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MDP

Definition (Markov Decision Process)

A MDP is a 6-tupleM = 〈S,A, T ,R,H, s0〉 where:
S – the finite set of states
A – the finite set of actions
T : S ×A× S → [0, 1] – the transition function
R : S ×A → R – the reward function
H ∈ N – the finite horizon
s0 ∈ S – the initial state
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Example of a MDP
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MDP

A policy π : S × {1, ...,H} → A.
State-values: Vπ(s, d) and action value: Qπ(s, π(s, d)).

A factored MDP:
A finite-domain variable v associated with Dv

A finite set of finite-domain variables V
Define state using V
For state s ∈ S we have a set of facts
F(s) = {〈v , d〉 | v ∈ V ∧ d ∈ Dv}

Search algorithm: UCT*
Action Selection
Expansion
Backup
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UCT* - Expansion
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Learning a Heuristic Function

Machine Learning
Automated learning from data.

For each action a ∈ A:
We want to learn h∗ : S → R
A given data set D = {(s, Q̂)}mi=1 with samples h∗(s) = Q̂

We want to find ĥ : S → R which approximates h∗

Search in L – the space of linear functions

ĥ(s) =
∑

f ∈F(s)

wf

Evaluating ĥ with the Mean Square Error function:

J(W, s) =
∑

(s,Q̂)∈D

(ĥ(s)− Q̂)2
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Learning a Heuristic Function
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Gradient Descent Methods

Update of weights in the opposite direction of the MSE gradient.

wf := wf − α
∂J(W, s)

∂wf
, ∀wf ∈ W

Image credits: Sebastian Raschka (https://sebastianraschka.com).
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Gradient Descent Methods

Based on the portion of D we have three gradient descent types:
Stochastic Gradient Descent – each data set entry
Batch Gradient Descent – whole data set
Mini Batch Gradient Descent – subset of the data set
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Underfitting and Overfitting

Image credits: Radim Rehurek (http://radimrehurek.com).
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Gradient Descent Methods

Improvements:
Early stopping
Learning rate decay
Momentum
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Momentum
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Gradient Descent Methods

To recap what we have:
A data set D = {(s, Q̂)}ni=1

Function approximation:

ĥ(s) =
∑

f ∈F(s)

wf

Parameters – GD type, number of epochs, learning rate,
momentum, learning rate decay, early stopping
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Results

Experimental environment:
12 domains and 10 instances per domain from IPPC 2014 and
IPPC 2011
Benchmarking against

DP-UCT
Winning algorithm of IPPC 2011
Winning algorithm of IPPC 2014

Goal
Find a parameter configuration for learning a heurstic function
which outperforms baseline algorithms.
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Results

Parameters:
Heuristic Function
Data set size
Gradient Descent Types
Learning rate
Number of epochs
Momentum and learning rate decay
Combination of features
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Heuristic Functions

We wanted to learn two heuristic functions: IDS and UCT* using
IDS.

a. IDS b. UCT* using IDS

Figure: α = 0.00001, σ = 0.05, γ = 0 and number of epochs 1000
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Results

Parameters:
Heuristic Function – IDS ∼ 75 and UCT* ∼ 35
Data set size
Gradient Descent Types
Learning rate
Number of epochs
Momentum and learning rate decay
Combination of features
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Gradient Descent Types

SGD performing best:

DP-UCT IPPC2011 IPPC2014 SGD BGD MBGD
0.0 0.0 0.75 1.0 0.63 0.81

a. Training b. Testing

Figure: α = 0.0001, σ = 0, γ = 0 and number of epochs 1000
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Gradient Descent Types

BGD performing best:

DP-UCT IPPC2011 IPPC2014 SGD BGD MBGD
0.71 0.93 0.75 0.91 1.0 0.85

a. Training b. Testing

Figure: α = 0.0005, σ = 0.05, γ = 0 and number of epochs 1000
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Momentum

a. γ = 0 b. γ = 0.3

Figure: IDS, α = 0.00001, σ = 0.05, γ = 0 and number of epochs 1000
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Results

Parameters:
Heuristic Function – IDS ∼ 75 and UCT* ∼ 35
Data set size – Bigger data set is better
Gradient Descent Types – Best choice depends on the task
Learning rate – Best choice depends on the task
Number of epochs – Best choice depends on the task
Momentum and learning rate decay – No momentum and
small learning rate decay
Combination of features
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Combination of features

Combining state features into pairs and generating new features.

F2(s) =

{〈v1, d1, v2, d2〉 | v1, v2 ∈ V ∧ d1, d2 ∈ Dv ∧ s[v1] = d1 ∧ s[v2] = d2}

Outcome:
Number of new features

(n
2

)
− n

2

More accurate action-values but worse result
More exploitation
Less trials
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Results

Parameters:
Heuristic Function – IDS ∼ 75 and UCT* ∼ 35
Data set size – Bigger data set is better
Gradient Descent Types – Best choice depends on the task
Learning rate – Best choice depends on the task
Number of epochs – Best choice depends on the task
Momentum and learning rate decay – No momentum and
small learning rate decay
Combination of features – Without expected improvement
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Results

Final result
No single parameter configuration which outperforms the baseline
algorithms.

There is a Set of Best Parameter Configurations for which the
baseline algorithms are outperformed.



logo-en

Background Learning a Heuristic Function Results Conclusion and Future Work

Results

Final result
No single parameter configuration which outperforms the baseline
algorithms.

There is a Set of Best Parameter Configurations for which the
baseline algorithms are outperformed.



logo-en

Background Learning a Heuristic Function Results Conclusion and Future Work

Results

DP-UCT IPPC 2011 IPPC 2014 SBPC OH
Wildfire 0.79 0.83 0.69 0.86
Triangle 0.42 0.39 0.88 0.7
Academic 0.68 0.3 0.31 0.6
Elevators 0.59 0.96 0.96 0.9
Tamarisk 0.64 0.9 0.88 0.9
Sysadmin 0.61 0.74 0.8 0.99
Recon 0.58 0.98 0.94 0.98
Game 0.71 0.91 0.97 0.96
Traffic 0.86 0.93 0.98 0.7
Crossing 0.42 0.81 0.99 0.83
Skill 0.93 0.93 0.94 1.0

Navigation 0.67 0.58 0.92 1.0
Total 0.66 0.77 0.86 0.87
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Conclusion

“All models are wrong, but some models are useful.” - George Box

Conclusion:
No single parameter configuration for learning an offline
heuristic in domain independent probabilistic planning.
Many parameters which demand a large number of
experiments and fine tuning.
A set of parameter configurations was found that outperforms
the baseline algorithms for 0.01.



logo-en

Background Learning a Heuristic Function Results Conclusion and Future Work

Conclusion

“All models are wrong, but some models are useful.” - George Box

Conclusion:
No single parameter configuration for learning an offline
heuristic in domain independent probabilistic planning.
Many parameters which demand a large number of
experiments and fine tuning.
A set of parameter configurations was found that outperforms
the baseline algorithms for 0.01.



logo-en

Background Learning a Heuristic Function Results Conclusion and Future Work

Future Work

Future work:
Other Gradient descent methods
More domain knowledge for better analysis of the data set
Investigating the underperformance of combined features
approach
Multiple iterations of learning
Online learning
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Questions?
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Additional slides
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Policy

Definition (Value functions)

LetM = 〈S,A, T ,R,H, s0〉 be a MDP, s ∈ S a state and π a
policy. The state-value Vπ(s, d) of s under π with d steps to go is
defined as

Vπ(s, d) = Qπ(s, π(s, d))

where the action-value Qπ(s, π(s, d)) under π is defined as

Qπ(s, a) =

{
R(s, a) +

∑
s′∈S(PT [s ′|s, a] · Vπ(s ′, d − 1)) , d > 0

R(s, a) , d = 0

for all state-action pairs (s, a).



logo-en

Appendix

Policy

Definition (Optimal policy)

Let the Bellman optimality equation for a state s ∈ S be a set of
equations that describe V ∗(s, d), where

V ∗(s, d) = maxa∈AQ∗(s, d , a)

Q∗(s, d , a) =

R(s, a) +
∑
s′∈S

(PT [s ′|s, a] · V ∗(s ′, d − 1)) , d > 0

R(s, a) , d = 0

A policy π∗ is an optimal policy if π∗ ∈ arg maxa∈AQ∗(s, d , a) for
all s ∈ S.
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Planning task

Definition (Planning task)

A planning task is a 4-tuple T = 〈V,A,H, s0〉 where:
V – the finite set of finite-domain variables v with domain
Dv

A – the finite set of actions 〈effecta, rewarda〉 = a ∈ A where
effecta – is a probability distribution over partial variable
assignment {(pai , eai )}ni=1 where pai is a probability, eai is a

partial variable assignment and
n∑

i=1
pai = 1

rewarda – the reward of applying action a

H ∈ N – the finite horizon
s0 ∈ V – the initial state
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Example of a factored MDP
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UCT* - Action Selection
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UCT* - Action Selection
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UCT* - Backup
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Gradient Descent Methods

Gradient descent methods:

wf := wf − α
∂J(W, s)

∂wf
, ∀wf ∈ W

Where we have the error function over the data set D’:

J(W, s) =
1
2m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂)2

and by deriving we get:

∂

∂wf
J(W, s) =

1
m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W
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Gradient Descent Methods

Based on the portion of D we have three gradient descent types:

Stochastic Gradient Descent

∂

∂wf
J(W, s) = (ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W

Batch Gradient Descent

∂

∂wf
J(W, s) =

1
m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W

Mini Batch Gradient Descent

∂

∂wf
J(W, s) =

1
k − j

∑
(s,Q̂)∈B

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W
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