step, for which we
define the operator time flow of operator o and time ¢ in transition system 7
for all i € {1,...,k} as

otflow; (T") = Y FET(#).
t'=(s,0,s")€T"
5,5’ €8?
d*(s')=t

The operator time flow after time step t for operator o otflow, " (T*) is defined

analogously.
The flow per operator and time steps can be synchronized for the first n time

15

steps with the time synchronization conditions, which are defined as follows

otflow (T") = - - - = otflow] (T*)
foralloe O and allt € {1,...,n}.

The flow of the remaining time steps will only be synchronized with sums over
the remaining time steps. The summed operator flow conditions are

Otﬂow(?"(Tl) S OtﬂOU)(?n(Tk)
for all o € O.

The summed flow sflow of FT is defined as

Z Z otflouf,

o€ te{l,...,n}

it will be required for later proofs.
We furthermore define ot flow;! = ot flow;!(T?) for all i € {1,...,k} and
ot flow>™ analogously. Finally the cost of F7 is defined as

cost(FT) = Z otflow, - cost(o) + Z otflow,™ - cost (o).

0€0,te{l,...,n} o€

Additionally we define an n times time synchronized integer flow as an n times
time synchronized flow that only maps to non-negative integers. If we only talk
about a time synchronized flow we mean a n times time synchronized flow where
n is equal to the minimum number for that holds that every transition system
in 7T is n times time synchronizable.

The notion of time synchronized flows will be used in the following heuristic.

Definition 8. Given a planning task 1 = (V, O, sy, sa, cost) with transition sys-
tem T = (S, 0, cost, T,s1,5q), a set of transition systems T = {T*,..., T*},
that are at least n times time synchronizable. The n times time synchronized
flow heuristic h (s) is equal to the cost of the cheapest FT .

n-ts-flow

To show when time synchronized flow heuristics are admissible in certain cases,
we show that time synchronized flows have an existence property similar to the
existence property of normal flows.

Theorem 7. Given a transition system T and a set of transition systems T =
{TH, ... ,Tk'}, that are at least n times time synchronizable and preserve plans
P of T, the corresponding goal variable sets g* with i € {1,...,k} and T* =
(84,0, cost, T, s, SE). Let T, be the union of the transition sets and g,, the
union of the goal variable sets.

For every plan m = (o01,...,0;) in P there is a j times time synchronized flow
of T with the same cost for all j € {0,...,n}.

Proof. We know that m is also a plan in the transition systems in 7. There
are flows F' = {F' ..., F*} in 7 (as described in Theorem 2) for corresponding
transition systems in 7. With these we define a mapping M : T, Ug, — RT
with M(t) = Fi(t) for all i € {1,...,k} and all ¢t € T", additionally M(«) =

16

Fi(a) for all i € {1,...,k} and all @ € a’!. We now check the flow conditions
of M:

Vie{l,.. k}WseS: Y M@t)— > M(t)=[s=si]—[s€ S5 g} and

tEout(s) tein(s)
> d.=1
x
With the definition of M we know that these are equivalent to:

Vie{l,.. k}WseS: Y Fit)- Y F(t)=[s=si]—[s€ S5 g and

teout(s) tein(s)
> 9 =1

We can see that these are just the union of the flow conditions of the flows in
F. As we know that the individual flow conditions are fulfilled, we also know
that the union holds.

Next we check the time synchronization conditions:

otflow (TY) = - - - = otflow " (T*)
foralloe O and allt € {1,...,5}

It holds that

otfont(Ty= Y Y=t {1 fr<taomdo=o

, . . 0 otherwise
t'=(s,0,8")ET" t*€T"

s,5'€S?
d*(s")=t

foralloe O, allt €{1,...,n} and alli € {1,...,k},

where T* is transition path of m in T".

(*) If we look at the transitions in T° that end in a state with a fixed minimal
distance t € {1,...,n}, we know that there is exactly one of them (its operator
is equal to the ¢-th operator in m: o;) that is once in T?, provided that 7 is
least t long (if 7 is shorter, there is none at all), and all others are not at all
or more than once in T* as otherwise there is a contradiction with 7% being n
times time synchronizable.

The summed operator flow conditions are:

otflow,™(T") = - - - = otflow,™(T")
forallo e O.
We know that

otfo;" (T = 3 S =12 Y =] (2

t'=(s,0,s')eT" t*T"* o'€{on,...,o1}
s,s'€St
a*(s")y>n

foralloe€ O, all and alli € {1,... k},

where T is transition path of m in T".

17

(*) T* contains a transition for every o € 7. The transitions for the operators

{01,...,0,} correspond to transitions with end states that have a minimal dis-
tance of at most o,, and are not part of the outer sum of otflow, ™ (T") for all
o € O. The transitions for the leading operators: {on41,...,0;} however are

part of the sum (otherwise there is a contradiction with T* being n times time
synchronizable) and thus otflow, "™ (T%) is just equal to the number of times o
appears in {op41,...,0;} for all 0 € O.

With (1) and (2) we know that }_ co e(1, . n} otflow), adds up to the number

of occurrences of o in {o1,...,0,} and 3_ ., otflow;™ adds up the occurrences
of oin {0n41,...,0;}, therefore M and 7 have the same cost. O

Using this relationship of time synchronized flows and plans to proof admissi-
bility of the time synchronized flow heuristic in certain cases is the next step.

Theorem 8. Given a planning task I1 = (V, O, sy, sq, cost) with transition sys-
tem T = (S, 0, cost, T, s1,5¢), a set of transition systems T = {T*,..., T"},
that are at least n times time synchronizable.

hz-_ts_flow(s) is admissible if the transition systems in T preserve at least one
of the cheapest plans in T, for all s € S.

Proof. With Theorem 7 we know that there is a F] with the same cost as one
of the cheapest plans of II,. As the heuristic value is equal to the cheapest FT

n
the heuristic is admissible. O

For the rest of the thesis we will now fix the T in hz-_ts_flow(s) to TUs or
TURs of atomic projections to further investigate properties of this fixed type

of heuristic.

Definition 9. Given a planning task 11 = (V = {v1, ..., v}, O, s1, sa, cost) with
transition system T = (S, O, cost, T, sy, Sq), the set of all atomic projections

{Quys---yy, }, a TU(R) 7" and the set T, = (T ,7;0‘”’“)"(;)} for

all s € S. Then times atomic time unrolling (with repetition) heuristic hﬁTU(R)

is defined as n7: (s). The IP version of hSTU(R) 1s denoted by hﬁ’gU(R)‘

n-ts-flow
We will now analyze how the heuristics h()“TUR and h{{TUE evaluate the goal
distance from the initial state of our running example. h{'TUE is equal to the
cheapest 0 times synchronized flow of the atomic projections, which is depicted
in Figure 7. Note how the summed flows for each operator are equal in all
three flows. The heuristic value is equal to 2. If we now look at corresponding
cheapest flow of h{!TUE at the bottom of Figure 7, we can see that the summed
flows for each operator are equal in each of the two time layers. Introducing one
time step leads to an increase in heuristic value from 2 to 4, where 4 is already
the perfect value. The synchronized flow in the original atomic projections is
missing the point, that for boarding and departing the lift has to be at the right
place. The time synchronization forces the flow in the first time layer to be
along the same operator in all three transition systems, which in turn leads to
a situation as with 0 time steps, however with different starting positions. For
the cheapest time synchronized flow the flow in the first time layer corresponds
to operator up. This leads to a situation where the lift is at the top and has to
get to the bottom again and the passenger has to board and depart still.
With Theorem 8 describing admissibility criteria of previously introduced heuris-

tics is straight forward.

18

hft at &bumdmz am ued

board board (1
depart down d
own
up down board (1 depart(1 depart(1
tart board (1 | start tart board
star depart ar down star

doum

(Ré@f&-al) T (TF‘;‘EI)‘omded) 71

start start

asc’rucd)

start — bo(l)
do(1)

Figure 7: At the top we can see the time synchronized flow corresponding
o h{!TUR(s7) and at the bottom the corresponding time synchronized flow of
h{TUR(s;). In the bottom part the operator names got truncated to two char-
acters and are only visible if they correspond to a transition with a flow value.

Initial heuristic value increases from 2 to 4.

19

Theorem 9. hiTU is admissible if n is equal to or greater than the length of
the cheapest plan of 11 and hATUR is admissible in all cases.

Proof. h2ATU is admissible if n is equal to or greater than the length of the
cheapest plan of II, because this means that the time unrolled atomic transition
systems contain the cheapest plan (Theorem 4), which means that there exists
a synchronized flow of same cost (Theorem 7), which makes hA7V admissible,
because it is equal to the cheapest flow.

The heuristic ATV is admissible in all cases, because the time unrolled atomic
transition systems contain the cheapest plan regardless of the value of n (The-
orem 4) and the same chain of reasoning can be applied. O]

The same holds for h;?,gU(R) , as the flow created in Theorem 7 is an integer flow.

h{TUR is closely related to the state equation h9F@.

Theorem 10. hé‘TUR = pSEQ,

Proof. We know that h5F? can be described as flows over domain transition
graphs (DTGs) (Bonet et al., 2014). These graphs are, at least for TNF tasks,
equally defined as atomic projections. 7§ does per definition not alter transition
systems. With 0 time steps there are only the summed operator flow conditions
active which is also the way how the flows over DTGs are combined by h9¥Q. [

We will now define another time heuristic that we want to examine experimen-
tally and theoretically.

Definition 10. The minimal atomic time unrolling heuristic RMATY s defined
as hATY where n = argmin, hATY # co. If there is no n with hATY # oo, then
hMATU — oo, The integer version is denoted by hMATUY.

For the admissibility proof we need the following theorem.

Theorem 11. Given a set of transition systems T = {T',...,T*}, that are
at least n times time synchronizable, and the corresponding goal variable sets g°
withi € {1,...,k} and T" = (S8*, 0, cost, T?, s, S5). Let T, be the union of the
transition sets and g,, the union of the goal variable sets.

If ET with m < n is a m times time synchronized flow, then it holds that

tflow=" <1 forallt € {1,...,m —1}

where for a time step t the time flow tflow™ is defined as Y otflowS".

ocO

Proof. First of all if m = 0 the theorem holds as there are no conditions in this
case. We will prove the other cases with the following intermediate results:

tlow™" <1 and (1)
tflow="" < tflow™ for allt € {1,...,m —1}. (2)
(1): We will now look at a subpart of the flow conditions of F7, which effect

tflow™", namely the conditions for the states s in S* with d*(s) = 0 for all
1e{l,... .k}

Yo F)= Y Fly=[s=s1]~Is€(Se)]- g

te€out(s) tein(s)

20

Remember that we are only considering transition systems without dead states
and therefore there is only the initial state that belongs to this case. There are
no incoming transitions to it, because that would contradict with 7¢ being at
least 1 times time synchronizable.

It furthermore holds that ;... F'(t) = tflow™" and the right side of the

equation is between 0 and 1 (remember goal variables sum up to 1) therefore

(1) holds.
(2): We know that
tlow™ ™ =">" > Fy= Y, > F(t)+[s=s1-[s€(S)] g
R,_/—/_/
se€St teout(s) seSt tein(s) 0 <0
d*(s)=t d*(s)=t =
Z Z F(t) = tow™" for allt € {1,...,m — 1}.
scS? t€in(s)
d*(s)=t
As (1) and (2) hold and < is transitive, the theorem holds. O

Now that we have bound the summed flow of a time synchronized flow in each
time layer, we can prove admissibility of 47V but only in the case of planning
tasks with unit costs.

Theorem 12. Given a planning task Il = (V, O, s1, sq, cost), hMATY is admis-
sible if cost(o) =1 for all o € O.

Proof. With n = argmin,, hA7Y(s) # co we know that the shortest and also
cheapest path is at least of length and cost n (see Theorem 7). Together with
Theorem 11 we also know that the the overall flow sflow can be at most n if
there are n time layers. This also means that the cost can be at most n, as the
cost is just the individual flows times the corresponding operator cost and the
costs are all 1. Therefore hMATU is admissible. O

We now want to prove that hATU() = h*(s) if d*(s) < n. For this we are going
to convert integer time synchromzed flows into plans with the same cost. The
next theorem is used to make this proof easier.

Theorem 13. Given a set of abstract transition system T that are at least k
times time synchronizable and preserve at least one of the cheapest plans of the
original transition system. Let T\ be the set which holds the transition systems
of T without the dead states

(2
It holds that hT . Flow(S) < hn ts-flow(8) < B*(s) for alln < k.

Proof. As we know that all states and transitions of the transition systems in
T\ are also contained in the corresponding transition systems in 7", we know
that for every synchronized flow in 7\ there is one in 7~ with the same cost
(note that for the corresponding flows the additional constraints of the dead
states are fulfilled, because dead states are neither initial nor goal states and
the synchronized flow of incoming and outgoing transitions are 0, because they
are not contained in 77), thus (1) holds.

With all dead states removed the transition systems in 7T\ still preserve at least

one of the cheapest plans, therefore we know that h
synchronized flow heuristic and thus (2) is true.

it Flow(8) 18 an times time

O

21

If a transition system contains dead states it is possible to identify them with
a forward and backward search. To make proofs easier we are going to assume
that every transition system mentioned in the rest of this section does not con-
tain dead states.

We will now prove that certain integer time synchronized flows can be trans-
formed into plans of same cost.

Theorem 14. Let IT be a planning task with goal state sq, T its transition
system with variables vy,...,vr and T a set of transition systems defined as
[(Ton), Ty}

Given any integer n times time synchronized flow F,J . There exists a plan of
II with same cost.

Proof. With Theorem 11 and the fact that ;] only has integer values, we know
that there is one transition per time layer for that 7 is 1 and for all others it
is 0, for the first sflow time layers.

Let m be an operator sequence of length sflow. The k-th operator of 7 is o if
the transition in the k-th time layer, for that FZ— is 1, corresponds to operator
0. We will now show that 7 is a plan via induction over the subpaths.

Let I be the length of 7 and 7, the subpath of = with length x (note that
0 <z <land m =) and v is any variable of II.

Basis: mg is a path in T with state path (so) and a path in (T*)™ with state
path {a,(s0)o)-

After applying no operators to any planning task the initial state is the only
one visited, in this case so and «,(sg)op are the initial states.

Inductive step: If 7, is a path in T with corresponding state path (s, ..., Sz)

and a path in (T*)™ with state path (0w (S0)o,-- -, 0w (Sz)z), then myy1 is a
path in T with state path (so,...,sz+1) and a path in (T)™ with state path
<av(50)07 .. 7av(31+1)x+1>-

To show that 7,41 is a path in T, we have to show that the (x + 1)-th operator
of w, we will referring to it as 0,41, is applicable in s,. Through the definition of
m we know that there is the transition (o, (82)z, 0pt1, Qp(Sz41)zr1) in (T*)™
(see proof of Theorem 2 to see why the end state can be expressed as stated).
Thus we also know that there is a transition (@, (sz), 041, (Sz4+1)) in T,
we then deduce that either s, (v) = [pre(oz4+1)](v) or v ¢ vars(pre(oz+1)). This
means that s, fulfills all preconditions of 0,1 and therefore 7,11 is a path in 7.

By mathematical induction we know that 7 is a path in II. We furthermore
know that after applying = in (7)™, a,(s;); is reached. Due to the flow con-
ditions of F)7 being fulfilled, we know that a,(s;); is a goal state in the abstract
transition system, as there is a incoming flow of 1 and no outgoing flow. This
also means that «,(s;) is a goal state, from which we deduce that s;(v) = sg(v).
As this holds true for arbitrary v we deduce that s; = s¢ and 7 is not only a
path, but a plan in 7.

Furthermore 7 is of same cost as F7 , because the cost of F)7 is defined as the
individual flows times the corresponding operator cost which is of course only
the cost of m, as the flows are all 1. That means that there is a plan of same

cost for every integer n times synchronized flow.
O

Now that we have both directions, from plan to synchronized flow and from

22

synchronized flow to plan we prove that hﬁg\;U(s) is a perfect heuristic in a
special case.

Theorem 15. hATU() = h*(s) if the length of the cheapest path from s to a
goal state is less than or equal to n.

Proof. Given any integer n times time synchronized flow F)7. h* is equal to the
cost of the cheapest path and with the theorem’s condition as well as Theorem 7
we know that for the cheapest path 7. there also is an integer time synchronized
flow F.. hi{]U(s) is equal to the cost of F., because if there would be a cheaper
flow, there would also be a cheaper plan (see Theorem 14), which contradicts
with 7, being the cheapest plan. O

We furthermore prove that hATU is a perfect heuristic if the planning task has
unit costs.

Theorem 16. Given a planning task 11 = (V, O, s1, sg, cost), hMATU = p* if
cost(o) =1 for all o € O.

Proof. hMATU is defined as hAgU where n = argmin,, hATU # 00. With Theo-

rem 15 we know that b LV is either equal to the cheapest synchronized flow, or

there is no Synchromzed ﬁow for any number of time steps.

In the case where there is a cheapest synchronized flow we know with Theorem
9 that hATU is equal to the cost of a plan, this plan also has to be the cheap-
est, because if there would be a cheaper plan, there would also be a cheaper
synchronized flow, as in the unit cost case a cheaper plan also means that it is
shorter and still preserved with n time steps.

The case were there is no number of time steps for which there is a synchronized
flow, we know with Theorem 7, that there are no plans i.e. hATU h* =oc0. O

For showing dominance relationships between the time heuristics the following
theorem will be introduced.

Theorem 17. Given a transition system T = (S, O, cost, T, sy, Sa) with S¢ =
{s&,...,sL}. For every flow in T there is a flow in T of same cost if
k < n. Analogously for every time n times time synchronized flow in a set of
transition systems T, = {(7’1 ye- ,TJT(‘T)} a k times time synchronized flow
with the same cost emsts in T}, = {(T 17’:, cee J"T}

Proof. Given goal variables g = {¢*,...,¢'}, aflow F in 77" and any transition
t = (s1,0,5) out of the transition set of 77, we define the mapping M as

M(t) = Zi:n""’k_l(ak) F(t7) where ti = <Sia o, 5/> if time(sl) =N
F(t) if time(s;1) <n
my _ Zi:n...k—l(k)F(glm) ift=n
M(gt)_{F(gZ”) ift<n

where g;" denotes the goal variable corresponding to the goal state of g™ in the
t-th time layer of 77 . As the flow values of transitions and goal variables are not
different in the first n time layers, the flow constraints are fulfilled for all states
s € T™ with time(s) < n. For all states s/, it holds that the flow value of a
outgoing transition is equal to the flow value of the corresponding transitions of

23

the states s; where i € {k,...,n}. This is similarly true for incoming transitions
and goal variables. As the flow constraints are fulfilled for every state sj, the
flow constraints are fulfilled for s/, as well.

In the same way a mapping Mo can be built from a time synchronized flow F7
and we already now that the flow constraints are fulfilled. Furthermore the
time synchronization constraints and the operator flow constraints are fulfilled

)

—i)
with i € {n,..., k} and as all the otflow"(T,") are synchronized individually,

()
d

as well because otﬂowf"(TJ,’g) of My is equal to the sum of otflow " (T,

otﬂowO:”(Tfl’:) are synchronized as well. O
The theorem can now be used to show dominance relationships.
Theorem 18. hfl‘TUR < h;jTUR ifn <k and h,?TUR < pMATU,

Proof. Both dominance relationships follow directly from Theorem 17 and the
fact that R TUR and hMATU are defined via the cheapest time synchronized
flows.

O

There is the question whether TU and TUR should introduce goal states in every
time layer or just a subset of time layers. As goal states act as sinks for flows,
reducing the amount of goal states decreases the degrees of freedom of flows.
However with the idea of the proof of Theorem 4 we know that reducing the
goal states to a set of time layers T', would result in the time unrolled transition
system only preserving plans that have length n, if n € T. Therefore limiting
the goal states holds the danger, that cheapest plans are no longer preserved,
which affects admissibility of heuristics that build up on the time unrolling.
If a lower bound for plans is known, it would be possible to omit goal states
in time layers that are lower than the lower bound while still preserving the
cheapest plan. We can define a new heuristic AATU that is defined just as
RMATU hut the time unrolling only introduces goal states in the last time layer.
hATU is defined analogously. The reason why hMATU is still admissible in the
unit cost case is that it still holds that hfl‘,ZU < n for all n. In the special case
of goal state only being present in the last time layer the inequality becomes an
equality, because there is no sink in the first n — 1 time layers, this however is
not even required for admissibility. With Theorem 7 we know that there is a
time synchronized flow for every plan that only uses goal states in the last time
layer as sinks. As hMATU is per definition equal to the first hf’ZU = n that is
not equal to oo it is admissible. There will be no experiments done on hMATV
due to time constraints of this thesis.

24

4 Implementation

There are two types of heuristics implemented, one that uses a fixed amount of
time steps and one that iteratively increases time steps.

4.1 Implementation with fixed amount of time steps

This version is an implementation of the n times atomic time unrolling heuristic
hATUR (note the time unrolling with repetition) with a fixed n. What makes this
type of implementation advantageous (compared to the h47V implementation)
is the fact that with a fixed number of time steps the only thing that changes in
the LP, with each heuristic computation, are the start states of the time unrolled
atomic projections. That means that there are at most 2 - [V| constraints to be
changed with each new heuristic computation.

An advantage of working with repetitions in the last layer is that the heuristic
is admissible in all cases (see Theorem 9).

4.2 Implementation with dynamic amount of time steps

This version is an implementation of hMATU with the help of hATV with a
changing n value. From Theorem 7, we know that if there is no flow found
for n = z, we know that there does not exist plans with a length equal to or
smaller than x. The idea is to start with 0 time steps and then build up as
many time steps are needed until a solution is found. This method is therefore
adjusting the quality of the heuristic depending on how long the plans are (in
contrast to the static implementation). Furthermore dead ends are a problem
for this method, as they force an perpetual increase of time steps, making the
implementation exceed the memory or time limit during the experiments.

4.3 Optimizations

There were two optimizations considered.

4.3.1 Removing dead states

With Theorem 13 we know that leaving out dead states can not lower heuristic
values, but also leaving them out means that there are less LP variables (the
LP contains a variable for every transition) and also fewer constraints (the LP
contains a constraint for every state). This optimization was only implemented
for the dynamic time steps approach, as in the fixed time step case would lead
to a need for changing constraints of the LP (the forward-reachability of states
in the early time layers changes with every heuristic calculation), that would
require a fully reload of the LP into the LP solver with every heuristic value
calculation, which leads to a big overhead.

4.3.2 Introducing shared variables

The idea of introducing shared variables is used for both implementations. If
there are operators, that have multiple variables, there are multiple otﬂowozt

25

with only one variable. With a fixed ¢ these have to be equal, due to the
time synchronization conditions. What we can do is using the same variables
for a fixed t if there are multiple otflow]" with only one variable. This would
remove the requirement to force them to be equal with constraints. This does
not only decrease the constraints of the LP, but also the variable count. Note
that otflow," of the flow of a time unrolled atomic projection consists of a
single variable if the corresponding variable of the atmoic projection is in the
preconditions of o. That means that there are saved n — 1 constraints and
variables for each time step that has to be synchronized, wheren = |[vars(o)|.

26

5 Experiments

The experiments were conducted on the computing cluster maia of the Univer-
sity of Basel. The tasks were run on cores of the Intel® Xeon® CPU E5-2660
at 2.20 GHz. All problem instances were run with a memory limit of 2 GB
and a time limit of 30 minutes. The problem domains and instances used were
composed from optimal tracks of the IPC from 1998 up until 2014. An automa-
tization tool called downward-lab (Seipp et al., 2017) was used to easier conduct
experiments on the cluster and also evaluate them by creating tables and graphs.
As LP solver IBM ILOG CPLEX Optimization Studio 12.6.3 was used. The im-
plementation was integrated into the planning system Fast Downward (Helmert,
2006), so that not everything had to be build up from scratch and the imple-
mentations could be easily compared to other already implemented heuristics.
The coverage of a heuristic is defined as the number of problems solved in all
benchmark domains. If numbers in tables are bold they are equal to the maxi-
mum row value. The initial h value is equal to the heuristic value of the initial
state. We will discuss the static number of time steps and the dynamic number
of time steps approach in terms of initial h value quality and coverage. Both,
the static and the dynamic version compete against the state-of-the-art heuristic
LM-cut (Helmert and Domshlak, 2009) and the state equation heuristic h“F?,
which is also interesting, as the time unrolling heuristics dominate it, but it is
not clear by how much. As operator costs were integers only we were able to
round up heuristic values if they were not integers. Also note that benchmark
results are usually rounded to the nearest integer. For analyzing initial heuris-
tic values we are going to normalize them with the perfect heuristic. To get to
perfect heuristic values we took the plan costs of hXM-¢%t This also means that
initial heuristic values could only be normalized if h*-°% was able to solve the
problem.

5.1 Static number of time steps

As already stated in the optimization section we tested what influence intro-
ducing shared variables have on the implementation of h2TUR. It turned out
that the optimization is beneficial, which is also the reason that all benchmark
results in the following sub-sections are based on an implementation with this
optimization. The benchmarks of hﬁTUR with n € {0,2,4,6} were however
conducted with and without the optimization to analyze the effect of the opti-
mization, what we will do in the following.

We first look at how many LP variables and LP constraints are needed to calcu-
late the heuristic value of the initial state. The optimization reduced the number
of constraints on average by 6 %. Whereas the variables were only reduced by
2 %. Remember that for every saved variable there is also a saved time syn-
chronization constraint. The percentages are just different as there are around
three times as many variables as constraints. The reduced number of variables
and constraints, reduced the solving time of the LP by 14 % on average. This
leads to a average improvement of 15 more solved tasks. Figure 8 shows that
there is an improvement for any number of time step that was tested.

27

500 |- ‘ : —]
—— hATUR optimized
—— hATUR ynoptimized
400 |- |
)
&D
<
3]
3
© 300 - |
200 |- 1
| | | |
0 2 4 6
Time steps

Figure 8: Plot depicts coverage of hATUR with and without shared variable

optimization. We can see that there is an improvement for any number of time
steps.

5.1.1 Initial heuristic value

We want to compare the quality of heuristic values of h2ATUE with different val-
ues for n against the quality of h%F% and AXM-¢*, The summed initial h values
of pEM-cut pSEQ pATUR pATUR p ATUR and h{TUR are shown in Table 1. The
summed initial heuristic values of h9¥? and h§TUF as expected from Theorem
10. We can furthermore see that adding more time steps almost always comes
with an increase of heuristic values. There are multiple domains, for instance
pegsol and visitall, were the time steps could improve summed values up until
they got higher than LM-cut’s summed values. Also note that sometimes the
benefit of adding additional time steps (which has an dramatic effect on the
coverage, see Table 2) can lead to only a minor increase of heuristic value like
for the Sokoban domains. Where in some domains like psr-small or mprime the
additional time steps lead to significantly better heuristic values.

We want to know much the h%F@ heuristic values can be improved by in-
creasing the time steps. Figure 9 depicts normalized initial h values, where a
1 means being equal to the perfect heuristic value. The perfect heuristic value
was acquired by doing A* with hEM-cut, If pEM-cut did not solve the problem,
there is no point for the respective problem. This means that this comparison
was only done for problems that were easy for LM-cut. Furthermore whenever
we state average improvements in heuristic value they will be calculated via
the average difference of normalized initial heuristic values. If for instance the
average improvement is x then in our graphs this usually means that a data
point is shifted on average x to the right, starting from the diagonal. We can
see that all points are in the bottom right triangle, which means that the values
of hSEQ were never better than the values of hy7VE and h§TVE which con-
firms our theoretical analysis. We can see that already introducing two time

28

Initial h value hL]vI—cut hSEQ héﬁlTUR héXTUR thUR hé‘lTUR
airport (16) 602 383 383 389 395 401
barman-opt11 (4) 141 144 144 148 148 148
blocks (34) 574 570 570 601 627 649
childsnack-opt14 (1) 10 18 18 18 18 18
depot (8) 124 85 85 89 98 100
driverlog (14) 195 162 162 163 169 175
elevators-opt08 (30) 1025 0 0 33 33 33
elevators-opt11 (20) 674 0 0 21 21 21
floortile-opt11 (16) 846 702 702 703 705 707
floortile-opt14 (20) 1143 916 916 916 919 924
freecell (8) 37 80 80 80 81 81
ged-opt14 (15) 14 0 0 15 15 15
gripper (20) 940 920 920 920 940 940
hiking-opt14 (10) 94 50 50 70 75 79
logistics00 (28) 1041 888 888 888 891 898
logistics98 (7) 170 122 122 122 126 129
miconic (103) 3641 2242 2242 2339 2352 2357
movie (30) 210 210 210 210 210 210
mprime (5) 25 14 14 19 25 25
mystery (11) 43 24 24 33 44 45
nomystery-opt11l (11) 160 116 116 125 129 132
openstacks (7) 117 90 90 97 104 111
openstacks-opt08 (27) 27 0 0 27 27 27
openstacks-opt11 (20) 20 0 0 20 20 20
openstacks-opt14 (8) 8 0 0 8 8 9
pathways-noneg (5) 7T 16 16 26 36 40
pegsol-08 (30) 76 87 87 92 96 103
pegsol-optll (20) 59 72 72 72 76 79
pipesworld-notankage (4) 23 20 20 22 24 24
pipesworld-tankage (6) 33 44 44 44 44 45
psr-small (50) 157 310 310 390 418 432
rovers (16) 287 118 118 140 148 153
satellite (7) 94 44 44 53 61 63
scanalyzer-08 (7) 117 114 114 117 121 122
scanalyzer-optll (5) 100 96 96 97 101 103
sokoban-opt08 (27) 385 134 134 134 134 134
sokoban-opt11 (19) 280 92 92 92 92 92
storage (15) 118 90 90 113 118 118
tpp (12) 261 312 312 325 326 330
transport-opt08 (15) 3999 120 120 581 797 928
transport-opt11 (15) 4102 172 172 438 594 699
transport-opt14 (9) 2183 78 78 285 422 518
trucks (8) 146 138 138 143 148 149
visitall-opt11 (20) 542 799 799 800 801 802
visitall-opt14 (16) 774 1193 1193 1193 1193 1194
woodworking-opt08 (11) 1860 1565 1565 1665 1717 1726
woodworking-opt11 (6) 1155 1035 1035 1095 1121 1128
zenotravel (10) 96 75 75 79 83 84
Finite sum (806) 28805 14460 14460 16050 16851 17320

Table 1: Initial heuristic values of the static time step approach with 0, 2, 4
and 6 time steps versus the two other competitors. Note that only instances are
counted, were every heuristic got an initial h value calculated. Note that the
parcprinter domain results are ignored, due to their very high operator costs,
that would heavily skew the sums.

steps leads to improved heuristic values (points that do not lie on the diagonal).
There were also some cases where h4TU® improved heuristic values of h9¢% to
the perfect value (represented by points that lie at the gray perpendicular line).
The values got improved in 380 out of the 788 data points. On average the
normalized value got improved by 6 % (with the non-improvements counted).
Improvements were recorded in 38 out of the 57 domains, which means that the

heuristic improvements are not limited to only few domain structures.

With the right graph in Figure 9 we can check whether heuristic values could
be further improved when introducing more time layers or whether the most
improvement was already gathered with 2 time steps. It turns out that increas-
ing the time steps form 2 to 6 brings further improved heuristic values for a lot
of problem instances (there are many points shifted more to the right and the
points on the diagonal are not as crowded anymore). There are also a lot more
problems where the heuristic got improved to the perfect value. The number of
problems where the heuristic value got improved changed from 380 out of 788
problems to 444 out of 686 problems. There were also 6 new domains where the
heuristic value got improved, which means that there are now 44 out of the 57
domains with improved values. The heuristic value got improved by an average
of 10 %. Note how we have tripled the time steps, but only got a 4 % over
the initial 6 % with only 2 time steps, which shows that there are diminishing
returns of further time steps.

1 -1 11
X X%
— X % —
~ ~
2 0.8} x><x oin XX X 10.8 =
* *
< %< o ! XX <
06| T ©r 5 los
= Bt g 5
S L 1L 3 X z | <
g 04 Koo s s hjoag
R X5 , X% "’E
XX XX X XXX
0.2 SO XX x iR *XX% X x x 10.2
X x X x X x
| | | X! |

s | | v} | |
0.2 04 06 0.8 1 02 04 06 08 1
hg TV (s1) + h*(sr) hg TV (s1)(s1) + h*(s1)

Figure 9: The plots compare normalized initial heuristic values of h4TUE and
h§TUR against the initial value of h9¥Q. We can see that increasing the time
steps leads overall improvement and also to more perfect values.

We want to know how far we can improve the heuristic values with increasing
the number of time steps and whether the diminishing returns can be confirmed.
Figure 10 depicts two scatter plots. The left shows the improvement from going
from 6 time steps to 10 and the right from 10 to 15. We can see that going
from 6 to 10 time steps there is still a noticeable shift to the right. Where for
the step from 10 to 15 this is also true, there are far less problems where the

30

heuristic value got increased (the number of improvements went from 95 out of
568 problems to only 44 out of 461 problems). When increasing the time steps
from 6 to 10, we get on average only 1 % improvement (this is not much if we
compare it to the 4 % improvement going from 2 to 6 time steps, where also
the number of time steps got increased by 4). The number of improvements
shrunk to only 95 problems out of the 568, where the initial h value could be
computed. If we go from 10 to 15 time steps the improvement was on average
only 0.6 %. This shows again that there are diminishing-returns. Also note that
the diminishing returns that can be seen in the averages were also caused by
the fact that heuristic values were perfect already and could not be improved
further. In the 4 experiments the number of already perfect values (represented
by points in the upper right corner) are 98, 91, 110 and 106 respectively, whilst
the number of data points went down from 788 in the h5F% vs hs'TUR plot to
461 in the h{t'UR vs hATUR plot. The reduction of data points is a result of
the fact that with increasing number of time steps there is more computation
needed for the initial heuristic value, because the LP gets bigger.
Benchmarking was also done with 20, 50, 100 and 200 time steps and it turned
out that every number of time steps over 20 did not result in better heuristic
values. Note that there are problems where the length of the cheapest plan is
bigger than 20 where h4!V® has an initial heuristic value. So the stagnation
in heuristical quality is not only due to cheapest plans being shorter than the
used number of time steps.

If we compare hi VR against h5F@ there are only 31 problems that could not
be improved that were not perfect already (out of 367 in total and 68 already
being perfect). There are still some domains where hiy' U has lower values than
LM-cut, for instance in the Transport domain. This shows that the heuristic
cannot be improved after a certain point. This also seems reasonable if we
consider, that time unrolling does not change the first n — 1 time layers. And if
there is a solution that does not have a flow in the last time layer, it will persist
into time unrolled transition systems with more time steps.

X XK

Xx

0.8 SRS 0.8

0.6 X b . %X 106

R TUR (s1) + h*(s1)
h{TUR (s1) + h*(s1)

X
|

| | | | | | |
02 04 06 08 1 0.2 04 06 0.8 1
hig VR (s1) + h*(s1) hisTUR (sp) + h*(s1)

Figure 10: The plots compare normalized initial heuristic values of h{TUR,
R{UR and h{lTUR. We can see that increasing time steps leads to fewer and
smaller heuristic value improvements.

31

We now want to measure how IP versions perform. Figure 11 compares hi 7 VR
and h§TUR to their IP counterparts. In the left plot we can see that, when using
only 2 time steps, restricting to IP variables leads to only few improvements
and even fewer heuristic values got improved to the perfect value. The average
improvement was an additional 2 % which come from an improvement in only
68 out of 785 problems. If we increase time steps to 6, there we can clearly see
that there are way more and way better improvements. With 6 time steps there
is an average increase of 5.5 % coming from 263 problems with increased values
out of 600 problems in total. This shows that restricting to integers becomes
more beneficial with more time steps.

If we compare the time it took the LP and the IP version to compute the initial
h values, we can see that calculating hsTU% on average takes about 34 % of the
time compared to its IP counterpart. Calculation time for hg 7Y% on average
was around only 22 % of the time of its IP counterpart. This means that, in
the case of 2 time steps, the IP version took roughly 3 times the time and in
the case of 6 time steps around 4 times.

10 1k 11
B % B
— 0.8F _= Ko 0.8 2
% x| R
Zog) 1 Bl 106 L
» KX x x »
E/ X %%k X Ed\/
S04 1F R x 104 5
IS x x &
<~ X Xx x <o
= X « x =
0.2| 1 &5, =, 102
1“(| | | | i?g(| | | |
0.2 04 06 0.8 1 02 04 06 0.8 1
hﬁgUR(SI) +h*(81) hé%;UR(S])%h*(SI)

Figure 11: The plots compare normalized initial heuristic values of h4TUR,
hg‘TUR with their IP counterparts. We can see that using IP variables leads to
bigger heuristic value improvements with more time steps.

5.1.2 Coverage

Table 2 shows the coverage of hlM—cut pSEQ h{)‘TUR, h?TUR, h{TUR and

hg‘TUR. On first glance we can see that the time heuristics cannot keep up, as
they generally have less solved problems. Increasing time steps introduces an
overhead, that does not seem to pay off through better heuristic values. Also
note that h9FQ and hy!'TUR are the same heuristics, with the only difference
being the implementation and we can see that the Fast Downward’s version has
better coverage. This could be explained with the implementation of hi"VE be-
ing very poorly optimized and the implementation of h°¥@ omitting the upper
bound constraints of the flow constraints for each state. It has been shown that
the upper bound constraints of the flow constraints for h{'TVF can be omitted
without changing the heuristic value (Pommerening et al., 2014). The only do-

32

500 - — BATUR ||
x
y hA§UR
Zz,
400 - n
Q
&0
5
>
S 300 |- B
200 - n
| | | |
0 2 4 6
Time steps
Figure 12: Plot depicts coverage of hATUR and hfﬁUR with variable time steps.

We can see that the IP coverage is consistently inferior. Introducing few time
steps can however lessen the gap.

mains were the time heuristics could almost keep up with LM-cut (for instance
Freecell or visitall-opt14-strips) were also the domains were h°F9 surpasses LM-
cut. This means that the time heuristics exploits problem structure which are
also exploited by the state equation heuristic, which is also reasonable as the
time heuristics are an extension of the state equation heuristic. The extension
however, at least evaluated on the coverage, does not pay off. This can be ex-
plained by the diminishing returns of adding further time steps, which we have
seen in the initial h value section.

We now want to see what influence solving the IP versions has on the coverage.
Figure 12 depicts coverage of hy!TUR gl TUR pATUR and hgTUR in red against
their TP counterparts in blue. We can see that the IP versions have worse cov-
erage in all cases. The difference in coverage are 111, 15, 29 and 37 respectively.
The biggest difference is with no time steps at all. The minimum gap is either
with 1 or 2 time steps. Increasing time steps over 2 increases the gap again.
This seems to contradict with the improve in heuristic value that be seen in
Figure 11. The bigger increase in heuristic values does therefore come with a
time overhead, which has more influence on the coverage than the increased
heuristic values.

The average time spent calculating initial A values of the LP versions took only
30 % of the time of their IP counterparts. Apparently this overhead, of more
than triple the calculation time on average does not pay off in terms of coverage.

5.2 Dynamic number of time steps

With Theorem 12 we know that h™A47V is only admissible if the planning task
has unit costs. Therefore we will enforce unit costs of our benchmark domains
when testing this implementation.

33

Coverage (Number of Instances) hEM—cut pSEQ pATUR pATUR pATUR - pATUR

airport (50) 28 22 14 7 7 7
barman-opt11 (20) 4 4 0 0 0 0
barman-opt14 (14) 0 0 0 0 0 0
blocks (35) 28 28 21 15 13 12
childsnack-opt14 (20) 0 0 0 0 0 0
depot (22) 7 7 2 2 1 1
driverlog (20) 13 12 8 3 2 2
elevators-opt08 (30) 22 9 3 0 0 0
elevators-opt11 (20) 18 7 1 0 0 0
floortile-opt11 (20) 7 4 2 0 0 0
floortile-opt14 (20) 6 2 0 0 0 0
freecell (80) 15 37 20 1 1 0
ged-opt14 (20) 15 13 7 5 5 3
grid (5) 2 1 1 0 0 0
gripper (20) 7 7 5 3 2 2
hiking-opt14 (20) 9 9 7 3 2 2
logistics00 (28) 20 16 12 10 6 6
logistics98 (35) 6 4 2 2 0 0
miconic (150) 141 51 40 30 26 25
movie (30) 30 30 30 30 30 30
mprime (35) 22 20 9 1 1 1
mystery (30) 17 13 8 4 4 4
nomystery-opt1ll (20) 14 10 8 2 2 2
openstacks (30) 7 7 5 5 5 0
openstacks-opt08 (30) 19 16 8 3 2 2
openstacks-opt11 (20) 14 11 3 0 0 0
openstacks-opt14 (20) 3 1 0 0 0 0
parcprinter-08 (30) 18 28 28 17 11 8
parcprinter-opt11 (20) 13 20 20 13 7 4
parking-opt11 (20) 2 3 0 0 0 0
parking-opt14 (20) 3 3 0 0 0 0
pathways-noneg (30) 5 4 4 2 1 1
pegsol-08 (30) 27 28 25 10 9 6
pegsol-opt11 (20) 17 18 15 2 1 1
pipesworld-notankage (50) 17 15 8 2 1 1
pipesworld-tankage (50) 12 11 7 2 2 2
psr-small (50) 49 50 47 42 40 38
rovers (40) 7 6 4 4 4 4
satellite (36) 7 6 4 3 3 3
scanalyzer-08 (30) 15 14 8 4 4 3
scanalyzer-opt11 (20) 12 11 5 1 1 1
sokoban-opt08 (30) 30 19 7 3 1 0
sokoban-opt11 (20) 20 16 4 0 0 0
storage (30) 15 15 12 7 7 7
tetris-opt14 (17) 6 12 2 0 0 0
tidybot-opt11 (20) 13 6 1 0 0 0
tidybot-opt14 (20) 7 0 0 0 0 0
tpp (30) 6 8 6 5 5 5
transport-opt08 (30) 11 11 7 4 3 3
transport-opt1l (20) 6 6 2 0 0 0
transport-opt14 (20) 6 4 1 0 0 0
trucks (30) 10 9 4 2 1 1
visitall-opt11 (20) 11 17 16 12 9 9
visitall-opt14 (20) 5 13 11 6 4 3
woodworking-opt08 (30) 17 13 7 3 3 2
woodworking-opt11 (20) 12 9 2 0 0 0
zenotravel (20) 13 9 8 5 5 4
Sum (1667) 866 725 481 275 231 205

hLMfcut’ hSEQ’ hngUR, h?TUR, h?TUR and hg‘TUR. The
hATUR
n

Table 2: Coverage of

bigger the time steps of are chosen, the smaller the coverage gets.

When there is no flow found for the first ¢ time steps (i.e. hATV = oo for all i €

{1,...,t}), we know that there are no plans of length less than or equal to t (see
Theorem 7). Therefore we will use maz(h™ATV t) where t = argmin; hA TV #
oo as heuristic value. An example showing that this can actually lead to an
improvement is the problem “p01” in the Sokoban domain from 2008, where
this increases the initial heuristic value from 14 to 16.

As baseline for comparisons, also in Section 5.2.1 and 5.2.2, the algorithm was
tested with both optimizations as described in Section 4.3. They were however
tested individually.

We will now analyze what influence the optimizations have on the LP computed
for the initial heuristic value.

The dead states removal reduced the number of constraints by 2 % and variables
by 17 %. This lead to a 9 % peak memory reduction and 19 % less time spent
calculating the first heuristic value. The coverage however only went up from
158 to 165 problems.

Introducing shared variables decreased the number of constraints by 11 % and
variables by 4 %. Again, as constraints and variables get decreased by the same
amount the percentage difference results from having almost 3 times as many
variables than constraints. Peak memory got reduced by 3 % and time spent
calculating the first heuristic value reduced by 11 %. The result on the coverage
is very similar to the dead state optimization — it went up from 158 to 166
problems.

The last comparison is a comparison between both optimization enabled and
none. There were 11 % fewer constraints, 20 % fewer variables, 12 % less peak
memory and 42 % less time spent solving the first LP with a solution. The
resulting coverage is 174.

5.2.1 Initial heuristic value

How hMATU compares against h°F@ and hXM-cut can be seen in Figure 13. In

the left plot we can see that hM4TV dominates h5F? as there is no point beyond
the diagonal. Furthermore almost all values of h°¥% could be further improved.
If we compare hMATU with hEM-cul we can see that hMATU can improve on
problems where ALM-¢% ig particularly bad, whereas h“M-¢“ mostly improves
where values of hMATU are already pretty good.
In both plots we can see that points move along diagonals that meet in certain
points. These patterns however do not stem from domain or heuristic properties,
but they are coming from the distribution of a set of rational numbers in a real
grid. This set is defined by rationals that can be expressed as fractions with the
same denominator. Both coordinates x and y are coming from integer divisions,
because heuristic values are rounded up. Furthermore the denominator is the
same as h* stays fixed as one data point represents one problem. In the left
plot we can see the pattern even stronger as there is a further condition. One
numerator is bigger than the other, i.e. hMATU dominates h%F? which makes
the points less spread and the pattern more apparent. Appendix A shows a
plot of only rational numbers with same denominator that shows exactly the
same patterns of diagonals and sparse regions. The only difference is that in
the heuristic plots they are crowded depending on the quality of the heuristic
values.

The left plot in Figure 14 confirms that hé‘{’ATU is in fact equal to the perfect

35

I T T
1+ . X OB X XROK -1
X x zx >§ ¥
— xx % ‘% /-’N\
= ¥ XX X é w
& 0.8) ¥ % | O SN X108 &
s X i xé% x X% § =
n XXX XX i % Xxxx X g o
s 0.6 x ooxE A XK x ; -10.6 -~
q? %(X x)(><x)0< x X X X * * X% X \E'J/
N)l%\géx ;?ﬁ X x 4 X% XX x % 3
S 04r K X g 0 x X Xx Xy 04 9
S e X x X X x X X x 0 :
%) NES o XX X M o ><x X X =
’Q X XX x X X x x X%(X>><(xx Q’Q
0.2} X X . AF by e 0 0.2
X XX >5<§<
X X % X X X X x % % X
R X | | | % | | L L L
02 04 06 038 1 02 04 06 038 1
hMATU(SI) - h*(SI) hMATU(SI) = h*(sl)

Figure 13: Plots show normalized heuristic values from AMATU against h5FQ
and hEM-cut We can see that hMATU dominates hF% and values are improved
in almost all times. Whereas the plot with the state of the art heuristic h%M-cut
seems a little more balanced, however hMATU has higher values in most cases.

heuristic, at least in these cases. The number of time steps it took to calculate
hé‘{[ATU is equal to the perfect heuristic value. This follows from the fact that
hé\{[ATU is the perfect heuristic and that there can only be a maximum flow of
1 for every time layer (see Theorem 11). For the implementation of the LP
version, the average time steps needed for the first heuristic value is only 11,
while the average plan length is 21. This shows that there is still a quite big
discrepancy between them in terms of utilizing additional time steps.

The right plot confirms that h™ATU dominates h2ATUR. The average increase
in initial heuristic value was 3 %. hAMATU had higher values in 148 out of 377
problems.

5.2.2 Coverage

Table 3 shows that hMATU and hﬁ{IATU solve far less tasks than hZM-c¥t and
hSEQ in fact they solved only around one fifth amount of tasks. One factor
that influences the search time is the fact that every time the implementation
increases a time step, a new LP is created and loaded into memory. This is an
overhead compared to just adding the new variables and new constraints. The
frequent LP recreation can also be seen in the calculation time of the initial
heuristic value which made up from 30 % initializing the LP (70 % of the time
was spent solving it) and for the IP version initializing was even 33 % of the time.
It also might not be beneficial to let the solver solve dozens of LPs, it seems to
be more beneficial to use the LP solver for just one big LP for each heuristic
computation (see coverage results of hATUE). On average for every heuristic
value 10 time steps were needed until a solution was found. This means on
average 10 there were LPs created loaded and solved for every heuristic value
calculated.

36

[
1r oamin % -1
= s =
= 08| g 08 =
< X <
.|. X X oo
—~ 061 £ o o6 -
& : 3 &
S X =
S04 1 « 104 S
< X % X IS
= x <w©
= X <=
0.2 RIS x —40.2
X X
| | | | | x| | | | |
0.2 04 06 0.8 1 02 04 06 0.8 1
hlj\\{[ATU(S]> =~ h* (S]) hMATU(S[) - h*(S[)

Figure 14: The left plot shows normalized initial heuristic values of hBMATU and
hé‘{IATU. We can see that hﬁ\{[ATU is always equal to the perfect heuristic and
RMATU dominates hgTVE.

Coverage | Coverage = Coverage of hMATU
pLM-cut 832 4.8
hSEQ 757 4.4
pMATU 174 1
hMATU 127 0.7

hLM—cut’ hSEQ7 hMATU and

Table 3: This table is showing the coverage of
RMATU Both hMATU and hMATU perform far worse.

37

6 Future Work

The constraints of the time synchronized flows fit very well into the operator
counting framework (Pommerening et al., 2014). For every operator o there can
be introduced a new variable Count, and a constraint Count, = otﬂowio. We
are then able to combine our time synchronized flow constraints with other types
of constraints for instance the landmark constraints that result from landmarks
found by LM-cut. In our experiments we have seen that even for our LP time
unrolling heuristic with the best initial heuristic values hMATV there are many
benchmark problems were the initial heuristic value is lower than the initial
heuristic value of LM-cut, therefore combining them might result in a strong
heuristic.

The time unrolling heuristics work with arbitrary abstractions. In this thesis we
have benchmarked the heuristics that resulted when fixing the abstractions to
atomic projections. But it could also be tested with bigger projections. Bigger
projections would of course lead to bigger abstract transition systems. hMATU
might not be well suited for this, because it often uses many time steps, when
we have seen in our experiments that most benefit could already be gathered
with introducing few time steps. The time steps of hA7UR however can be set
accordingly lower if bigger projections are chosen.

There might be more efficient ways to get to n times time synchronizable transi-
tion systems than by using time unrollings. The time unrollings have the states
copied into every time layer. This however might not be necessary. If there is a
state s in a transition system that already fulfills the requirement that all paths
to it have length d*(s) it might just only be represented in the d*(s)-th time
layer.

38

7 Conclusion

In this thesis we first observed that cycles in transition system can be a hin-
drance for flow heuristics, leading to lower heuristic values. We then established
time unrolling with which we were able to get rid of the cycles. When using
time unrolling there might be plans lost in the process, which lead us to time
unrolling with repetition. We found out that the flow constraints of multiple
abstract transition systems can be combined more strongly if they are time un-
rolled, or more generally, time synchronizable. If the abstract transition systems
are t times time synchronizable we can synchronize the summed flow for each
operator for the first ¢ time steps. On these concepts we built general heuristics
that combine the information of multiple abstract transition systems with time
synchronized flows.

Fixing the abstractions to atomic projections lead us to heuristics that use time
unrolling with a fixed amount of time steps hATUE and the heuristic hMATU
with a number of time steps depending on the problem. In our experiments we
found out that h;?TUR can either have a focus on solving many problems or on
having good heuristic values or even a combination of both. There are however
diminishing returns when increasing the time steps. hM4TU on the other hand
is in general a heuristic with pretty strong heuristic values as usually a lot time
steps are used. This means that h;?TUR is preferred over hMATU if coverage is
of importance. Finally it holds that h¥4TU = h* if there are no dead states in
the abstract transition systems.

39

A Appendix

X IBHOOHTII X MLRAOBONMK X

WW%‘% K% SRR LR
%X s, xxxgxx:;efx §a%& Xxgxx B R

23 % X X 25
07§ %x i?g(xxx")?()z;(§)>($<)§><;>§<X>< >S*< o

X
: %&%%W%) %yﬁ
i‘x‘i XXX%« »&x‘% 5”& o
0.5 m»xg»(%(x§>« x >¢<x><x>i<x><x>o¢n< X m»«)ﬁ(xm« x xxxxx»ooooom(
>§§<x XX X

x;«x%

Figure 15: Plot of all points (z,y) where z and y can be expressed as = = a/c
and y = b/c with a,b and ¢ being integers in {0,...,20}. Note the visible
diagonals and the points where they come together.

40

References

Blai Bonet, Menkes van den Briel, et al. Flow-Based Heuristics for Optimal
Planning: Landmarks and Merges. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS), 2014.

Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191-246, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstrac-
tions: what’s the difference anyway? In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pages 162-169,
2009.

Malte Helmert, Patrik Haslum, and Jorg Hoffmann. Explicit-state abstraction:
A new method for generating heuristic functions. In Proceedings of the As-
sociation for the Advancement of Artificial Intelligence (AAAI) Conference,
pages 1547-1550, 2008.

Florian Pommerening and Malte Helmert. A Normal Form for Classical Plan-
ning Tasks. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 188-192, 2015.

Florian Pommerening, Gabriele Roger, Malte Helmert, and Blai Bonet. LP-
Based Heuristics for Cost-Optimal Planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages
226-234, 2014.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert.
downward-lab 2.0. https://doi.org/10.5281/zenodo.399255, 2017. URL
https://doi.org/10.5281/zenodo.399255.

Menkes van den Briel, J Benton, Subbarao Kambhampati, and Thomas Vossen.
An LP-based heuristic for optimal planning. Principles and Practice of Con-
straint Programming (CP), pages 651-665, 2007.

41

https://doi.org/10.5281/zenodo.399255
https://doi.org/10.5281/zenodo.399255

Declaration on Scientific Integrity
Erklarung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklérung zu Plagiat und Betrug

Author — Autor
Philipp Oldenburg

Matriculation number — Matrikelnummer
13-061-064

Title of work — Titel der Arbeit

Time Unrolling Heuristics

Type of work — Typ der Arbeit
Master Thesis

Declaration — Erklarung

I hereby declare that this submission is my own work and that I have fully acknowledged
the assistance received in completing this work and that it contains no material that has
not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erklare ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene
Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln
verfasst habe. Ich habe simtliche verwendeten Quellen erwéahnt und geméss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 03.03.2018

P oldenb g

Signature — Unterschrift

	Introduction
	Background
	Time Unrolling
	Implementation
	Implementation with fixed amount of time steps
	Implementation with dynamic amount of time steps
	Optimizations
	Removing dead states
	Introducing shared variables

	Experiments
	Static number of time steps
	Initial heuristic value
	Coverage

	Dynamic number of time steps
	Initial heuristic value
	Coverage

	Future Work
	Conclusion
	Appendix

